
ar
X

iv
:1

20
8.

38
74

v1
 [

cs
.D

S]
 1

9
A

ug
 2

01
2

Upper bounds for the formula size of the

majority function ∗

I. S. Sergeev

Abstract

It is shown that the counting function of n Boolean variables can
be implemented with the formulae of size O(n3.06) over the basis of
all 2-input Boolean functions and of size O(n4.54) over the standard
basis. The same bounds follow for the complexity of any threshold
symmetric function of n variables and particularly for the majority
function. Any bit of the product of binary numbers of length n can
be computed by formulae of size O(n4.06) or O(n5.54) depending on
basis. Incidentally the bounds O(n3.23) and O(n4.82) on the formula
size of any symmetric function of n variables with respect to the basis
are obtained.

1 Introduction

We consider the complexity of implementation of symmetric Boolean functi-
ons with formulae over the basis B2 of all binary Boolean functions and over
the standard basis B0 = {∧,∨, }. All necessary notions of formulae and
complexity LB(f) of implementation of function f with formulae over basis
B one can find in [1, 4].

The best known results on the complexity and the depth of implementa-
tion of symmetric functions with either circuits or formulae over complete
bases depend on the efficient implementation of the counting function
Cn(x1, . . . , xn) calculating the sum of Boolean variables x1, . . . , xn. Reduc-
tion to the computation of Cn is a way of minimization of the depth and the
complexity of formulae for multiplication of binary numbers.

∗Research supported in part by RFBR, grants 11–01–00508, 11–01–00792, and OMN
RAS “Algebraic and combinatorial methods of mathematical cybernetics and information
systems of new generation” program (project “Problems of optimal synthesis of control
systems”).

1

http://arxiv.org/abs/1208.3874v1

In its turn, efficient circuits and formulae for the counting function can
be built of CSA-units.1 (k, l)-CSA of width 1 implements a Boolean function
(x1, . . . , xk) → (y1, . . . , yl) according to condition

∑
aixi =

∑
bjxj , where

k > l and constants ai, bj are the integer powers of two. (k, l)-CSA of arbi-
trary width can be composed of parallel copies of width 1 CSA’s. It allows
to reduce addition of k numbers to addition of l numbers.

With the use of appropriate CSA’s and method [6] the bounds LB2
(Cn) =

O(n3.13), LB0
(Cn) = O(n4.57) were obtained in [7] improving upon preceding

known results LB2
(Cn) = O(n3.32) [8] and LB0

(Cn) = O(n4.62) [2] (some
earlier results see in [6]).

In the recent paper [3] it was built a new CSA (called MDFA) which
allows to implement the function Cn with a circuit over B2 of the best known
complexity 4.5n (improving the old previous bound 5n). Efficient use of the
CSA [3] implies encoding of some pairs of bits u, v in the form (u⊕v, v) (such
encoding was introduced in [9]). A benefit in complexity is due to (a) one can
compute a pair (u⊕ v, v) not harder than (u, v), (b) following computations
need u⊕ v rather than u — that’s why one Boolean addition can be saved.

Note that by the above reasons one can expect MDFA to be efficient for
implementation with formulae. Indeed, MDFA allows shorter formulae for
u⊕ v than formulae for u and v together.

This observation was exploited implicitly in the construction of the for-
mula efficient CSA in [7]. The CSA contains MDFA with its outputs con-
nected to the standard (3, 2)-CSA FA3. What makes the CSA [7] more
efficient than the standard (3, 2)-CSA is exactly intermediate (u ⊕ v, v) en-
coding (the (3, 2)-CSA alone leads to the bound LB2

(Cn) = O(n3.21), see [6]).
Moreover, as far as MDFA saves circuit complexity, CSA [7] also does it:

its circuit complexity is 14.2 Thus, the CSA allows to implement Cn with
(14/3)n circuit complexity. So, it was possible to overcome the 5n barrier in
the 90-es.

It is natural to conclude that the CSA [7] does not use MDFA optimally
to construct shorter formulae. We will show below that one can obtain the
bound LB2

(Cn) = O(n3.06) via more independent way of exploiting MDFA.
However, proposed method is also not optimal.

An analogous idea works in the case of basis B0. In the case one can try
monotone encoding (uv, u∨v) of a pair of bits u and v. Such encoding makes
the most significant outputs of a CSA to be monotone functions of inputs (in
fact, these functions are threshold if all inputs are of the same significance).
It can be reasonable since the known CSA’s over B0 have non-monotone

1CSA is abbreviature for Carry Save Adder.
2Formula for the circuit implementation slightly differs from the shortest one.

2

outputs to be most difficult for implementation.
We will describe below (5, 3)-CSA SFA5, an analogue of MDFA for mono-

tone encoding. With the use of it the bound LB0
(Cn) = O(n4.55) is rather

simple to obtain. Slightly better bound LB0
(Cn) = O(n4.54) follows from the

more complicated construction based on the (7, 3)-CSA [2] and monotone
encoding of triples of bits.

Let Sn denote the class of symmetric Boolean functions of n variables.
New upper bounds for majority function does not provide automatic reduc-
tion of the size of formulae implementing functions from Sn due to the fact
that the known methods [2, 5] limit the efficiency of CSA’s with inputs and
outputs of multiple types.

However, it is not hard to aggregate several CSA’s with non-standard
encoding of bits into single CSA with the standard encoding and apply
the method [5] to obtain bounds LB2

(Sn) = O(n3.23), LB0
(Sn) = O(n4.82)

improving earlier results LB2
(Sn) = O(n3.30) [5], LB2

(Sn) = O(n3.37) [8],
LB0

(Sn) = O(n4.85) [5], LB0
(Sn) = O(n4.93) [2].

It is worth noting that basic CSA’s in the present paper are structurally
similar or in any case are not more complicated than the CSA’s in preceding
papers. So, the improvement in complexity bounds is entirely a result of
exploiting the idea of alternative encoding of bits.

2 Formulae over B2

❄ ❄ ❄

❄ ❄ ❄ ❄ ❄

MDFA

x v1 u1 ⊕ v1 v2 u2 ⊕ v2

c b a⊕ b

Figure 1: MDFA block-diagram

Fig. 1 shows a block-diagram of MDFA. Functional definition and for-
mulae to compute outputs are given below.

2(a+ b) + c = x+ u1 + u2 + v1 + v2.

c = x⊕ (u1 ⊕ v1)⊕ (u2 ⊕ v2), b = (x⊕ v1)(u1 ⊕ v1)⊕ v1,

(a⊕ b) = ((x⊕ v1) ∨ (u1 ⊕ v1))⊕ (x⊕ (u1 ⊕ v1)⊕ v2)(u2 ⊕ v2).
(1)

3

To obtain O(n3.06) complexity bound one can use CSA shown in Fig. 2.
It contains two isolated MDFA’s, which are identical up to encoding of a pair
of inputs.

❄ ❄ ❄

❄ ❄

❩
❩
❩⑦ ❄✐

❄ ❄ ❄

MDFA

x1

x2 x3

v1 u1 ⊕ v1

c1 b1 a1 ⊕ b1

❄ ❄ ❄

❄ ❄ ❄ ❄ ❄

MDFA

x4 v2 u2 ⊕ v2 v3 u3 ⊕ v3

c2 b2 a2 ⊕ b2

Figure 2: The main CSA

The CSA has inputs and outputs of two types: standard bits and pairs
of bits encoded as (u⊕ v, v).

Consider the size of formulae implementing inputs and outputs of the
first type. Denote it by Xi for inputs xi and by Ci for outputs ci. To deal
with inputs and outputs of the second type (u ⊕ v, v) introduce a quantity
max{V, U+/α} where V , U+ is the size (or an upper estimate of the size)
of formulae implementing v and u ⊕ v respectively, α is a parameter to be
chosen later. Denote this quantity by Ui for inputs (ui⊕ vi, vi) and by Ai for
outputs (ai ⊕ bi, bi).

According to (1), the following inequalities hold:

C1 ≤ X1 +X2 +X3 + αU1,

C2 ≤ X4 + αU2 + αU3,

A1 ≤ max
{
X1 +X2 + 3X3,

2
α
X1 +

2
α
X2 +

3
α
X3 +

α+1
α
U1

}
,

A2 ≤ max
{
X4 + (α + 2)U2,

2
α
X4 +

2α+1
α
U2 +

α+1
α
U3

}
.

(2)

It follows from [6, 7] that if

Xp
1 +Xp

2 +Xp
3 +Xp

4 − Cp
1 − Cp

2 > 0,

Up
1 + Up

2 + Up
3 −Ap

1 − Ap
2 > 0,

(3)

for some p > 0, some Xi > 0 and Ui > 0 (and also for some α > 0) then
LB2

(Cn) = O
(
n1/p+o(1)

)
, see also Appendix. Use upper bounds (2) instead of

Ci and Ai to check that inequalities (3) hold when α = 2.906, p = 0.327781,
X1 = X2 = 1, X3 = 0.5149081, X4 = 1.9198088, U1 = 1.2176395, U2 =
1.0031176, U3 = 2.3573055. Consequently, LB2

(Cn) = O(n3.0509).

4

To obtain tighter estimates of the efficiency of MDFA one can split for-
mally the second type of encoding into several types with different values of
α (say, uniformly distributed in some segment) and consider a set of MDFA’s
with inputs and outputs of all possible types. However, the implied calcula-
tion looks rather laborious if not to exploit some additional considerations.
This observation is already involved partly in the construction of fig. 2: ratio
of sizes of formulae for x2 ⊕ x3 and x2 differs from α.

To estimate the complexity of a symmetric function consider the following
sequence of CSA’s with standard encoding of bits. In the proposed sequence
the m-th CSA contains m MDFA’s connected in a chain and an outer CSA
FA3 (outputs of each MDFA are connected to the inputs v2, u2⊕v2 of the next
MDFA in notation of fig. 1). The first CSA in the sequence (m = 1) is the
CSA from [7]. For m = 4 we get (15, 6)-CSA, which, if taken independently,
allows to implement Cn with the formula of size O(n3.089).3

With the use of this (15, 6)-CSA and method [5] one can implement a
k-th significant bit of Cn with complexity O(n2.2285 · 2k). Thus, the bound
LB2

(Sn) = O(n3.2285) follows, see Appendix for proof.

3 Formulae over B0

The present section includes two examples of CSA’s which are efficient for
constructing formulae for Cn over B0. The first CSA is shown in fig. 3.
Functional definition of the basic CSA SFA5 (Sorting Full Adder) is similar
to that of MDFA. Outputs are implemented by formulae:

c = (x1 ⊕ (u1 ⊕ v1))⊕ (u2 ⊕ v2) = ψχ ∨ ψχ,

ψ = x1

(
(u1v1) ∨ (u1 ∨ v1)

)
∨ x1(u1v1)(u1 ∨ v1), χ = (u2v2)(u2 ∨ v2),

a1b1 = T 4
5 (x1, u1, v1, u2, v2) =

∨

i+j=4

T i
3(x1, u1, v1)T

j
2 (u2, v2) =

= (x1(u1 ∨ v1) ∨ (u1v1))(u2v2) ∨ x1(u1v1)(u2 ∨ v2),

(4)

3Vector of sizes of outputs of the CSA can be produced from the vector of sizes of
inputs via multiplication by the matrix

0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 1 1 1 2
1 2 2 3 3
1 4 4 9 3

0 0 0 0 0 1 1 1 1 1
0 0 1 1 1 1 2 2 2 3
1 1 2 2 3 1 2 3 3 6
2 3 3 3 6 1 2 3 3 6
3 6 3 3 6 1 2 3 3 6
3 6 3 3 6 1 2 3 3 6

5

where T k
n is the threshold monotone function of n variables with the threshold

k; output a1 ∨ b1 = T 2
5 (x1, u1, v1, u2, v2) is a function dual to a1b1, so it can

be implemented with the dual formula.

❄ ❄ ❄

❄ ❄ ❄ ❄ ❄

SFA5

x1 u1v1 u1 ∨ v1 u2v2 u2 ∨ v2

c a1b1 a1 ∨ b1

✐ ✐∧ ∨
❄ ❄

❄ ❄

◗
◗
◗◗s

✑
✑

✑✑✰

x2 x3

a2b2 a2 ∨ b2

Figure 3: Block-diagram of the first CSA

By analogy with the previous section for inputs xi, (uivi, ui ∨ vi) and
outputs c, (aibi, ai ∨ bi) consider quantities Xi, Ui, C, Ai respectively, which
correspond to the size of formulae implementing xi, uivi (or ui ∨ vi — here
formulae for components in a pair have equal size), c, aibi.

According to (4) the following inequalities hold:

C ≤ 4X1 + 8U1 + 4U2, A1 ≤ 2X1 + 3U1 + 2U2, A2 ≤ X2 +X3. (5)

One can easily check that the condition

Xp
1 +Xp

2 +Xp
3 − Cp > 0 Up

1 + Up
2 −Ap

1 − Ap
2 > 0

is satisfied for p = 0.219978, X1 = 1, X2 = X3 = 0.031702, U1 = 1.018913,
U2 = 2. As a consequence, LB0

(Cn) = O(n4.546).
In the second example we encode triples of bits u, v, w as an ordered

triple s̃ = (s′, s′′, s′′′), supplemented with a sum s⊕ = u⊕ v⊕w. Let us give
formulae to compute the code components:

s′ = min{u, v, w} = T 1
3 (u, v, w) = u ∨ v ∨ w,

s′′ = T 2
3 (u, v, w) = (u ∨ v)w ∨ uv,

s′′′ = max{u, v, w} = T 3
3 (u, v, w) = uvw.

Note that s′′ and s⊕ are exact bits representing the sum u+ v + w.
CSA of the second example (see fig. 4) contains two (7, 4)-CSA’s SFA7

and SFA′

7, differing in encoding of a triple of inputs.
SFA7 and SFA′

7 are functionally defined by equalities:

c1 + 2(q′1 + q′′1 + q′′′1) = x1 + s′1 + s′′1 + s′′′1 + s′2 + s′′2 + s′′′2 ,

6

❄ ❄

❄ ❄ ❄

SFA7

x1 s̃1, s
⊕

1 s̃2, s
⊕

2

c1 q̃1, q
⊕

1

❄ ❄

❄ ❄ ❄ ❄ ❄

SFA′

7

x2 x3 x4 x5 s̃3, s
⊕

3

c2 q̃2, q
⊕

2

Figure 4: Block-diagram of the second CSA

c2 + 2(q′2 + q′′2 + q′′′2) = x2 + x3 + x4 + x5 + s′3 + s′′3 + s′′′3 .

Outputs are implemented with formulae, structurally similar to those for the
(7, 3)-CSA [2]:

c1 = (x1 ⊕ s⊕1)⊕ s⊕2 = s⊕2

(
x1s

⊕

1 ∨ x1s
⊕

1

)
∨ s⊕2

(
x1s

⊕

1 ∨ x1s
⊕

1

)
,

c2 = (x2 ⊕ x3 ⊕ x4 ⊕ x5)⊕ s⊕3 = ψs⊕3 ∨ ψs⊕3 ,

ψ = (x2x3 ∨ x2x3)(x4x5 ∨ x4x5) ∨ (x2x3 ∨ x2x3)(x4x5 ∨ x4x5),

q′1 = T 2
7 (x1, s̃1, s̃2) = T 1

4 (x1, s̃1)s
′

2 ∨ T
2
4 (x1, s̃1) ∨ s

′′

2,

q′′1 = T 4
7 (x1, s̃1, s̃2) =

∨

i+j=4

T i
4(x1, s̃1)T

j
3 (s̃2),

q⊕1 = s′2 T
2
4 (x1, s̃1)T

4
4 (x1, s̃1) ∨ s

′

2s
′′

2 T
1
4 (x1, s̃1)T

3
4 (x1, s̃1) ∨

∨ s′′2s
′′′

2

(
T 4
4 (x1, s̃1) ∨ T

2
4 (x1, s̃1)

)
∨ s′′′2

(
T 3
4 (x1, s̃1) ∨ T

1
4 (x1, s̃1)

)
.

(6)

Formula for q′′′1 = T 6
7 (x1, s̃1, s̃2) is dual to that for q′1 up to substitution

s′i by s′′′i . Formulae for q̃2 and q⊕2 coincide to those for q̃1 and q⊕1 up to
implementation of the threshold funcion T4(x2, x3, x4, x5).

Threshold functions T i
4(y1, y2, y3, y4) = T i

4(y1, s̃) with three of variables
allowing multiple encoding can be implemented with formulae:

T 1
4 = y1 ∨ y2 ∨ y3 ∨ y4 = y1 ∨ s

′,
T 2
4 = (y1 ∨ y2)(y3 ∨ y4) ∨ y1y2 ∨ y3y4 = y1s

′ ∨ s′′.
(7)

Formulae for T 3
4 and T 4

4 are obtained in dual way with substitution s′ by s′′′.
According to the construction, formulae for q′1 and q′′′1 (q′2 and q′′′2) have

the equal size if the same holds for inputs s′i, s
′′′

i . Furthermore, the size of
formula for q⊕i is twice as much as that for q′′i .

As above, denote the complexity of formulae implementing inputs xi and
outputs ci by Xi and Ci respectively. For inputs s̃i consider the quantity
Si = max{S ′

i, S
′′

i /α}, where S ′

i and S ′′

i characterize the size (to be more
exact, an upper bound for the size) of formulae implementing s′i and s′′i .
Define quantities Qi for outputs q̃i analogously.

7

From (6) and (7) the inequalities follow:

C1 ≤ 4X1 + 8αS1 + 4αS2,

C2 ≤ 8(X2 +X3 +X4 +X5) + 4αS3,

Q1 ≤ max
{
2X1 + (α + 2)S1 + (α+ 1)S2,

4
α
X1 +

2α+4
α
S1 +

α+2
α
S2

}
,

Q2 ≤ max {3(X2 +X3 +X4 +X5) + (α + 1)S3,
6
α
(X2 +X3 +X4 +X5) +

α+2
α
S3

}
.

(8)

With the use of (8) it can be checked that the condition

Xp
1 +Xp

2 +Xp
3 +Xp

4 +Xp
5 − Cp

1 − Cp
2 > 0 Sp

1 + Sp
2 + Sp

3 −Qp
1 −Qp

2 > 0

holds for α = 1.6782, p = 0.2204718, X1 = 1, X2 = X3 = X4 = X5 =
0.3569540333, S1 = 1.1282983248, S2 = 2.424317629, S3 = 1.6884745179.
Therefore, LB0

(Cn) = O(n4.5358).
The last bound probably can be improved even without constructing

CSA’s more complicated than SFA5 and SFA7, if one uses all three ways of
encoding in unique CSA.

To estimate the complexity of an arbitrary symmetric function consider
a (17, 6)-CSA with the standard encoding of inputs and outputs, contain-
ing SFA7 and pair of SFA5’s in the bottom and (7, 3)-CSA similar to the
CSA [2] at the top. Non-standard outputs of SFA’s are connected to the
inputs of (7, 3)-CSA.4 One can verify that this CSA allows to implement Cn

with complexity O(n4.558) and a k-th significant bit of Cn with complexity
O(n3.8183 · 2k). So, the bound LB0

(Sn) = O(n4.8183) follows.

References

[1] Lupanov O. B. Asymptotic bounds for the complexity of control systems.
Moscow: MSU, 1984. 138 p. (in Russian)

4Vector of sizes of outputs of the CSA can be produced from the vector of sizes of
inputs via multiplication by the matrix

4 8 8 8 8 8 8
0 0 0 0 0 0 0
0 0 0 0 0 0 0
12 16 16 24 24 24 24
14 20 20 24 24 24 24
7 10 10 12 12 12 12

0 0 0 0 0 0 0 0 0 0
4 4 4 8 8 0 0 0 0 0
0 0 0 0 0 4 4 4 8 8
16 16 16 24 24 16 16 16 24 24
24 24 24 36 36 24 24 24 36 36
12 12 12 18 18 12 12 12 18 18

8

[2] Khrapchenko V. M. The complexity of the realization of symmetrical
functions by formulae // Mat. zametki. 1972, 11(1), 109–120 (in Rus-
sian). [Engl. translation in Math. Notes Acad. Sci. USSR, 1972, 11,
70–76.]

[3] Demenkov E., Kojevnikov A., Kulikov A., Yaroslavtsev G. New upper
bounds on the Boolean circuit complexity of symmetric functions // Inf.
Proc. Letters. 2010, 110(7), 264–267.

[4] Jukna S. Boolean function complexity. Berlin, Heidelberg: Springer-
Verlag, 2012. 618 p.

[5] Paterson M., Pippenger N., Zwick U. Faster circuits and shorter formu-
lae for multiple addition, multiplication and symmetric Boolean func-
tions // Proc. 31st IEEE Symp. Found. Comput. Sci., 1990, 642–650.

[6] Paterson M., Pippenger N., Zwick U. Optimal carry save networks //
LMS Lecture Notes Series. 169. Boolean function Complexity. Cam-
bridge University Press, 1992, 174–201.

[7] Paterson M., Zwick U. Shallow circuits and concise formulae for multiple
addition and multiplication // Comput. Complexity. 1993, 3, 262–291.

[8] Peterson G. L. An upper bound on the size of formulae for symmetric
Boolean function. Tech. Report. 78–03–01. Univ. Washington, 1978.

[9] Stockmeyer L. J. On the combinational complexity of certain symmetric
Boolean functions // Math. Syst. Theory. 1977, 10, 323–336.

Appendix

To make the presentation complete we provide here a method of constructing
formulae, which can be also found in [5, 6, 7].
1. Implementation of Cn.

Consider a CSA with inputs and outputs of t types of encoding. Let
xi,j and yi,j denote inputs and outputs of j-th type. Let the size Yk,l of the
formula implementing an output yk,l is a continuous, piecewise-linear and
nondecreasing (with respect to each argument) function of sizes Xi,j of the
formulae implementing inputs xi,j , where Xi,j, Yk,l take on arbitrary real
non-negative values. Assume that if Yk,l < Xi,j then yk,l does not depend on
xi,j . Let the inequalities

∑

i

Xp
i,j −

∑

i

Y p
i,j > 0 (9)

9

hold for some p > 0, some Xi,j > 0 and all j = 1, . . . , t.
We are to show how one can built a formula of size O

(
n1/p+o(1)

)
to im-

plement Cn.
Without loss of generality assume that min{Xi,j} = 1 < min{Yi,j}. As

Y ’s depend on X ’s continuously there exists such δ > 0 that for any j
inequality (9) remains true after the substitution Xi,j and Yi,j by parameters
X ′

i,j ∈ [Xi,j − δ, Xi,j] and Y ′

i,j ∈ [Yi,j, Yi,j + δ]. Then there exist (small

enough) λ > 1 and dXi,j, d
Y
i,j ∈ Z such thatλd

X
i,j/p ∈ [Xi,j − δ, Xi,j] and λ

dYi,j/p ∈
[Yi,j, Yi,j + δ] for all i, j. Consequently for any j the following inequality
holds: ∑

i

λd
X
i,j −

∑

i

λd
Y
i,j > 0.

Note that λd
X
i,j/p is a lower bound for Xi,j and λd

Y
i,j/p is an upper bound for

Yi,j. Let us name a number dXi,j (respectively dYi,j) level of the input xi,j
(output yi,j). We can assume min{dXi,j} = 0. Let d = max{dYi,j}.

Formula representing a bit of the function Cn can be constructed after
the following pattern. The formula contains CSA’s on different levels. Each
CSA can receive either inputs of the formula, or outputs of other CSA’s, or
zero formulae as inputs. CSA on a level k receives inputs of j-th type on the
levels dXi,j + k and produces outputs of the same type on the levels dYi,j + k.
The formula receives its nonzero inputs (i.e. symbols of variables) on the
level d and higher.

The formula is determined by the number
⌈
cnλ−k

⌉
of CSA’s on each level

k, 0 ≤ k ≤ logλ n, where c is a constant to be defined later.
Let us estimate the number of inputs, including zeros, and the number of

outputs of a type j in the formula. We will omit indices j in the argument
below as it does not depend on j.

According to the construction, all outputs of the formula on the levels d
and lower are zero. A total number of inputs (all zero) on the same levels is
O(n). Difference between the number of inputs and the number of outputs
on a level k, d ≤ k ≤ logλ n, is

∑

i

⌈
cnλd

X
i −k
⌉
−
∑

i

⌈
cnλd

Y
i −k
⌉
=

= cnλ−k

(
∑

i

λd
X
i −

∑

i

λd
Y
i

)
± O(1) = Θ

(
nλ−k

)
±O(1).

On the levels higher than logλ n the formula receives and produces O(1)
inputs and outputs in total.

10

Hence, the formulae receives Θ(n) nonzero inputs and produces O(logn)
nonzero outputs (of j-th type). One can choose c large enough to provide
not less than n inputs for any j.

Consider the size of outputs. It follows from the definition of λ that
inputs and outputs on level k are bounded above by λk/p. Thus the size of
outputs is λ(logλ n+O(1))/p = O(n1/p).

To implement the Cn function one has to take ⌊log2 n⌋+1 parallel copies
of the described pattern, zero some inputs and re-commutate appropriately
inputs and outputs on each level. Final addition of O(logn) numbers can be
implemented with an arbitrary polynomial-size formula. So, the overall size

of the formulae for Cn is O
(
n1/p logO(1) n

)
.

2. Formulae for symmetric functions.

Consider a CSA with standard encoding of inputs and outputs. Let xs,i
and ys,i stand for inputs and outputs of s-th significant bit, s ≥ 0. Let Xs,i

and Ys,i stand for the size of corresponding formulae. For any s define

as =
∑

i

Xp
s,i −

∑

i

Y p
s,i,

where we suppose sums over empty set of indices to be zero. Let the inequal-
ities

a0 > 0,
∑

s

asν
−s > 0. (10)

hold for some p, Xs,i and ν ≥ 1.
We will show that l-th significant bit of Cn can be implemented with a

formula of size O((νln)1/p+o(1)).
As above, choose an appropriate λ > 1 and approximate Xs,i and Ys,i

by integer powers of λ preserving (10) (denote the exponents by dXs,i, d
Y
s,i).

Without loss of generality assume min{dXs,i} = 0. Define d = max{dYs,i}.
Let CSA on the level k and of significance l receive inputs of significance

s + l on levels dXs,i + k and produce outputs of significance s + l on levels
dYs,i + k. Consider a formula containing ⌈cνlnλ−k⌉ CSA’s of significance l,
0 ≤ l ≤ log2 n + 1, on a level k, 0 ≤ k ≤ logλ(ν

ln). Nonzero inputs of the
formula are received on the levels d and higher, all of significance 0.

We are to estimate the number of inputs and outputs of significance l on
level k. If d ≤ k ≤ logλ(ν

ln), then difference between the number of inputs
and the number of outputs is
∑

s,i

⌈
cνl−snλd

X
s,i−k

⌉
−
∑

s,i

⌈
cνl−snλd

Y
s,i−k

⌉
=

= cνlnλ−k
∑

s

asν
−s ±O(1) = Θ(νlnλ−k)±O(1).

11

On the levels higher than logλ(ν
ln) the formula receives and produces O(1)

inputs and outputs in total.
Therefore, the formula produces O(logn) outputs of any significance. A

choice of large enough constant c provides at least n inputs of significance 0.
Each output of significance l is implemented with a formula of size at most
λ(logλ(ν

ln)+O(1))/p = O((νln)1/p). Hence, l-th significant bit of Cn can be
implemented with a formula of size O((νln)1/p logO(1) n).

Assuming ν ≤ 2p we obtain an upper bound O(n1+1/p+o(1)) on the formula
size complexity of the class Sn. The implied formulae are constructed simply
via representation of a symmetric function as a function of the weight of its
set of arguments and decomposition along (new) variables.

12

	1 Introduction
	2 Formulae over B2
	3 Formulae over B0
	1 Ââåäåíèå
	2 Êîíñòðóêöèÿ äëÿ áàçèñà B2
	3 Êîíñòðóêöèÿ äëÿ áàçèñà B0

