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Implementation of linear maps with circulant

matrices via modulo 2 rectifier circuits of

bounded depth∗

Igor S. Sergeev†

Abstract

In the present note we show that for any constant k ∈ N an ar-
bitrary Boolean circulant matrix can be implemented via modulo 2
rectifier circuit of depth 2k − 1 and complexity O

(

n1+1/k
)

, and also

via circuit of depth 2k and complexity O

(

n1+1/k log−1/k
n

)

.

Recall that rectifier (m,n)-circuit is an oriented graph with n vertices
labeled as inputs and m vertices labeled as outputs. Modulo 2 rectifier circuit
implements a Booleanm×nmatrix A = (ai,j) iff for any i and j the number of
oriented paths from j-th input to i-th output is congruent to ai,j modulo 2.
Complexity of a circuit is the number of edges in it, circuit depth is the
maximal length of an oriented path. See details in [3, 4].

n × n matrix Z = (zi,j) is circulant iff for any i, j one has zi,j = z0,k,
where k = (j − i) mod n.

Consider a linear map with Boolean circulant n×n matrix — it computes
a cyclic (algebraic, over GF (2)) convolution with some constant vector A.
Indeed, components of vector C = (C0, . . . , Cn−1) which is a convolution of
vectors A = (A0, . . . , An−1) and B = (B0, . . . , Bn−1) satisfy formulae:

Ck =
∑

i+j≡k mod n

AiBj.

The following theorem allows to extend results [1, 2] on comparison of
complexity of implementation of some circulant matrices via rectifier circuits
and modulo 2 rectifier circuits to bounded depth circuits.
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Theorem 1. For any k ∈ N an arbitrary Boolean circulant n× n matrix Z
can be implemented via modulo 2 rectifier circuit:

a) of depth 2k − 1 and complexity at most f(2k − 1)n1+1/k;

b) of depth 2k and complexity at most f(2k)n
(

n
logn

)1/k

.

The proof is by induction. For k = 1 we use a trivial depth-1 circuit
of complexity O(n2) and a circuit of depth 2 and complexity O(n2/ logn)
provided by O.B. Lupanov’s method [4].

Now we prove an induction step from k − 1 to k. We use the polyno-
mial multiplication method due to A.L. Toom [6] together with . Schönhage’s
idea [5] allowing to extend the method to binary polynomials. The depth-d
polynomial multiplication is reduced to several parallel depth-(d− 2) multi-
plications.

Split a vector of variables into q blocks of length n/q and interpret each
block as a vector of coefficients of a polynomial from the ring

R = GF (2)[y]/(y2·3
s

+ y3
s

+ 1).

Parameter s satisfies condition 3s ≥ n/q.
So, multiplication of binary polynomials of degree n−1 can be performed

as a multiplication of polynomials of degree n/q − 1 over R. The latter
multiplication can be performed via DFT of order 3m ≥ 2q with primitive
root ζ = ys+1−m ∈ R.

Next, we describe a circuit.
Its input is a polynomial B(x) =

∑

Bix
i ∈ R[x] of degree q − 1. A

constant factor is denoted by A(x) =
∑

Aix
i. Output is the product C(x) =

A(x)B(x) =
∑

Cix
i.

1. Compute B(ζ0), . . . , B(ζ3
m
−1).

2. Compute C(ζ i) = A(ζ i)B(ζ i) for all i = 0, . . . , 3m − 1.
3. Compute coefficients of C(x).
We implement stages 1 and 3 via depth-1 circuits and stage 2 — via

circuit of depth d− 2. Next, we estimate the circuit complexity, denote it by
M(d, n).

1. Multiplication by a power of y in R has linear complexity. Hence,
the value of polynomial F (x) at the point yp can be computed with linear
complexity as well. Therefore, the complexity of stage 1 is O(3m3sq).

2. Every multiplication at the stage 2 is a multiplication of binary poly-
nomials of degree 2 · 3s − 1 with a subsequent modulo reduction. Perform
multiplication via circuit of depth d − 2 and complexity M(d − 2, 2 · 3s)
provided by induction hypothesis. Reduction of a polynomial g(y) (here, of
degree 4 · 3s − 1) modulo y2·3

s

+ y3
s

+ 1 is performed via duplication of some
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of its coefficients (that is, outputs of a preceding subcircuit) and identifying
of some coefficients, since every coefficient of g is to be used at most twice.
Henceforth, modulo reduction can be embedded into multiplication circuit
with no depth increasing and with at most doubling of the circuit complexity.
Thus, the total complexity of stage 2 is at most 2 · 3mM(d − 2, 2 · 3s).

3. By the fundamental property of DFT, coefficients of C(x) satisfy
Ci = C∗(ζ−i), where polynomial C∗(x) has coefficients C(ζ i). Thus, the
complexity of stage 3 is that of stage 1, O(3m3sq).

To transform the product of polynomials over R backward to the product
of binary polynomials, one performs a substitution x = y2·3

s

. The substitu-
tion preserves depth and complexity of the circuit.

The choice of parameters to obtain required complexity bounds is: q =
n1/k for d = 2k−1 and q = (n/ logn)1/k for d = 2k; 3s = Θ(n/q), 3m = Θ(q).

(By construction, f(k) = O(ck) for some constant c.)
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