On relative OR-complexity of Boolean matrices and their complements *

Igor S. Sergeev ${ }^{\dagger}$

We construct explicit Boolean square matrices whose rectifier complexity (OR-complexity) differs significantly from the complexity of the complement matrices. This note can be viewed as an addition to the material of [2, §5.6].

Recall that rectifier (m, n)-circuit is an oriented graph with n vertices labeled as inputs and m vertices labeled as outputs. Rectifier circuit (ORcircuit) implements a Boolean $m \times n$ matrix $A=(A[i, j])$ iff for any i and j the value $A[i, j]$ indicates the existence of an oriented path from j-th input to i-th output. Complexity of a circuit is the number of edges in it, circuit depth is the maximal length of an oriented path. See details in [2, 55].

We denote by $\operatorname{OR}(A)$ the complexity of an edge-minimal circuit implementing a given matrix A; if we speak about circuits of depth $\leq d$, then the corresponding complexity is denoted by $\mathrm{OR}_{d}(A)$.

It was proved in [2] via method [3] the existence of $n \times n$-matrices A satisfying

$$
\operatorname{OR}(\bar{A}) / \operatorname{OR}(A)=\Omega\left(n / \log ^{3} n\right)
$$

Note that due to general results [5, 6] on the asymptotic complexity of the class of Boolean matrices the ratio in the question cannot exceed $\Theta(n / \log n)$.

A k-rectangle is an all-ones $k \times k$ matrix. A matrix is k-free if it does not contain a k-rectangle as a submatrix.

It was established in [2] the existence of an $n \times n$ matrix A simple for depth-2 circuits, $\mathrm{OR}_{2}(A)=O\left(n \log ^{2} n\right)$, whose complement matrix \bar{A} is $2-$ free and has relatively high weight (the number of ones) $|\bar{A}|=\Omega\left(n^{5 / 4}\right)$. As a consequence of [6], $\operatorname{OR}(\bar{A})=\mathrm{OR}_{2}(\bar{A})=|\bar{A}|$.

Below, we provide an explicit construction of matrices satisfying similar conditions.

Theorem 1. (i) For an explicit Boolean $n \times n$ matrix C :

$$
\mathrm{OR}(\bar{C}) / \mathrm{OR}(C)=n \cdot 2^{-O(\sqrt{\ln n \ln \ln n})}
$$

[^0](ii) For an explicit Boolean $n \times n$ matrix C the following conditions hold: $\operatorname{OR}(C)=O(n)$, matrix \bar{C} is 2 -free and $|\bar{C}|=\Omega\left(n^{4 / 3}\right)$.
(Recall that the weight of any 2-free matrix is at most $n^{3 / 2}+n$.)
The proof of the theorem is based on the following simple combinatorial lemma.

Lemma 1. Let the weight of an $n \times n$ matrix A be $|A| \geq 2 n^{3 / 2}$. Then A contains $\Omega\left((|A| / n)^{4}\right) 2$-rectangles.

Proof. Say that a row covers a pair u of two columns, if this row has ones in these columns. If a_{i} denotes the number of ones in the i-th row of A, then the number of pairs of columns covered by the rows of A is

$$
\sigma=\sum_{i=1}^{n}\binom{a_{i}}{2}=\frac{1}{2} \sum_{i=1}^{n} a_{i}^{2}-\frac{|A|}{2} \geq \frac{\left(\sum_{i=1}^{n} a_{i}\right)^{2}}{2 n}-\frac{|A|}{2}=\frac{|A|^{2}}{2 n}-\frac{|A|}{2} \geq \frac{|A|^{2}}{4 n} .
$$

Let b_{u} be the number of rows covering the pair u of columns. Then $\sum_{u} b_{u}=\sigma$. Thus, the number of 2-rectangles in A is

$$
\begin{aligned}
\sum_{u}\binom{b_{u}}{2}=\frac{1}{2} \sum_{u} b_{u}^{2}-\frac{\sigma}{2} \geq \frac{\left(\sum_{u} b_{u}\right)^{2}}{n(n-1)}-\frac{\sigma}{2} & = \\
& =\frac{\sigma^{2}}{n(n-1)}-\frac{\sigma}{2} \geq \frac{\sigma^{2}}{2 n^{2}}=\Omega\left(\left(\frac{|A|}{n}\right)^{4}\right)
\end{aligned}
$$

Let $n=\binom{m}{2}$. Given an $m \times m$ matrix A construct an $n \times n$ matrix B as follows. Label rows and columns of B by 2 -element subsets of $[m]$. Set $B[a, b]=1$ iff $a \times b$ forms a 2-rectangle in B.
Lemma 2. If A is k-free, then B is K-free, $K=\binom{k-1}{2}+1$.
Proof. Suppose that B contains a K-rectangle at the intersection of rows s_{1}, \ldots, s_{K} and columns t_{1}, \ldots, t_{K}. Then A contains a rectangle at the intersection of rows $\cup s_{i}$ and columns $\cup t_{i}$. But necessarily $\left|\cup s_{i}\right|,\left|\cup t_{i}\right| \geq k$, contradicting k-freeness of A.

Lemma 3. If A is k-free and $|A| \geq 2 m^{3 / 2}$, then

$$
\mathrm{OR}(B)=\Omega\left(\left(\frac{|A|}{k n}\right)^{4}\right)
$$

on the other hand, $\mathrm{OR}_{3}(\bar{B})=O(n)$.

Proof. By Lemma $1,|B|=\Omega\left((|A| / n)^{4}\right)$, and Lemma 2 implies that B is K-free. Therefore, by the Nechiporuk's theorem [6]

$$
\mathrm{OR}(B) \geq \frac{|B|}{K^{2}}=\Omega\left(\left(\frac{|A|}{k n}\right)^{4}\right)
$$

We are left to show that the matrix \bar{B} can be implemented by a depth-3 circuit of linear complexity. Take a depth-3 circuit where the nodes on the second and the third layer are numbers $1, \ldots, m$, and there is an edge joining an input or an output a with a node i iff $i \in a$. The edges between the second and the third layers are drown according to the entries of the matrix \bar{A}.

By the construction, the circuit has $O\left(m^{2}\right)$ edges. Indeed, it implements the matrix \bar{B} since there exists a path connecting an input a with an output b iff the submatrix at the intersection of rows b and columns a is not allzero.

To prove p. (i) of the Theorem take $m \times m$ norm-matrix A 4], which is Δ-free and has m^{2} / Δ ones, where $\Delta=2^{O(\sqrt{\log m \log \log m})}$, under appropriate choice of parameters. Put $C=\bar{B}$.

To prove p. (ii) take 3-free $m \times m$ Brown's matrix A [1] of weight $\Theta\left(m^{5 / 3}\right)$. Put $C=\bar{B}$.

The author is grateful to Stasys Jukna for suggestions improving the presentation.

References

[1] Brown W.G. On graphs that do not contain a Thomsen graph. Canad. Math. Bull. 1966. 9, 281-285.
[2] Jukna S., Sergeev I. Complexity of linear boolean operators. Foundations and Trends in TCS. 2013. 9(1), 1-123.
[3] Katz N.H. On the CNF-complexity of bipartite graphs containing no squares. Lithuanian Math. Journal. 2012. 52(4), 385-389.
[4] Kóllar J., Rónyai L., Szabó T. Norm-graphs and bipartite Turán numbers. Combinatorica. 1996. 16(3), 399-406.
[5] Lupanov O.B. On rectifier and switching-and-rectifier schemes. Doklady Akad. Nauk SSSR. 1956. 111(6), 1171-1174 (in Russian).
[6] Nechiporuk E.I. On the topological principles of self-correction. Problemy Kibernetiki. 1970. 21, 5-102 (in Russian). [English translation in: Systems Theory Research. 1970. 21, 1-99.]

[^0]: *Research is supported in part by RFBR, grant 14-01-00671a.
 ${ }^{\dagger} \mathrm{e}$-mail: isserg@gmail.com

