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A relation between additive and multiplicative

complexity of Boolean functions∗

Igor S. Sergeev†

Abstract

In the present note we prove an asymptotically tight relation be-
tween additive and multiplicative complexity of Boolean functions
with respect to implementation by circuits over the basis {⊕,∧, 1}.

To start, consider a problem of computation of polynomials over a semir-
ing (K,+,×) by circuits over the arithmetic basis {+,×} ∪K.

It’s a common knowledge that a polynomial of n variables with nonscalar
multiplicative complexity M (i.e. the minimal number of multiplications to
implement the polynomial, not counting multiplications by constants) has
total complexity O(M(M + n)). Generally speaking, the bound could not
be improved for infinite semirings. For instance, it follows from results by
E. G. Belaga [1] and V. Ya. Pan [8] (there exist 1-variable complex and real
polynomials of degree n with additive complexity n; at the same time, each
such polynomial has nonscalar multiplicative complexity O(

√
n) [9]).

An analogous standard bound for finite semirings is O(M(M+n)/ logM).
Generally speaking, this bound is also tight in order. A result of such sort
was proven in [11].1 We prove a similar but asymptotically tight result.

Theorem 1. If a Boolean function of n variables can be implemented by a

circuit over the basis {⊕,∧, 1} of multiplicative complexity M = Ω(n), then
it can be implemented by a circuit of total complexity (1/2 + o(1))M(M +
2n)/ log2M over the same basis. The bound is asymptotically optimal.

∗Research supported in part by RFBR, grants 11–01–00508, 11–01–00792, and OMN
RAS “Algebraic and combinatorial methods of mathematical cybernetics and information
systems of new generation” program (project “Problems of optimal synthesis of control
systems”).
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1[11] deals with monotone Boolean circuits.
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The stated result is nearly folklore, since it’s an immediate corollary of
results by E. I. Nechiporuk of early 1960s. However, these results are little
known, and the corollary is even less known. Thus, it seems appropriate to
give a proof.

The second claim of the theorem (the bound optimality) holds since
almost all Boolean functions of n variables have multiplicative complexity
∼ 2n/2 [5]2 and total complexity ∼ 2n/n [4].

Let us prove the first claim.
Let A be a Boolean matrix of size m× n (m rows, n columns). Assign 1

to each entry of matrix which is located at most log2m positions from a one
of matrix A in the same row. We denote by S(A) a weight3 of the obtained
matrix and name it an active square of matrix A.

The following lemma is an appropriate reformulation of particular case of
a result due to Nechiporuk [6, 7]. In what follows, under an implementation
of a matrix we understand an implementation of a linear operator with that
matrix.

Lemma 1. Any Boolean matrix A of size m × n can be implemented by an

additive circuit4 of complexity
S(A)

2 log
2
m
+ o

(

(m+n)2

logm

)

.

Proof. Divide a set of n variables into groups of s < log2m. All possible
sums in every group can be trivially computed with complexity < 2s.

Regard the computed sums as new variables and note that the problem
is now reduced to implementation of a matrix of size m×2s⌈n/s⌉ and weight
≤ S(A)/s.

Divide the new matrix into horizontal sections of height p. Implement
each section independently. For this, in each column of a section group all
ones into pairs. Denote by yi,j a sum of (new) variables corresponding to
columns with paired ones from i-th and j-th rows.

Compute all yi,j independently. Next, implement an i-th row of a section
as yi,1+ . . .+yi,p+zi, where zi is a sum of variables corresponding to positions
with odd ones.

Note that the total complexity of computation of all yi,j in all sections
is at most as large as the half of matrix weight, that is, S(A)/(2s), and the
number of odd ones in each section is at most as large as the number of
columns, i.e. 2s⌈n/s⌉. Therefore, the complexity of the described circuit is

2Instead of this result of Nechiporuk a trivial upper bound 3√
2
· 2n/2 from the later

paper [2] is often cited.
3Weight of a matrix is the number of nonzero entries in it.
4Over any associative and commutative semigroup (G,+).
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bounded from above by

n2s

s
+

S(A)

2s
+mp+

⌈

m

p

⌉

2s
⌈n

s

⌉

.

Assuming p ∼ m/ log2m and s ∼ log2m − 3 log2 log2m, we obtain the re-
quired bound.

The bound of lemma is asymptotically tight. More general results of that
sort established by N. Pippenger [10] and V. V. Kochergin [3].

Now we complete the proof of the theorem. Let a circuit S to implement
a Boolean function f with multiplicative complexity M . Number all con-
junction gates in the circuit in an order not contradicting the orientation.
Denote by h2i−1, h2i input functions of i-th conjunction gate, and denote by
gi its output function.

Each function hj is a linear combination of variables and functions gi,
where 1 ≤ i < j/2. The function f itself is a linear combination of variables
and all functions gi.

Computation of all functions hj , j = 1, . . . , 2M , together with the func-
tion f as linear combinations of variables and functions gi can be performed
by a linear operator with matrix of size (2M+1)×(M+n) and active square
≤ (2M + 1)(n + M/2 + log2M). To obtain the desired bound, implement
this operator via the method of Lemma 1.
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