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On additive complexity of a sequence of
matrices *

Igor S. Sergeev'

1 Introduction

The present paper deals with the complexity of computation of a sequence
of Boolean matrices via universal commutative additive circuits, i.e. circuits
of binary additions over the group (Z, +) (an additive circuit implementing
a matrix over (Z, +), implements the same matrix over any commutative
semigroup (S, +).) Basic notions of circuit and complexity see in [3], 5].

Denote the complexity of a matrix A over (Z, +) as L(A). Consider a
sequence of n X n-matrices A,, with zeros on the leading diagonal and ones
in other positions. It is known that L(A,) = 3n — 6, see e.g. [2].

In [] it was proposed a sequence of matrices B, ,, more general than
A, and the question of complexity of the sequence was investigated. Matrix
B, 4 n has Cf rows and CF columns. Rows are indexed by g-element subsets
of [1..n]; columns are indexed by p-element subsets of [1..n] (here [k..l] stands
for {k,k+1,...,1}). A matrix entry at the intersection of Q-th row and P-th
column is 1 if @ N P = () and 0 otherwise.

Consider some simple examples of B, ,,. If n < p+ ¢ then B, ,,, is zero
matrix. Evidently, By, = A,. By the symmetry of definition B

P,qm

T . .
B, , .- Matrices Bjon and By, are all-ones row and column respectively.

SO, L(Bp,O,n) = sz - ]_, L(BO,q,n) =0.
Note that by the transposition principle (see e.g. [3]) complexity of matri-
ces By, and B, , satisfies the identity

L(Bypn) = L(Bpgn) + C = C.
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It was shown in [4] that L(B,,.) = O((n? + n?)logn). We prove better
bound
L(Bpgn) < (a? = 1)Cl 4+ a1C?,

where a = 3+T*/5 This bound is linear (and consequently tight up to a
constant factor) for a constant p and ¢ < 0.65n.

The following lower bound

p
L(Bp,q,n) > (q —p+ 1) Z CS - 2p+q’
k=0
valid for 1 < p < ¢ and n > p + ¢, shows that the complexity of B, ,,, is

generally non-linear. For instance, one can try p and ¢ of type § — ©(y/n)
to obtain L(B,,,) = Q(Nlog N), where N = C? 4 C1.

2 Algorithm

Let us introduce some notation. Let (p,q, Sy, S) denote a set of sums yg =

Z xsyup, where Q C S, |Q| = q. Thus, (p,q,0,[1..n]) is a result of
PCS\Q, |P|=p
multiplication of the matrix B, ,, by the vector of variables zp, P C [1..n],
[Pl =p.

Let (p,q,0,[1..n —1]) is already computed (with complexity L(Bp4n-1))-
We are to compute (p, ¢, ), [1..n]). The computation consists of three parts.

1. Computation of yg, {1, n} NQ = 0.

1.1. Connect each input z13us of a circuit computing (p, ¢, 0, [1..n — 1])
with the following precomputed sum

rus + Tus,  if2¢ S,

Z rrog, S =[2.kUS and (k+1)¢S, k<p-—1.
TC([L-kU{n}), |T|=k
Note that in the sums above each variable x,,us occurs exactly once. Thus,
these sums can be computed with complexity C?~}.

1.2. Consider functioning of outputs of the transformed circuit. Take an
output implementing a sum yq € (p,q, 0, [1..n — 1]) in the original circuit. If
1 € @, then functioning of the output remained intact after transformation
since yg depends on inputs which haven’t changed. If [1.k]NQ = 0 and
(k+1) € Q, 1<k <p-—1, then the output in the transformed circuit

computes a sum
> Tp. (1)
PNQ=0, |P|=p, ([L..kJu{n})Z P
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To obtain a sum yg € (p, ¢, 0, [1..n]) one has to add summands zp, ([1..k] U
{n}) C P, to the sum (). At last, if [1..p]NQ = 0, then the output correctly
computes a sum yg € (p,q, D, [1..n]) in the transformed circuit.

1.3. For any k € [1..p — 1] compute

(p—k—1,q—1,[1.kJUu{n}, [k+2.n—1]).

These are all sums needed to complete sums () to obtain (p, g, ?, [1..n]).
The complexity of the computations can be estimated as

p
Z L(Bp—k,q—l,n—k—l)-
k=2

1.4. Add the sums computed on the step 1.3 to sums (). Complexity
of this addition is the number of sums (), i.e. the number of g-element sets
@ C [2.n —1] such that [2..p] NQ # 0. The latter number is C} _, —C_ .

2. Computation of yg, |[{1, n} NQ| = 1.

2.1. In the current circuit consider outputs implementing sums yg €
(p,q,0,[1.n—1]), 1 € Q (this outputs implemented the same sums in the orig-
inal circuit). Each such sum can be expanded to a sum yg € (p, ¢, 0,[1..n]),
1¢Q,n e Q (alternatively, 1 € @, n ¢ @), via addition of summands zp,
1€ P, P C[l.n—1] (respectively, n € P, P C [2..n]).

2.2. Compute sets (p—1,¢q—1,1,[2.n—1]) and (p—1,¢—1,n,[2.n—1])
with complexity 2L(By—1,4-1n-2)-

2.3. Add the last computed sums to the sums ygo € (p,q,0,[1..n — 1]),
1 € Q. It requires 205:; elementary additions.

3. Computation of yg, {1, n} C Q.

3.1. Note that any g-element set @ C [1..n], {1, n} C @, satisfies condi-
tion: [1.k—1] CQ,n€Q, k¢ Q for some k € [2..q].

Let k € [2..q]. In the current circuit consider outputs implementing sums
yo € (p,q,0,[1.n—1]), [1..k] C Q, (k+1) ¢ Q. (This set can be defined
alternatively as (p,q — k,0, [k + 1..n — 1]).) Such sum can be expanded to
asum yo € (p,q,0,[1.n]), [L.k—1 C Q, n € Q, k ¢ Q, via addition of
appropriate summands xzp, k € P, P C [k..n — 1]. The supplementing sums
constitute the set (p — 1,q — k, k, [k + 1..n — 1]).

3.2. For any k € [2..q] compute the set (p —1,q — k, k, [k + 1.n —1]). Tt
requires complexity

q
Z L(Bpfl,qfk,nfk:fl) .
k=2

3.3. Add the latter computed sums to the sums yg € (p,¢,0,[1..n — 1])
according to the item 3.1. It requires CZ:% elementary additions, by the
number of results.



3 Upper bound
The argument of the previous section leads to inequality:

L(Bpgn) < L(Bpgn-1) + ng +Cl -1 1t
p
+ Z L(Bp—k,q—l,n—k—l) + Z L(Bp—l,q—k,n—k—l)a (2)
k=1 k=1

due to identity C?_, +2C9~5 + C%3 = C4.

n

Theorem 1 Let o = 3*—2\/5 Then
L(Bpgn) < (a? = 1)CI 4+ oC?.

Proof. The statement of the theorem is evidently holds when n = p + ¢,
or p =0, or ¢ = 0 (see introduction). Let us assume the validity of the
statement for all triples of parameters p’,¢’,n’, where p’ < p, ¢ <gq,n' <n
and consider the triple p, ¢, n

Put the assumed upper bounds in the second member of ([2]). To make
calculations easier use identities:

7 — CIl+C 4+ 40T < (p+1)CiT]

n npl_ np
0 1 k k
C1n<FC(n—|—1 .C n+k =C n+k+1*

The last identity allows to estimate sums in (2)) as following:

q
< (P! = 1) )t
—(a ) n71+ o 1 n—1-

Finally, taking into account 1 + -%3 = «, the second member of (2) is
bounded by
(P = 1)C!_| +aC? | + (o — 1)CP | 4+ a?CP"} < (aP —1)CY + a?CP,

q.e.d.



4 Lower bound
Lemma 1 Ifn > p+ q, then matrix By, has full rank over R.

Proof. By invariance of rank with respect to transposition it is sufficient to
consider case p < ¢ (so, C? < C49).

We are to show that the rows of B, ,, generate the space R . To be
precise, we will prove that any vector (0,...,0,1,0...,0) with 1 in position P
can be represented as a linear combination of rows of B, ;..

Let ay, .. .,a, € R. Consider such linear combination of rows, in which @)-
th row occurs with the coefficient a|png|. Clearly, such combination produces
a vector with coordinate in position P’ depending only on |P N P’|. Denote
the value of this coordinate as bjpnp/|.

1. We are going to prove that a vector (b, ...,b,)" is the product of a
vector (ay,...,ap)" and some constant upper triangular matrix H with no
zeros on the leading diagonal.

1.1. Firstly, check that b; depends on a,_; (hence, the leading diagonal
of H contains no zeros). Indeed, let P’ C [1..n] and |P N P’| = i. Consider
a row indexed by Q, QNP =P\ P, QNP =1{. Such row exists in view
of inequality n > p + ¢. The row has 1 in position P’ and it occurs in the
linear combination with the coefficient a,_;.

1.2. Analogous argument shows that b; does not depend on a,_; if j <1
(hence, all entries in H below leading diagonal are zero). Indeed, for any @),
|Q N P| = p— j, one immediately concludes that [Q N P'| >i—j > 0. So
the Q-th row has zero in position P’.

2. Therefore, for any vector b € RPt! in particular for the vector
(0,...,0,1) we are interested in, there exists a vector a € RPT! such that
b = Ha. The vector a defines the required linear combination, q.e.d.

Lemma 2 Letp>1,qg>1,n>p+q. Then
L(pr%n) Z L(Bp7q_17n_1) ~|» L(Bp_17q7n_1) + C:Ln_ni{pv Q}'

Proof. The proof of the lemma is similar to the proof of Th. 4 in [I]. Consider
an arbitrary additive circuit ¥ implementing B, ,,. Write Xo = {zp | n ¢
P}, Xy ={xp|ne P}

1. Consider the subcircuit of ¥ which does not depend on inputs Xj.
Particularly, it implements the set (p,q — 1,0, [1..n — 1]) and consequently
contains at least L(B, ,—1,—1) gates.

2. Calculate the number of gates in ¥ with both inputs depending on
inputs from X;. These gates together form a circuit derived from ¥ by
replacement of inputs from X by zeros. In particular, this circuit computes



(p — 1,q,n,[l.n — 1]). Thus, the number of gates in question is at least
L(Bp-1,4n-1)-

3. Now, consider the gates of ¥ with one input depending on X; and
another input not depending on X;. Denote as Y a set of sums of variables
in Xy implemented by non-depending on X; inputs of the gates. Note that
|Y| is a lower bound for the number of the considered gates. It can be also
seen that Y generates the set (p,q,,[1..n — 1]) containing Xy-parts of sums
implementing by ¥ and depending on X;. Thus, |Y| > rk B, ,,—1. As follows
from Lemma 1, vk B, ;-1 = C;niri{p’q}.

By putting estimates of items 1-3 together one obtains the required in-

equality:.
Theorem 2 Letn >p+q and p < q. Then

p
L(Bpgn) 2 (@ —p+1) Z Cif — 2°T,
k=0
Proof. The proof is by induction as in Th. 1. Put the cases p = 0 and
p = ¢ = 1 as a base of induction (L(By1,) > n — 3 evidently holds, see
introduction).
1. If p < q then by the Lemma 2 and induction hypothesis one has

—_

p
L(Bypgu) > C +(q—p) Y Ch +(q—p+2)Y Ck o=
k=0 0
p P

= (q—p+1)> _(CE +CE ) +(q—p+1) =277 = (g—p+1) Y _ Cr—27"0.
k=1 k=0

bS]

i

2. In the case p = ¢ use transposition property

L(Bp,pfl,n) = L(Bpfl,p,n) + Cg—l - nga

to obtain
p—1
L(Bypn) > 2Ch | —Ch 1 +4) Ch =27 >
k=0

p—1 p
>CP o +2) Ch =27 =) CF 2"
k=0 k=0

It completes the proof.
Remark. In fact, Lemma 2 allows to deduce slightly stronger inequality

p
L(Bygn) = Cn + Z(p +q — 2k + 1)CF — optatl
p



References

1]

2]

Boyar J., Find M. G. Cancellation-free circuits: an approach for proving
superlinear lower bounds for linear Boolean operators. larXiv:1207.5321.

Chashkin A. V. On the complexity of Boolean matrices, graphs and their
corresponding Boolean functions. Diskretnaya matematika. 1994. 6(2),
43-73 (in Russian). [English translation in Discrete Math. and Appl.
1994. 4(3), 229-257.]

Jukna S. Boolean function complexity. Berlin, Heidelberg: Springer-
Verlag, 2012. 618 p.

Kaski P., Koivisto M., Korhonen J. H. Fast monotone summation over
disjoint sets. arXiv:1208.0554.

Lupanov O. B. Asymptotic bounds for the complexity of control systems.
Moscow: MSU, 1984. 138 p. (in Russian)


http://arxiv.org/abs/1207.5321
http://arxiv.org/abs/1208.0554

	1 Introduction
	2 Algorithm
	3 Upper bound
	4 Lower bound
	1 Ââåäåíèå
	2 Àëãîðèòì
	3 Âåðõíÿÿ îöåíêà
	4 Íèæíÿÿ îöåíêà



