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On relative OR-complexity of Boolean

matrices and their complements ∗

Igor S. Sergeev†

We construct explicit Boolean square matrices whose rectifier complexity
(OR-complexity) differs significantly from the complexity of the complement
matrices. This note can be viewed as an addition to the material of [2, §5.6].

Recall that rectifier (m,n)-circuit is an oriented graph with n vertices
labeled as inputs and m vertices labeled as outputs. Rectifier circuit (OR-
circuit) implements a Boolean m× n matrix A = (A[i, j]) iff for any i and j
the value A[i, j] indicates the existence of an oriented path from j-th input
to i-th output. Complexity of a circuit is the number of edges in it, circuit
depth is the maximal length of an oriented path. See details in [2, 5].

We denote by OR(A) the complexity of an edge-minimal circuit imple-
menting a given matrix A; if we speak about circuits of depth ≤ d, then the
corresponding complexity is denoted by ORd(A).

It was proved in [2] via method [3] the existence of n × n-matrices A
satisfying

OR(Ā)/OR(A) = Ω(n/ log3 n).

Note that due to general results [5, 6] on the asymptotic complexity of the
class of Boolean matrices the ratio in the question cannot exceed Θ(n/ logn).

A k-rectangle is an all-ones k× k matrix. A matrix is k-free if it does not
contain a k-rectangle as a submatrix.

It was established in [2] the existence of an n × n matrix A simple for
depth-2 circuits, OR2(A) = O(n log2 n), whose complement matrix Ā is 2-
free and has relatively high weight (the number of ones) |Ā| = Ω(n5/4). As a
consequence of [6], OR(Ā) = OR2(Ā) = |Ā|.

Below, we provide an explicit construction of matrices satisfying similar
conditions.

Theorem 1. (i) For an explicit Boolean n× n matrix C:

OR(C̄)/OR(C) = n · 2−O(
√

lnn ln lnn).
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(ii) For an explicit Boolean n×n matrix C the following conditions hold:

OR(C) = O(n), matrix C̄ is 2-free and |C̄| = Ω(n4/3).

(Recall that the weight of any 2-free matrix is at most n3/2 + n.)
The proof of the theorem is based on the following simple combinatorial

lemma.

Lemma 1. Let the weight of an n × n matrix A be |A| ≥ 2n3/2. Then A
contains Ω((|A|/n)4) 2-rectangles.

Proof. Say that a row covers a pair u of two columns, if this row has ones in
these columns. If ai denotes the number of ones in the i-th row of A, then
the number of pairs of columns covered by the rows of A is

σ =

n
∑

i=1

(

ai
2

)

=
1

2

n
∑

i=1

a2i −
|A|

2
≥

(
∑n

i=1 ai)
2

2n
−

|A|

2
=

|A|2

2n
−

|A|

2
≥

|A|2

4n
.

Let bu be the number of rows covering the pair u of columns. Then
∑

u bu = σ.
Thus, the number of 2-rectangles in A is

∑

u

(

bu
2

)

=
1

2

∑

u

b2u −
σ

2
≥

(
∑

u bu)
2

n(n− 1)
−

σ

2
=

=
σ2

n(n− 1)
−

σ

2
≥

σ2

2n2
= Ω

(

(

|A|

n

)4
)

.

Let n =
(

m
2

)

. Given an m × m matrix A construct an n × n matrix B
as follows. Label rows and columns of B by 2-element subsets of [m]. Set
B[a, b] = 1 iff a× b forms a 2-rectangle in B.

Lemma 2. If A is k-free, then B is K-free, K =
(

k−1
2

)

+ 1.

Proof. Suppose that B contains a K-rectangle at the intersection of rows
s1, . . . , sK and columns t1, . . . , tK . Then A contains a rectangle at the in-
tersection of rows ∪si and columns ∪ti. But necessarily | ∪ si|, | ∪ ti| ≥ k,
contradicting k-freeness of A.

Lemma 3. If A is k-free and |A| ≥ 2m3/2, then

OR(B) = Ω

(

(

|A|

kn

)4
)

,

on the other hand, OR3(B̄) = O(n).
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Proof. By Lemma 1, |B| = Ω((|A|/n)4), and Lemma 2 implies that B is
K-free. Therefore, by the Nechiporuk’s theorem [6]

OR(B) ≥
|B|

K2
= Ω

(

(

|A|

kn

)4
)

.

We are left to show that the matrix B̄ can be implemented by a depth-3
circuit of linear complexity. Take a depth-3 circuit where the nodes on the
second and the third layer are numbers 1, . . . , m, and there is an edge joining
an input or an output a with a node i iff i ∈ a. The edges between the second
and the third layers are drown according to the entries of the matrix Ā.

By the construction, the circuit has O(m2) edges. Indeed, it implements
the matrix B̄ since there exists a path connecting an input a with an output
b iff the submatrix at the intersection of rows b and columns a is not all-
zero.

To prove p. (i) of the Theorem take m×m norm-matrix A [4], which is
∆-free and has m2/∆ ones, where ∆ = 2O(

√

logm log logm), under appropriate
choice of parameters. Put C = B̄.

To prove p. (ii) take 3-freem×m Brown’s matrix A [1] of weight Θ(m5/3).
Put C = B̄.

The author is grateful to Stasys Jukna for suggestions improving the
presentation.
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