
ar
X

iv
:1

20
3.

38
83

v1
 [

cs
.D

S]
 1

7
M

ar
 2

01
2

A note on the fast power series’ exponential

I. S. Sergeev

Abstract

It is shown that the exponential of a complex power series up to
order n can be implemented via (23/12+o(1))M(n) binary arithmetic
operations over C, where M(n) stands for the (smoothed) complexity
of multiplication of polynomials of degree < n in FFT-model. Yet,
it is shown how to raise a power series to a constant power with the
complexity (27/8 + o(1))M(n).

1 Introduction

It is very well known that the exponential of a power series (as well as some
other elementary operations) has the same order of complexity as multi-
plication, see e.g. [2, 3]. (When we speak about complexity we consider a
computational model of circuits or straight-line programs over arithmetic
basis {±, ∗} ∪ {ax | a ∈ C}, see e.g. [3]. The field should not be necessary
complex, it might be real or any algebraically closed, or any other which
supports appropriate FFT.)

Previous papers set up a convention to estimate complexity of the basic
power series’ operations (including exponential) in the number of multipli-
cations of the same size. The very last papers (since 2000) use the special
FFT-way multiplications.

The complexity function M(n) of FFT-way multiplication can be intro-
duced as follows. Let F ◦(n) be the complexity of FFT of order n over C. Let
F (n) be its smoothed version, that is, F (n) = minm≥n F

◦(m). For simplicity
we also assume F (n) = Ω(n log n) (in fact, F (n) = ω(n) is sufficient) and
kF (n) = (1 + o(1))F (kn) for 1 ≤ k ≤ logn.1 Then, let M(n) = 6F (n). In
any case M(n) serves as an upper asymptotic estimate of the complexity of
multiplication of polynomials of degree < n.

1These assumptions are for more convenient way of writing final complexity bounds
only, it does not affect any other aspect of the proof. Notation g = ω(f) means f = o(g).

1

http://arxiv.org/abs/1203.3883v1

Write an upper estimate of the complexity of computing exponent of a
power series in C[[x]] modulo xn in the form (A+o(1))M(n). Let us list some
previously known results: A = 17/6 [1], A = 14/3 [5, 6], A = 13/6 [8, 10]
and [4]. Next, we will show that A = 23/12 is also valid. The method is a
straightforward combination of methods [8, 10] and [4]. To be more precise,
scheme of computation follows [4] and technique is inherited from [8, 10].

We will also show that one can compute a constant power of a power series
in C[[x]] modulo xn with the complexity (B + o(1))M(n), where B = 27/8.
It slightly improves the previously best known factor B = 41/12 [8, 10].

Some notation. Let f ∈ C[[x]], then f..n denotes f mod xn and ⌊f/xn⌋
stands for (f − f..n)/x

n. If f =
∑

i≥0 fix
i, then ∆f , Jf , ln f (when f0 = 1)

and ef (when f0 = 0) denotes formal derivative, formal integral, formal
logarithm and formal exponent respectively:

∆f =
∑

i≥1

ifix
i−1, Jf =

∑

i≥1

fi−1

i
xi, ln f = −

∑

i≥1

(1− f)i

i
, ef =

∑

i≥0

f i

i!
.

2 Exponent

Consider a problem of computing exponent of a power series h, h..1 = 0.
Denote f = eh, r = 1/f . Recall that ∆h = ∆f/f .

The next iterative formula [5] (derived as a solution of an equation ∆f =
gf with g = ∆h in this case) is valid for m ≥ n:

f..m+n = f..m + f..n J
(

xm−1r..n
⌊

∆(h..m+n)f..m/x
m−1

⌋)

mod xm+n. (1)

Let E(n) and I(n) denote the complexity of computation ef and 1/f
modulo xn respectively. Then we can use (1) to compute f..m with the com-
plexity

E(n) + I(n) + (13 + o(1))F (m) ∼ (13/6 + o(1))M(m) (2)

for appropriately chosen parameters m and n, e.g. n = o(m) and m =
O(n

√
logn). (That is one of the ways to obtain factor 13/6 in the complexity

estimate for exponent [10].)
To achieve the complexity bound (2) split series into blocks of appropriate

size k, e.g. k ∈ o(n) ∩ Ω(n/
√
logn). Then use double DFT of order (2k, k)

to perform block multiplications in (1).
Double DFT of order (l, k) as a map from C[x] to Cl+k is defined so

that its first l components are the components of DFT of order l, another k
components are the components of composition of the variable substitution

2

x → ζx and DFT of order k, where ζ — an appropriate complex number.
Multiple DFT can be defined in similar way [9]. Multiple DFTs are useful to
perform multiplications of different sizes on the overlapping sets of inputs.
Double DFT of order (l, k) or its inverse costs as much as DFT of order l
and DFT of order k plus O(l + k) extra operations, see [10] for details.

In the case l = 2k (as we have) one can use an ordinary DFT of order 3k
decomposed into outer DFTs of order 3 and inner DFTs of order k instead.

The main term of the complexity estimate (2) is contributed by:
3(m/k)F (k) (which we assume to be approximately 3F (m)) operations to
compute DFTs of blocks of f , the same number of operations to compute
DFTs of blocks of ∆h, the same number of operations to restore blocks of
the triple product under the integral, 2F (m) operations to compute 2k-order
parts of DFTs of blocks of J(. . .) and the same number of operations to re-
store the product f..n J(. . .). Other steps (precomputation of f..n and r..n,
additions, implementation of ∆ and J operators, calculations in the DFT-
image spaces) contribute o(m logm) in total complexity.

To provide a hint for verification we consider a subproblem of the triple
product computation (this step seems to be less evident in the algorithm
above) in Appendix. Other details (if necessary) see in [10].

Next we turn to introduce an improved version of the algorithm with the
use of idea due to D. Harvey [4].

Suppose we are to compute f..2m. Firstly we compute f..m acting as
mentioned above. By the way we also have DFTs of blocks of f..m−n and
∆(h..m) been computed. At the second stage we use formula [2]

f..2m = f..m + f..m(h− ln f..m)..2m mod x2m (3)

derived by the discrete Newton—Raphson method as the solution of an equa-
tion ϕ[f] = h with ϕ[x] = ln x in our case. This stage generally consists of
the two essential parts: computation of ln f..m up to order 2m and final
multiplication f..m by h− ln f..m.

Denote s = ∆(f..m)/f..m. We compute (ln f..m)..2m as Js..2m−1 via the
iteration [7]

s..m′+n−1 = s..m′−1 − xm′−1r..n

⌊

s..m′−1f..m/x
m′−1

⌋

mod xm′+n−1, (4)

where m′ ≥ m. We start from s..m−1 = ∆(h..m).
To perform the calculations by (4) we use (6+o(1))F (m) extra operations:

half of them to compute DFTs of remaining blocks of s, another half to
compute blocks of the triple product (see Appendix for some details).

To complete the computation of f..2m we use another (4 + o(1))F (m)
operations: half of them to compute 2k-order DFTs of the order of blocks of

3

h−ln f..m and roughly the same number to restore blocks of the product in (3).
Recall that 2k-order DFTs of almost all blocks of f..m are also computed at
the first stage of the algorithm since we use double DFTs (this is the only
place we gain a benefit from exploiting double DFT).

To summarize, we can compute the exponent up to order 2m with the
complexity (23 + o(1))F (m).

3 Exponentiation

Consider a problem of raising of a power series h, h..1 = 1 to a power C ∈ C.
Denote f = hC , r = 1/f , ρ = 1/h, s = C∆h/h.

The way of computing a power is just similar with that of computing an
exponent. We will give only a sketch.

To compute the first half of the required coefficients of f we use the
formula

f..m+n = f..m + f..n J
(

xm−1r..n
⌊

s..m+n−1f..m/x
m−1

⌋)

mod xm+n (5)

derived as a solution of the equation ∆f = sf . Next, we switch to the
formula

f..2m = f..m + f..m(Js− ln f..m)..2m mod x2m (6)

derived as a solution of the equation ln f = C ln h.
To solve a subproblem of computing s we use the iteration [7]

s..m+n−1 = s..m−1 + ρ..n(∆(h..m+n)− s..m−1h..m+n) mod xm+n. (7)

As above all series are divided into blocks of size k, except that the first
half of the series ∆h is divided into blocks of size 2k. We also use double
DFTs of order (2k, k).

Suppose we are given f..n, r..n, ρ..n and s..n−1. Then we can compute
f..2m using (40.5 + o(1))F (m) operations. This bound is contributed by the
following parts:

(10.5 + o(1))F (m) operations to compute s..m−1 and DFTs of blocks of
s..m−1 via (7). We use DFTs of blocks of h, s, ∆h, ρ and inverse DFTs to
restore triple multiplications (it is essential that the blocks of ∆(h..m) are
double-sized);

(10+o(1))F (m) operations to compute another half of s..2m−1. Here each
iteration (7) is performed via two ordinary multiplications with the use of
DFTs of order 2k;

(10+o(1))F (m) operations to compute f..m and DTFs of its blocks by (5).
The procedure is the same as in the first part of the exponential algorithm;

4

(6 + o(1))F (m) operations to compute ln f..m up to order 2m. This step
coincides with that of the exponential algorithm above;

(4+o(1))F (m) operations to perform final multiplication in (6) via DFTs
of order 2k.

Therefore, we have got the required complexity estimate.
Research supported in part by RFBR, grants 11–01–00508, 11–01–00792,

and OMN RAS “Algebraic and combinatorial methods of mathematical cy-
bernetics and information systems of new generation” program (project
“Problems of optimal synthesis of control systems”).

References

[1] Bernstein D. J. Removing redundancy in high-precision Newton itera-

tion. Manuscript, 2004. http://cr.yp.to/papers.html#fastnewton.

[2] Brent R. Multiple-precision zero-finding methods and the complexity

of elementary function evaluation. Analytic computational complexity.
Academic Press, NY, 1975, 151–176.

[3] von zur Gathen J., Gerhard J. Modern computer algebra. Cambridge
University Press, Cambridge, 1999.

[4] Harvey D. Faster exponentials of power series. Preprint. 2009.
http://arxiv.org/abs/0911.3110.

[5] van der Hoeven J. Newton’s method and FFT trading. Tech. report 2006–
17. Univ. Paris-Sud, Orsay, France, 2006.

[6] van der Hoeven J. Newton’s method and FFT trading. J. Symb. Comput.
2010. 45(8), 857–878.

[7] Karp A. H., Markstein P. High-precision division and square root. ACM
Trans. Math. Softw. 1997. 23(4), 561–589.

[8] Sergeev I. S. Fast algorithms for elementary operations on power series.

Proc. IX Intern. Seminar “Discrete math. and its applications” (Moscow,
June 2007). Moscow, MSU Mech. Math. Faculty, 2007, 123–126 (in Rus-
sian).

[9] Sergeev I. S. Regularization of some estimates of complexity of the poly-

nomial multiplication. Proc. VII Sci. Workshop on Discrete math. and
its applications (Moscow, May 2009). Part II. Moscow, Keldysh Inst. of
Applied Math., 2009, 26–32 (in Russian).

5

http://cr.yp.to/papers.html#fastnewton
http://arxiv.org/abs/0911.3110

[10] Sergeev I. S. Fast algorithms for elementary operations on complex power

series. Discrete Math. and Appl. 2010. 20(1), 25–60.

Appendix

Let f, g, h ∈ C[[x]]. Consider a problem of computing

q = f⌊gh/xm⌋ mod xn,

where m is a multiple of n. Suppose series f, g, h ∈ C[[x]] are given divided
into blocks of size k (we assume for simplicity that n is a multiple of k):

f =
∑

i≥0

aix
ik, g =

∑

i≥0

bix
ik, h =

∑

i≥0

cix
ik, deg ai, bi, ci < k.

Suppose we are also given DFTs of order 3k (or, alternatively, double DFTs
of order (l1, l2) with l1 + l2 = 3k) of all necessary blocks ai, bi, ci. We are to
show how one can compute q via approximately 3(n/k)F (k) extra operations.

Flooring makes some complication. We avoid it as following. Let

ui =
∑

µ+ν=m/k+i

bµcν , θ = ⌊u−1/x
k⌋.

Then
⌊gh/xm⌋ = θ +

∑

i≥0

uix
ik.

Finally we have

q =
∑

i≥0

dix
ik mod xn, di = aiθ +

∑

λ+µ=i

aλuµ.

Note that di are the polynomials of degree < 3k.
Turn to calculations. Let a∗ to denote the vector of DFT (or double DFT)

of polynomial a(x).
(i) Compute u∗

i for i = −1, . . . , n/k − 1. It costs O(k)F ((m + n)/k) =
O((m+n) log((m+n)/k)) since u∗

i are the components of the convolution of
vectors (b∗0, b

∗
1, . . . , b

∗
(m+n)/k−1) and (c∗0, c

∗
1, . . . , c

∗
(m+n)/k−1). Recall that b

∗
i and

c∗i are the elements of the space C
3k of DFT-images with component-wise

multiplication.
(ii) Compute u−1 and hence θ via inverse DFT. It costs 3F (k) +O(k) as

far as u∗
−1 is known (in fact, 2k-point inverse DFT suffices here).

(iii) Compute θ∗. it costs 3F (k) +O(k).

6

(iv) Compute d∗i for i = 0, . . . , n/k − 1. It costs O(k)F (n/k) =
O(n log(n/k)) contributed by a convolution of order n/k in C3k and O(n/k)
extra additions and multiplications in the same space.

(v) Compute all di and hence q. It costs (n/k)(3F (k)+O(k)) to compute
di and O(n) to restore q.

Finally we have an upper bound

3(n/k + 2)F (k) +O((m+ n) log((m+ n)/k))

for the total complexity.

7

	1 Introduction
	2 Exponent
	3 Exponentiation
	1 Ââåäåíèå
	2 Ýêñïîíåíòà
	3 Âîçâåäåíèå â ñòåïåíü

