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On additive complexity of a sequence of

matrices ∗

Igor S. Sergeev†

1 Introduction

The present paper deals with the complexity of computation of a sequence
of Boolean matrices via universal commutative additive circuits, i.e. circuits
of binary additions over the group (Z, +) (an additive circuit implementing
a matrix over (Z, +), implements the same matrix over any commutative
semigroup (S, +).) Basic notions of circuit and complexity see in [3, 5].

Denote the complexity of a matrix A over (Z, +) as L(A). Consider a
sequence of n × n-matrices An with zeros on the leading diagonal and ones
in other positions. It is known that L(An) = 3n− 6, see e.g. [2].

In [4] it was proposed a sequence of matrices Bp,q,n more general than
An and the question of complexity of the sequence was investigated. Matrix
Bp,q,n has Cq

n rows and Cp
n columns. Rows are indexed by q-element subsets

of [1..n]; columns are indexed by p-element subsets of [1..n] (here [k..l] stands
for {k, k+1, . . . , l}). A matrix entry at the intersection of Q-th row and P -th
column is 1 if Q ∩ P = ∅ and 0 otherwise.

Consider some simple examples of Bp,q,n. If n < p + q then Bp,q,n is zero
matrix. Evidently, B1,1,n = An. By the symmetry of definition Bp,q,n =
BT

q,p,n. Matrices Bp,0,n and B0,q,n are all-ones row and column respectively.
So, L(Bp,0,n) = Cp

n − 1, L(B0,q,n) = 0.
Note that by the transposition principle (see e.g. [3]) complexity of matri-

ces Bp,q,n and Bq,p,n satisfies the identity

L(Bq,p,n) = L(Bp,q,n) + Cq
n − Cp

n.
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It was shown in [4] that L(Bp,q,n) = O((np + nq) logn). We prove better
bound

L(Bp,q,n) ≤ (αp − 1)Cq
n + αqCp

n,

where α = 3+
√
5

2
. This bound is linear (and consequently tight up to a

constant factor) for a constant p and q ≤ 0.65n.
The following lower bound

L(Bp,q,n) ≥ (q − p+ 1)

p
∑

k=0

Ck
n − 2p+q,

valid for 1 ≤ p ≤ q and n > p + q, shows that the complexity of Bp,q,n is
generally non-linear. For instance, one can try p and q of type n

2
− Θ(

√
n)

to obtain L(Bp,q,n) = Ω(N logN), where N = Cp
n + Cq

n.

2 Algorithm

Let us introduce some notation. Let 〈p, q, S0, S〉 denote a set of sums yQ =
∑

P⊂S\Q, |P |=p

xS0∪P , where Q ⊂ S, |Q| = q. Thus, 〈p, q, ∅, [1..n]〉 is a result of

multiplication of the matrix Bp,q,n by the vector of variables xP , P ⊂ [1..n],
|P | = p.

Let 〈p, q, ∅, [1..n− 1]〉 is already computed (with complexity L(Bp,q,n−1)).
We are to compute 〈p, q, ∅, [1..n]〉. The computation consists of three parts.

1. Computation of yQ, {1, n} ∩Q = ∅.
1.1. Connect each input x{1}∪S of a circuit computing 〈p, q, ∅, [1..n− 1]〉

with the following precomputed sum

x{1}∪S + x{n}∪S, if 2 /∈ S,
∑

T⊂([1..k]∪{n}), |T |=k

xT∪S′ , if S = [2..k] ⊔ S ′ and (k + 1) /∈ S, k ≤ p− 1.

Note that in the sums above each variable x{n}∪S occurs exactly once. Thus,

these sums can be computed with complexity Cp−1
n−1.

1.2. Consider functioning of outputs of the transformed circuit. Take an
output implementing a sum yQ ∈ 〈p, q, ∅, [1..n− 1]〉 in the original circuit. If
1 ∈ Q, then functioning of the output remained intact after transformation
since yQ depends on inputs which haven’t changed. If [1..k] ∩ Q = ∅ and
(k + 1) ∈ Q, 1 ≤ k ≤ p − 1, then the output in the transformed circuit
computes a sum

∑

P∩Q=∅, |P |=p, ([1..k]∪{n})6⊂P

xP . (1)
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To obtain a sum yQ ∈ 〈p, q, ∅, [1..n]〉 one has to add summands xP , ([1..k] ∪
{n}) ⊂ P , to the sum (1). At last, if [1..p]∩Q = ∅, then the output correctly
computes a sum yQ ∈ 〈p, q, ∅, [1..n]〉 in the transformed circuit.

1.3. For any k ∈ [1..p− 1] compute

〈p− k − 1, q − 1, [1..k] ∪ {n}, [k + 2..n− 1]〉.
These are all sums needed to complete sums (1) to obtain 〈p, q, ∅, [1..n]〉.

The complexity of the computations can be estimated as

p
∑

k=2

L(Bp−k,q−1,n−k−1).

1.4. Add the sums computed on the step 1.3 to sums (1). Complexity
of this addition is the number of sums (1), i.e. the number of q-element sets
Q ⊂ [2..n− 1] such that [2..p]∩Q 6= ∅. The latter number is Cq

n−2 −Cq
n−p−1.

2. Computation of yQ, |{1, n} ∩Q| = 1.
2.1. In the current circuit consider outputs implementing sums yQ ∈

〈p, q, ∅, [1..n−1]〉, 1 ∈ Q (this outputs implemented the same sums in the orig-
inal circuit). Each such sum can be expanded to a sum yQ ∈ 〈p, q, ∅, [1..n]〉,
1 /∈ Q, n ∈ Q (alternatively, 1 ∈ Q, n /∈ Q), via addition of summands xP ,
1 ∈ P , P ⊂ [1..n− 1] (respectively, n ∈ P , P ⊂ [2..n]).

2.2. Compute sets 〈p−1, q−1, 1, [2..n−1]〉 and 〈p−1, q−1, n, [2..n−1]〉
with complexity 2L(Bp−1,q−1,n−2).

2.3. Add the last computed sums to the sums yQ ∈ 〈p, q, ∅, [1..n − 1]〉,
1 ∈ Q. It requires 2Cq−1

n−2 elementary additions.
3. Computation of yQ, {1, n} ⊂ Q.

3.1. Note that any q-element set Q ⊂ [1..n], {1, n} ⊂ Q, satisfies condi-
tion: [1..k − 1] ⊂ Q, n ∈ Q, k /∈ Q for some k ∈ [2..q].

Let k ∈ [2..q]. In the current circuit consider outputs implementing sums
yQ ∈ 〈p, q, ∅, [1..n − 1]〉, [1..k] ⊂ Q, (k + 1) /∈ Q. (This set can be defined
alternatively as 〈p, q − k, ∅, [k + 1..n − 1]〉.) Such sum can be expanded to
a sum yQ ∈ 〈p, q, ∅, [1..n]〉, [1..k − 1] ⊂ Q, n ∈ Q, k /∈ Q, via addition of
appropriate summands xP , k ∈ P , P ⊂ [k..n − 1]. The supplementing sums
constitute the set 〈p− 1, q − k, k, [k + 1..n− 1]〉.

3.2. For any k ∈ [2..q] compute the set 〈p− 1, q − k, k, [k + 1..n− 1]〉. It
requires complexity

q
∑

k=2

L(Bp−1,q−k,n−k−1).

3.3. Add the latter computed sums to the sums yQ ∈ 〈p, q, ∅, [1..n− 1]〉
according to the item 3.1. It requires Cq−2

n−2 elementary additions, by the
number of results.
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3 Upper bound

The argument of the previous section leads to inequality:

L(Bp,q,n) ≤ L(Bp,q,n−1) + Cp−1
n−1 + Cq

n − Cq
n−p−1+

+

p
∑

k=1

L(Bp−k,q−1,n−k−1) +

q
∑

k=1

L(Bp−1,q−k,n−k−1), (2)

due to identity Cq
n−2 + 2Cq−1

n−2 + Cq−2
n−2 = Cq

n.

Theorem 1 Let α = 3+
√
5

2
. Then

L(Bp,q,n) ≤ (αp − 1)Cq
n + αqCp

n.

Proof. The statement of the theorem is evidently holds when n = p + q,
or p = 0, or q = 0 (see introduction). Let us assume the validity of the
statement for all triples of parameters p′, q′, n′, where p′ ≤ p, q′ ≤ q, n′ < n
and consider the triple p, q, n.

Put the assumed upper bounds in the second member of (2). To make
calculations easier use identities:

Cq
n − Cq

n−p−1 = Cq−1
n−1 + Cq−1

n−2 + . . .+ Cq−1
n−p−1 ≤ (p+ 1)Cq−1

n−1,

C0
n + C1

n+1 + . . . Ck
n+k = Ck

n+k+1.

The last identity allows to estimate sums in (2) as following:

p
∑

k=1

L(Bp−k,q−1,n−k−1) ≤ αq−1

p
∑

k=1

Cp−k
n−k−1 + Cq−1

n−1

(

p−1
∑

k=0

αk − p

)

≤

≤ αq−1Cp−1
n−1 +

(

αp

α− 1
− p− 1

)

Cq−1
n−1,

q
∑

k=1

L(Bp−1,q−k,n−k−1) ≤ (αp−1 − 1)

q
∑

k=1

Cq−k
n−k−1 + Cp−1

n−1

q−1
∑

k=0

αk ≤

≤ (αp−1 − 1)Cq−1
n−1 +

(

αq

α− 1
− 1

)

Cp−1
n−1.

Finally, taking into account 1 + α
α−1

= α, the second member of (2) is
bounded by

(αp − 1)Cq
n−1 + αqCp

n−1 + (αp − 1)Cq−1
n−1 + αqCp−1

n−1 ≤ (αp − 1)Cq
n + αqCp

n,

q.e.d.
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4 Lower bound

Lemma 1 If n ≥ p+ q, then matrix Bp,q,n has full rank over R.

Proof. By invariance of rank with respect to transposition it is sufficient to
consider case p ≤ q (so, Cp

n ≤ Cq
n).

We are to show that the rows of Bp,q,n generate the space R
C

p

n . To be
precise, we will prove that any vector (0, . . . , 0, 1, 0 . . . , 0) with 1 in position P
can be represented as a linear combination of rows of Bp,q,n.

Let a0, . . . , ap ∈ R. Consider such linear combination of rows, in which Q-
th row occurs with the coefficient a|P∩Q|. Clearly, such combination produces
a vector with coordinate in position P ′ depending only on |P ∩ P ′|. Denote
the value of this coordinate as b|P∩P ′|.

1. We are going to prove that a vector (b0, . . . , bp)
T is the product of a

vector (ap, . . . , a0)
T and some constant upper triangular matrix H with no

zeros on the leading diagonal.
1.1. Firstly, check that bi depends on ap−i (hence, the leading diagonal

of H contains no zeros). Indeed, let P ′ ⊂ [1..n] and |P ∩ P ′| = i. Consider
a row indexed by Q, Q ∩ P = P \ P ′, Q ∩ P ′ = ∅. Such row exists in view
of inequality n ≥ p + q. The row has 1 in position P ′ and it occurs in the
linear combination with the coefficient ap−i.

1.2. Analogous argument shows that bi does not depend on ap−j if j < i
(hence, all entries in H below leading diagonal are zero). Indeed, for any Q,
|Q ∩ P | = p − j, one immediately concludes that |Q ∩ P ′| ≥ i − j > 0. So
the Q-th row has zero in position P ′.

2. Therefore, for any vector b̄ ∈ R
p+1, in particular for the vector

(0, . . . , 0, 1) we are interested in, there exists a vector ā ∈ R
p+1 such that

b̄ = Hā. The vector ā defines the required linear combination, q.e.d.

Lemma 2 Let p ≥ 1, q ≥ 1, n > p + q. Then

L(Bp,q,n) ≥ L(Bp,q−1,n−1) + L(Bp−1,q,n−1) + C
min{p, q}
n−1 .

Proof. The proof of the lemma is similar to the proof of Th. 4 in [1]. Consider
an arbitrary additive circuit Ψ implementing Bp,q,n. Write X0 = {xP | n /∈
P}, X1 = {xP | n ∈ P}.

1. Consider the subcircuit of Ψ which does not depend on inputs X0.
Particularly, it implements the set 〈p, q − 1, ∅, [1..n − 1]〉 and consequently
contains at least L(Bp,q−1,n−1) gates.

2. Calculate the number of gates in Ψ with both inputs depending on
inputs from X1. These gates together form a circuit derived from Ψ by
replacement of inputs from X0 by zeros. In particular, this circuit computes
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〈p − 1, q, n, [1..n − 1]〉. Thus, the number of gates in question is at least
L(Bp−1,q,n−1).

3. Now, consider the gates of Ψ with one input depending on X1 and
another input not depending on X1. Denote as Y a set of sums of variables
in X0 implemented by non-depending on X1 inputs of the gates. Note that
|Y | is a lower bound for the number of the considered gates. It can be also
seen that Y generates the set 〈p, q, ∅, [1..n− 1]〉 containing X0-parts of sums
implementing by Ψ and depending on X1. Thus, |Y | ≥ rkBp,q,n−1. As follows

from Lemma 1, rkBp,q,n−1 = C
min{p, q}
n−1 .

By putting estimates of items 1–3 together one obtains the required in-
equality.

Theorem 2 Let n > p+ q and p ≤ q. Then

L(Bp,q,n) ≥ (q − p+ 1)

p
∑

k=0

Ck
n − 2p+q.

Proof. The proof is by induction as in Th. 1. Put the cases p = 0 and
p = q = 1 as a base of induction (L(B1,1,n) ≥ n − 3 evidently holds, see
introduction).

1. If p < q then by the Lemma 2 and induction hypothesis one has

L(Bp,q,n) ≥ Cp
n−1 + (q − p)

p
∑

k=0

Ck
n−1 + (q − p+ 2)

p−1
∑

k=0

Ck
n−1 − 2p+q =

= (q−p+1)

p
∑

k=1

(Ck
n−1+Ck−1

n−1)+(q−p+1)−2p+q = (q−p+1)

p
∑

k=0

Ck
n−2p+q.

2. In the case p = q use transposition property

L(Bp,p−1,n) = L(Bp−1,p,n) + Cp
n−1 − Cp−1

n−1,

to obtain

L(Bp,p,n) ≥ 2Cp
n−1 − Cp−1

n−1 + 4

p−1
∑

k=0

Ck
n−1 − 22p >

> Cp
n−1 + 2

p−1
∑

k=0

Ck
n−1 − 22p =

p
∑

k=0

Ck
n − 22p.

It completes the proof.
Remark. In fact, Lemma 2 allows to deduce slightly stronger inequality

L(Bp,q,n) ≥ Cp
n +

p
∑

k=0

(p + q − 2k + 1)Ck
n − 2p+q+1.

6



References

[1] Boyar J., Find M. G. Cancellation-free circuits: an approach for proving
superlinear lower bounds for linear Boolean operators. arXiv:1207.5321.

[2] Chashkin A. V. On the complexity of Boolean matrices, graphs and their
corresponding Boolean functions. Diskretnaya matematika. 1994. 6(2),
43–73 (in Russian). [English translation in Discrete Math. and Appl.
1994. 4(3), 229–257.]

[3] Jukna S. Boolean function complexity. Berlin, Heidelberg: Springer-
Verlag, 2012. 618 p.

[4] Kaski P., Koivisto M., Korhonen J. H. Fast monotone summation over
disjoint sets. arXiv:1208.0554.

[5] Lupanov O. B. Asymptotic bounds for the complexity of control systems.
Moscow: MSU, 1984. 138 p. (in Russian)

7

http://arxiv.org/abs/1207.5321
http://arxiv.org/abs/1208.0554

	1 Introduction
	2 Algorithm
	3 Upper bound
	4 Lower bound
	1 Ââåäåíèå
	2 Àëãîðèòì
	3 Âåðõíÿÿ îöåíêà
	4 Íèæíÿÿ îöåíêà



