arXiv:1208.3874v1l [cs.DS] 19 Aug 2012

Upper bounds for the formula size of the
majority function *

I. S. Sergeev

Abstract

It is shown that the counting function of n Boolean variables can
be implemented with the formulae of size O(n3%) over the basis of
all 2-input Boolean functions and of size O(n*°*) over the standard
basis. The same bounds follow for the complexity of any threshold
symmetric function of n variables and particularly for the majority
function. Any bit of the product of binary numbers of length n can
be computed by formulae of size O(n*%) or O(n®5%) depending on
basis. Incidentally the bounds O(n323) and O(n*®?) on the formula
size of any symmetric function of n variables with respect to the basis
are obtained.

1 Introduction

We consider the complexity of implementation of symmetric Boolean functi-
ons with formulae over the basis B, of all binary Boolean functions and over
the standard basis By = {A,V, }. All necessary notions of formulae and
complexity Lg(f) of implementation of function f with formulae over basis
B one can find in [T, 4].

The best known results on the complexity and the depth of implementa-
tion of symmetric functions with either circuits or formulae over complete
bases depend on the efficient implementation of the counting function
Cy(z1, ..., x,) calculating the sum of Boolean variables z1,...,z,. Reduc-
tion to the computation of C), is a way of minimization of the depth and the
complexity of formulae for multiplication of binary numbers.

*Research supported in part by RFBR, grants 11-01-00508, 11-01-00792, and OMN
RAS “Algebraic and combinatorial methods of mathematical cybernetics and information
systems of new generation” program (project “Problems of optimal synthesis of control
systems”).

http://arxiv.org/abs/1208.3874v1

In its turn, efficient circuits and formulae for the counting function can
be built of CSA-units/! (k,1)-CSA of width 1 implements a Boolean function
(x1,...,2%) = (y1,...,u) according to condition) a;z; = > b;x;, where
k > [and constants a;, b; are the integer powers of two. (k,1)-CSA of arbi-
trary width can be composed of parallel copies of width 1 CSA’s. It allows
to reduce addition of k£ numbers to addition of [numbers.

With the use of appropriate CSA’s and method [6] the bounds Lg,(C,,) =
O(n*13), Lg,(C,) = O(n*®") were obtained in [7] improving upon preceding
known results Lp,(C,) = O(n*3?) [§] and Lp,(C,) = O(n*5?) [2] (some
earlier results see in [0]).

In the recent paper [3] it was built a new CSA (called MDFA) which
allows to implement the function C,, with a circuit over B; of the best known
complexity 4.5n (improving the old previous bound 5n). Efficient use of the
CSA [3] implies encoding of some pairs of bits u, v in the form (u@®wv, v) (such
encoding was introduced in [9]). A benefit in complexity is due to (a) one can
compute a pair (u @ v, v) not harder than (u,v), (b) following computations
need u @ v rather than v — that’s why one Boolean addition can be saved.

Note that by the above reasons one can expect MDFA to be efficient for
implementation with formulae. Indeed, MDFA allows shorter formulae for
u @ v than formulae for u and v together.

This observation was exploited implicitly in the construction of the for-
mula efficient CSA in [7]. The CSA contains MDFA with its outputs con-
nected to the standard (3,2)-CSA FAs;. What makes the CSA [7] more
efficient than the standard (3,2)-CSA is exactly intermediate (u @ v, v) en-
coding (the (3,2)-CSA alone leads to the bound Lp,(C,) = O(n3?'), see [0]).

Moreover, as far as MDFA saves circuit complexity, CSA [7] also does it:
its circuit complexity is 141 Thus, the CSA allows to implement C), with
(14/3)n circuit complexity. So, it was possible to overcome the 5n barrier in
the 90-es.

It is natural to conclude that the CSA [7] does not use MDFA optimally
to construct shorter formulae. We will show below that one can obtain the
bound Lg,(C,) = O(n*"®) via more independent way of exploiting MDFA.
However, proposed method is also not optimal.

An analogous idea works in the case of basis By. In the case one can try
monotone encoding (uv, uVwv) of a pair of bits u and v. Such encoding makes
the most significant outputs of a CSA to be monotone functions of inputs (in
fact, these functions are threshold if all inputs are of the same significance).
It can be reasonable since the known CSA’s over By have non-monotone

LCSA is abbreviature for Carry Save Adder.
2Formula for the circuit implementation slightly differs from the shortest one.

outputs to be most difficult for implementation.

We will describe below (5, 3)-CSA SFA5, an analogue of MDFA for mono-
tone encoding. With the use of it the bound Lp,(C,) = O(n*%) is rather
simple to obtain. Slightly better bound Lp,(C,,) = O(n*5%) follows from the
more complicated construction based on the (7,3)-CSA [2] and monotone
encoding of triples of bits.

Let S,, denote the class of symmetric Boolean functions of n variables.
New upper bounds for majority function does not provide automatic reduc-
tion of the size of formulae implementing functions from S,, due to the fact
that the known methods [2, 5] limit the efficiency of CSA’s with inputs and
outputs of multiple types.

However, it is not hard to aggregate several CSA’s with non-standard
encoding of bits into single CSA with the standard encoding and apply
the method [5] to obtain bounds Lg,(S,) = O(n*?), Lp,(S,) = O(n*??)
improving earlier results Lp,(S,) = O(n*%°) [, Lg,(S,) = On**") [,
Liy(Sa) = O(n4%) [B, Ly, (Sn) = O(n*%) 2],

It is worth noting that basic CSA’s in the present paper are structurally
similar or in any case are not more complicated than the CSA’s in preceding
papers. So, the improvement in complexity bounds is entirely a result of
exploiting the idea of alternative encoding of bits.

2 Formulae over B,

z V1 U Qv v U2 D Vo
! | |
MDFA
| l
c b a®b

Figure 1: MDFA block-diagram

Fig. 1 shows a block-diagram of MDFA. Functional definition and for-
mulae to compute outputs are given below.

2(a+0b) +c=x+uy + uy + vy + vo.

c=x® (ug Bvr)® (ux ® va), b= (z®v1)(u1 ©vy) Gy,

_ 1
(adb)=((z®v1)V (U1 Bv1)) B (xPB (w1 B vy) B va)(ug @ va). D

To obtain O(n3%) complexity bound one can use CSA shown in Fig. 2.
It contains two isolated MDFA’s, which are identical up to encoding of a pair
of inputs.

i) T3

\ Ty vy Uy Dvy vz uzDus
T I P N A
| || DA

MDFA
b
l l C2 by ay @ by
C1 bi a1 @b

Figure 2: The main CSA

The CSA has inputs and outputs of two types: standard bits and pairs
of bits encoded as (u @ v, v).

Consider the size of formulae implementing inputs and outputs of the
first type. Denote it by X; for inputs z; and by C; for outputs ¢;. To deal
with inputs and outputs of the second type (u @ v,v) introduce a quantity
max{V, U"/a} where V, U* is the size (or an upper estimate of the size)
of formulae implementing v and u @ v respectively, « is a parameter to be
chosen later. Denote this quantity by U; for inputs (u; @ v;, v;) and by A; for
outputs (a; ® by, b;).

According to (II), the following inequalities hold:

Chy < X1+ Xy + X3+ aly,
02 S X4+(IU2+O[U3,
A <max { X1+ X5 +3X3, 2X; + 2X, + 3 X5 + 22U} @)
Ay <max { Xy + (a+2)Us, 2X, + 22H [y, + 2171

It follows from [6] [7] that if

XP+XP+ X0+ X)—C7—CY >0, 5
UP UL+ UF — AY — A2 >0, 3)

for some p > 0, some X; > 0 and U; > 0 (and also for some a > 0) then
Lg,(C,) =0 (nl/p+0(1)), see also Appendix. Use upper bounds (2)) instead of
C; and A; to check that inequalities ([B]) hold when a = 2.906, p = 0.327781,
X1 = Xy =1, X3 = 0.5149081, X, = 1.9198088, U; = 1.2176395, Uy, =
1.0031176, Us = 2.3573055. Consequently, Lg,(C,) = O(n3%5%9).

4

To obtain tighter estimates of the efficiency of MDFA one can split for-
mally the second type of encoding into several types with different values of
« (say, uniformly distributed in some segment) and consider a set of MDFA’s
with inputs and outputs of all possible types. However, the implied calcula-
tion looks rather laborious if not to exploit some additional considerations.
This observation is already involved partly in the construction of fig. 2: ratio
of sizes of formulae for 9 ® x3 and z, differs from «.

To estimate the complexity of a symmetric function consider the following
sequence of CSA’s with standard encoding of bits. In the proposed sequence
the m-th CSA contains m MDFA’s connected in a chain and an outer CSA
F A3 (outputs of each MDFA are connected to the inputs vy, us@ws of the next
MDFA in notation of fig. 1). The first CSA in the sequence (m = 1) is the
CSA from [7]. For m = 4 we get (15,6)-CSA, which, if taken independently,
allows to implement C,, with the formula of size O(n*%)H

With the use of this (15,6)-CSA and method [5] one can implement a
k-th significant bit of C,, with complexity O(n*??% . 2%). Thus, the bound
Lg,(S,) = O(n3?*%) follows, see Appendix for proof.

3 Formulae over B

The present section includes two examples of CSA’s which are efficient for
constructing formulae for C,, over By. The first CSA is shown in fig. 3.
Functional definition of the basic CSA SFA; (Sorting Full Adder) is similar
to that of MDFA. Outputs are implemented by formulae:

c=(21® (uy ® 1)) ® (ug ® v2) = VY V Uy,
V=1 ((ulvl) V (ug V v1)> V Z1(ugvr)(ug Vor), x = (ugvg)(ug V vs),

a’lbl — Tgl(xla Uy, V1, U2, 1)2) - \/ T3i(x17 Uy, vl)Tg(UQa 1)2) —
i+j=4
= (xl(ul V 1)1) V (ulvl))(uwg) V xl(ulvl)(m V 1)2),

3Vector of sizes of outputs of the CSA can be produced from the vector of sizes of
inputs via multiplication by the matrix

0 000O0OO0OO0ODO0OO0OO0OT1TT1TT1T1]1
0o oo0oo0oo0o0O0111122 23
0o oo0o011122312336
01 1122333612336
122 3 3 36 3 3612 3 36
1 449 3 36 3 36123 36

where T* is the threshold monotone function of n variables with the threshold
k; output a; V by = T52(:E1,u1, U1, Ug, U2) is a function dual to a;by, so it can
be implemented with the dual formula.

T UiV Uy V V1 U2Vy U9 V (%)

S U O Nt

SFA;
i allbl aq £ b abz G2V by

Figure 3: Block-diagram of the first CSA

By analogy with the previous section for inputs z;, (u;v;, u; V v;) and
outputs ¢, (a;b;, a; V' b;) consider quantities X;, U;, C', A; respectively, which
correspond to the size of formulae implementing z;, w;v; (or u; V v; — here
formulae for components in a pair have equal size), ¢, a;b;.

According to () the following inequalities hold:

C <4X, 4+ 8U; +4U,, A; <2X;1+3U; +2U;, A< Xo+ X3. (H)
One can easily check that the condition
XP+ X0+ XP—CP">0 U+ U — AT — AL >0

is satisfied for p = 0.219978, X; =1, Xy, = X3 = 0.031702, U; = 1.018913,
Uy, = 2. As a consequence, Lp,(C,) = O(n*5).

In the second example we encode triples of bits u, v, w as an ordered
triple 5 = (', §”, §"), supplemented with a sum s = u ®v S w. Let us give
formulae to compute the code components:

s’ = min{u, v, w} = Ty (v, v,w) = u Vv Vw,

s = T2 (u,v,w) = (uVv)wV uw,

s = max{u, v, w} = Tg’(u, v,w) = uvw.

Note that s” and s® are exact bits representing the sum u + v + w.

CSA of the second example (see fig. 4) contains two (7,4)-CSA’s SFA,
and SFA’, differing in encoding of a triple of inputs.

SFA; and SFA’ are functionally defined by equalities:

b 2Ag+ g) =+ S+ S S s s sl

~ @ ~ @ ®
X1 S1, 51 S2, Sg T2 xs3 Ty Ts 53, S3

I S D O S

SFA; SFA!/

l ! l l

~ @ ~ @
C1 q1, 41 C2 42, 4>

Figure 4: Block-diagram of the second CSA

" nmn

o+ 200+ gy + @) =xa+ a3+ T4 + 5+ 55+ 55+ Sy

Outputs are implemented with formulae, structurally similar to those for the
(7,3)-CSA [2]:

c1= (11 ®sT) D sy =s5 (mE Y% fﬁ?) Vs§ (xlg Y fﬁ?) :
Cr = (T0 B 13 Bay B as) B sF = ps? Vs,
’l/} = (IQTg V fgl’g)(ﬂj‘zll’g) \ f4§5) \ (SL’Q.CL’?, V T2f3)<l’4f5 V T4.T5),

qi = T72($1,§1,§2) == T41({L‘1,,§1)3/2 \% T42($1,§1) v 8/2” (6)
g =T, 51, %) = \/ Ti(z1,5)7T4(5),
i+j=4

q = shTH(x1,51) T (1, 51) V shsh Tf (21, 51) T3 (21, 51) V

V 8,2/872” (Tf(ﬂfl, §1) V T42(.T1, 51)) V 8/2” (Tj(ﬂfl, 51) V T41<.§L’1,§1)> .

Formula for ¢ = T%(x1,51,52) is dual to that for ¢} up to substitution
si by s!. Formulae for ¢ and ¢5 coincide to those for ¢; and ¢ up to
implementation of the threshold funcion Ty(xzq, 3, 24, x5).

Threshold functions T} (y1, Y2, y3,y4) = Ti(y1,5) with three of variables
allowing multiple encoding can be implemented with formulae:

Ti=yiVyVysVyy =y Vs,
T = (y1 V y2)(ys V ys) V 4192 V ysys = 118’ V 5.

(7)

Formulae for T} and T}! are obtained in dual way with substitution s’ by s”.

According to the construction, formulae for ¢} and ¢}” (¢, and ¢4’) have
the equal size if the same holds for inputs s, s/’. Furthermore, the size of
formula for ¢ is twice as much as that for ¢/'.

As above, denote the complexity of formulae implementing inputs z; and
outputs ¢; by X; and C; respectively. For inputs s; consider the quantity
S; = max{9S], S/'/a}, where S; and S/ characterize the size (to be more
exact, an upper bound for the size) of formulae implementing s; and s.
Define quantities); for outputs ¢; analogously.

7

From (@) and (7)) the inequalities follow:

Ci <4X; 4+ 8aS; + 4aSs,
Cy < 8(Xo+ X3+ Xy + X5) + 4S5,
Q1 < max {2X; + (@ +2)S1 + (e +1)%, 21X, + 22HG, 4 225,41 ()
Q2 < max {3(Xy + X3 + Xy + X;5) + (o + 1) S5,
$(Xo+ X5+ Xy + X5) + 2255}

With the use of (®)) it can be checked that the condition
XV +XJ+ X0+ XP+XP-CT-C) >0 ST+S)+8—-Q7—Q5>0

holds for o = 1.6782, p = 0.2204718, X; =1, Xy = X3 = X, = X5 =
0.3569540333, S = 1.1282983248, Sy = 2.424317629, S35 = 1.6884745179.
Therefore, Lg,(C,) = O(n*%38).

The last bound probably can be improved even without constructing
CSA’s more complicated than SF A5 and SF Ay, if one uses all three ways of
encoding in unique CSA.

To estimate the complexity of an arbitrary symmetric function consider
a (17,6)-CSA with the standard encoding of inputs and outputs, contain-
ing SF A7 and pair of SFA5’s in the bottom and (7,3)-CSA similar to the
CSA [2] at the top. Non-standard outputs of SFA’s are connected to the
inputs of (7, 3)—CSAH One can verify that this CSA allows to implement C,,
with complexity O(n*5®) and a k-th significant bit of C,, with complexity
O(n>8183 . 2%) S0, the bound Lp,(S,) = O(n*8183) follows.

References

[1] Lupanov O. B. Asymptotic bounds for the complexity of control systems.
Moscow: MSU, 1984. 138 p. (in Russian)

4Vector of sizes of outputs of the CSA can be produced from the vector of sizes of
inputs via multiplication by the matrix

4 8 8 8 8 8 8 0 0O O O O O O O O O
o 0 o o o o0 0O 4 4 4 8 8 0 0 0 0 O
o 0 o o o0 o0 o o o o o o0 4 4 4 8 8

12 16 16 24 24 24 24 16 16 16 24 24 16 16 16 24 24
14 20 20 24 24 24 24 24 24 24 36 36 24 24 24 36 36
7T 10 10 12 12 12 12 12 12 12 18 18 12 12 12 18 18

[2] Khrapchenko V. M. The complexity of the realization of symmetrical
functions by formulae // Mat. zametki. 1972, 11(1), 109-120 (in Rus-
sian). [Engl. translation in Math. Notes Acad. Sci. USSR, 1972, 11,
70-76.]

[3] Demenkov E., Kojevnikov A., Kulikov A., Yaroslavtsev G. New upper
bounds on the Boolean circuit complexity of symmetric functions // Inf.
Proc. Letters. 2010, 110(7), 264-267.

[4] Jukna S. Boolean function complexity. Berlin, Heidelberg: Springer-
Verlag, 2012. 618 p.

[5] Paterson M., Pippenger N., Zwick U. Faster circuits and shorter formu-
lae for multiple addition, multiplication and symmetric Boolean func-
tions // Proc. 31st IEEE Symp. Found. Comput. Sci., 1990, 642-650.

[6] Paterson M., Pippenger N., Zwick U. Optimal carry save networks //
LMS Lecture Notes Series. 169. Boolean function Complexity. Cam-
bridge University Press, 1992, 174-201.

[7] Paterson M., Zwick U. Shallow circuits and concise formulae for multiple
addition and multiplication // Comput. Complexity. 1993, 3, 262-291.

[8] Peterson G. L. An upper bound on the size of formulae for symmetric
Boolean function. Tech. Report. 78-03-01. Univ. Washington, 1978.

[9] Stockmeyer L. J. On the combinational complexity of certain symmetric
Boolean functions // Math. Syst. Theory. 1977, 10, 323-336.

Appendix

To make the presentation complete we provide here a method of constructing
formulae, which can be also found in [5, [6] [7].
1. Implementation of C,.

Consider a CSA with inputs and outputs of ¢ types of encoding. Let
x;; and y; ; denote inputs and outputs of j-th type. Let the size Y, of the
formula implementing an output y,; is a continuous, piecewise-linear and
nondecreasing (with respect to each argument) function of sizes X, ; of the
formulae implementing inputs x;;, where X, ;, Y;; take on arbitrary real
non-negative values. Assume that if Y ; < X;; then y;; does not depend on

x; ;. Let the inequalities
2 X =D Y= 0)

9

hold for some p > 0, some X;; >0and all j =1,...,¢.

We are to show how one can built a formula of size O (nl/ p+0(1)) to im-
plement C,,.

Without loss of generality assume that min{X;;} = 1 < min{Y;;}. As
Y’s depend on X’s continuously there exists such 6 > 0 that for any j
inequality (d)) remains true after the substitution X, ; and Y; ; by parameters
Xi; € [Xij — 6, Xiy] and Y/, € [Vi;, Yi; +6]. Then there exist (small
enough) A > 1 and d55;, dY; € Z such thatA"™/? € [X;; — 4, X; ;] and \%s/? €
[Yi;, Yi; + 6] for all 4, j. Consequently for any j the following inequality

holds:
PP PP)

Note that A%/? is a lower bound for X, ; and A3/P s an upper bound for
Y; ;. Let us name a number df(] (respectively dl’-fj) level of the input z; ;
(output y;;). We can assume min{d;;} = 0. Let d = max{d} ;}.

Formula representing a bit of the function C),, can be constructed after
the following pattern. The formula contains CSA’s on different levels. Each
CSA can receive either inputs of the formula, or outputs of other CSA’s, or
zero formulae as inputs. CSA on a level k receives inputs of j-th type on the
levels dZXj + k and produces outputs of the same type on the levels d}fj + k.
The formula receives its nonzero inputs (i.e. symbols of variables) on the
level d and higher.

The formula is determined by the number [cn)_’ﬂ of CSA’s on each level
k, 0 < k <log, n, where c is a constant to be defined later.

Let us estimate the number of inputs, including zeros, and the number of
outputs of a type j in the formula. We will omit indices j in the argument
below as it does not depend on j.

According to the construction, all outputs of the formula on the levels d
and lower are zero. A total number of inputs (all zero) on the same levels is
O(n). Difference between the number of inputs and the number of outputs
on a level k, d <k <log,n, is

Z [cn)\df(’k-‘ — Z [cn)\dz’/’k_‘ =

7 3

= cnA7F <Z >y AdiY) +0(1) =0 (rA\7F) £0(1).

7 7

On the levels higher than log, n the formula receives and produces O(1)
inputs and outputs in total.

10

Hence, the formulae receives ©(n) nonzero inputs and produces O(logn)
nonzero outputs (of j-th type). One can choose ¢ large enough to provide
not less than n inputs for any j.

Consider the size of outputs. It follows from the definition of A that
inputs and outputs on level k are bounded above by A*P. Thus the size of
outputs is A\1eexn+OW)/P = O(n1/P).

To implement the C), function one has to take |[log, n| + 1 parallel copies
of the described pattern, zero some inputs and re-commutate appropriately
inputs and outputs on each level. Final addition of O(logn) numbers can be
implemented with an arbitrary polynomial-size formula. So, the overall size

of the formulae for C,, is O (nl/” logPW n)

2. Formulae for symmetric functions.

Consider a CSA with standard encoding of inputs and outputs. Let x;
and ys,; stand for inputs and outputs of s-th significant bit, s > 0. Let X,
and Y, stand for the size of corresponding formulae. For any s define

_ P P
as = E Xei— g Y
i i

where we suppose sums over empty set of indices to be zero. Let the inequal-
ities

ag > 0, Zasl/_s > 0. (10)
hold for some p, X;; and v > 1.

We will show that [-th significant bit of), can be implemented with a
formula of size O((v'n)'/P+o(V)),

As above, choose an appropriate A > 1 and approximate X,; and Yj;
by integer powers of A preserving (I0) (denote the exponents by dJ;, d¥,).
Without loss of generality assume min{d.;} = 0. Define d = max{d} }.

Let CSA on the level k£ and of significance [receive inputs of significance
s + [on levels dfl- + k and produce outputs of significance s + [on levels
dzi + k. Consider a formula containing [cv'nA=*] CSA’s of significance I,
0<Il<logyn+1,o0nalevel k, 0 <k < log,(v'n). Nonzero inputs of the
formula are received on the levels d and higher, all of significance 0.

We are to estimate the number of inputs and outputs of significance [on
level k. If d < k < log,(v'n), then difference between the number of inputs

and the number of outputs is

Z [cul‘snxdii—ﬂ _ Z [Cyl—sn)\dgi—k—‘ _

S,1 EX)

= c'n A" Z a;v ™ £0(1) = 0('nA ") £ O(1).

11

On the levels higher than log, (v'n) the formula receives and produces O(1)
inputs and outputs in total.

Therefore, the formula produces O(logn) outputs of any significance. A
choice of large enough constant ¢ provides at least n inputs of significance 0.
Each output of significance [is implemented with a formula of size at most
Alogr (' m)+OMW) /e — O((vin)/?). Hence, I-th significant bit of C, can be
implemented with a formula of size O((v'n)/?1og®Y n).

Assuming v < 27 we obtain an upper bound O(n!*'/7+°()) on the formula
size complexity of the class S,,. The implied formulae are constructed simply
via representation of a symmetric function as a function of the weight of its
set of arguments and decomposition along (new) variables.

12

	1 Introduction
	2 Formulae over B2
	3 Formulae over B0
	1 Ââåäåíèå
	2 Êîíñòðóêöèÿ äëÿ áàçèñà B2
	3 Êîíñòðóêöèÿ äëÿ áàçèñà B0

