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Thin circulant matrices and lower bounds on the

complexity of some Boolean operators∗

M. I. Grinchuk, I. S. Sergeev

Abstract

We prove a lower bound Ω
(

k+l
k2l2

N2− k+l+2

kl

)

on the maximal possible

weight of a (k, l)-free (that is, free of all-ones k × l submatrices) Boolean
circulant N × N matrix. The bound is close to the known bound for the
class of all (k, l)-free matrices. As a consequence, we obtain new bounds for
several complexity measures of Boolean sums’ systems and a lower bound
Ω(N2 log−6 N) on the monotone complexity of the Boolean convolution of
order N .

Keywords: complexity, circulant matrix, thin matrix, Zarankiewicz problem, mono-

tone circuit, rectifier circuit, Boolean sum, Boolean convolution.

1 Introduction

Hereafter, a Boolean matrix is called (k, l)-free (or thin) if it does not contain an
all-ones k×l submatrix. In the case k = l we write simply k-free. Further, assume
2 ≤ k ≤ l.

An N ×N matrix (ci,j) is circulant (or cyclic), if either ci,j = c0,(i+j) mod N for
all i, j, or ci,j = c0,(i−j) mod N for all i, j.

In [2] the first author proved the existence of k-free Boolean circulant N ×N

matrices of weight1 Ω
(

k−4N2−
√

3/k
)

and obtained corollaries for the complexity2

of Boolean sums’ systems3 with circulant matrices, with respect to implementation

∗Original text published in Russian in Diskretnyi Analiz i Issledovanie Operatsii (Discrete

analysis and operations research). 2011. 18(5), 38–53.
1Weight of a (Boolean) matrix is the number of non-zero entries in it.
2The reader can find the notions of complexity, depth, rectifier circuit, circuit of functional

elements e.g. in [4, 5].
3Boolean sum is a function of the form x1 ∨ . . . ∨ xn. A system of Boolean sums with an

N ×N matrix (ci,j) is a mapping with components
∨N

j=1
ci,jxj , 1 ≤ i ≤ N .
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via rectifier circuits of depth 2 or unbounded depth. Precisely, the bound for the
first measure is Ω(N2 log−10N), and for the second it is Ω(N2 log−12N).

In fact, the method has a potential for improvement of the above bounds,
which is of interest due to connection to the Zarankiewicz problem (the problem
is discussed in details e.g. in [6]). This potential is in application of a more
accurate bound on the cardinality of the sum of two sets in a Euclidean space
following from [8, 10].

Below, we show the existence of (k, l)-free circulant N ×N matrices of weight

Ω
(

k+l
k2l2

N2− k+l+2

kl

)

. For comparison, the classic Erdös—Spencer result [6] states

just a slightly better bound Ωk,l

(

N2− k+l−2

kl−1

)

in the class of all (k, l)-free matrices.

Hence, for a system of Boolean sums with an appropriate circulant matrix the
following complexity bounds hold:

— Ω(N2 log−6N) with respect to implementation via circuits of functional
elements4 over the basis {∨,∧};

— Ω(N2 log−5N) with respect to implementation via circuits over the basis
{∨}, or via rectifier circuits;

— Ω(N2 log−4N) with respect to implementation via depth-2 rectifier circuits.

The paper [1] considers the ratio λ(N) = maxA
L∨(A)
L⊕(A)

, where L∨(A) is the

circuit complexity of the Boolean sums’ system with matrix A over the basis {∨},
L⊕(A) is the circuit complexity of the linear operator with matrix A over the basis
{⊕}, and the maximum is taken over all Boolean N ×N matrices. The result of

the present paper leads to a bound λ(N) = Ω
(

N
(logN)6 log logN

)

, which in a sense

close to an upper bound λ(N) = O
(

N
logN

)

.

As another corollary, we obtain that the circuit complexity of the Boolean
convolution of order N over the basis {∨,∧} is Ω(N2 log−6N). Specifically, this
bound holds for the number of disjunctors (that is, ∨-gates) in any monotone
circuit computing the convolution. Some recent papers (e.g. [3, 7]) mention the
bound Ω(N3/2) as a record, though a stronger bound follows from [2] directly5.
The obtained lower bound is close to the trivial upper bound O(N2).

4Further, we simply call them circuits.
5The bound Ω(N3/2) corresponds to the number of disjunctors in a monotone circuit (the

survey [3] is inaccurate at this point). However, the recent paper [7] declares the same bound
for the number of conjunctors (∧-gates; proof is omitted there).
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2 Some properties of “rectangles”

Now, we present the main result following the proof strategy from [2]. Let k, l ∈ N,
2 ≤ k ≤ l. Denote Z+ = N ∪ {0}. We define rectangle as an element of the set

Rk,l = {(x1, . . . , xk, y1, . . . , yl) ∈ Z
k+l
+ | ∀i 6=j(xi 6= xj), ∀i 6=j(yi 6= yj)}.

Let E = (a1, . . . , ak, b1, . . . , bl) be a rectangle. Let m(E) = |{ai + bj | 1 ≤ i ≤
k, 1 ≤ j ≤ l}| denote the number of points in the rectangle E.

Consider the system S(E) of linear equations

{xr + ys = xu + yv | ar + bs = au + bv, 1 ≤ r, u ≤ k, 1 ≤ s, v ≤ l}

over the field R. The set of solutions constitutes a linear subspace TE in
R

k+l. Let n(E) be its dimension. Let C(E) denote the set of rectangles
{(x1, . . . , xk, y1, . . . , yl)} satisfying S(E) and failing to satisfy any other equation
xr + ys = xu + yv (in [2], C(E) is called equivalence class).

We have to estimate the number of rectangles with bounded (by a number N)
coordinates and fixed number of points. An implicit relation between the number
of rectangles and the number of points will be further established with the help
of intermediate parameter n(E). First, we will count the number of rectangles
E with a given value of n(E). Next, we will derive relations between n(E) and
m(E).

To roughly estimate the number of rectangles with bounded coordinates 0 ≤
x1, . . . , yl < N in C(E) we use the following lemma.

Lemma 1. Let N ∈ N. Then |C(E) ∩ {0, . . . , N − 1}k+l| ≤ Nn(E).

Proof. The coordinates x1, . . . , xk, y1, . . . , yl of a vector from TE are defined by
values of n(E) free variables. There are at most Nn(E) ways to arrange such
values, given that the vector is from C(E) ∩ {0, . . . , N − 1}k+l.

The second lemma estimates the number of classes with a given value of n(E).
(We use notation Ck

n for binomial coefficients.)

Lemma 2. Let n ∈ N. Then |{C(E) | n(E) = n}| ≤ Ck+l−n
k2l2 .

Proof. The class C(E) is uniquely defined by the system S(E), which in its turn
is uniquely defined by a linearly independent subsystem of k + l − n equations.
The number of such subsystems is bounded from above by the number of ways to
choose k + l − n equations from k2l2 ones.

Now, we manage to obtain relations between n(E) and m(E). This piece of
proof differs from [2].

Let ξi denote the unit vector in the space R
k+l with i-th coordinate being 1

and other coordinates being 0.
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Let n = n(E). For unification, let us introduce notation xi+k = yi, 1 ≤ i ≤ l.
Set

x̄ = (1, . . . , 1
︸ ︷︷ ︸

k

, 0, . . . , 0
︸ ︷︷ ︸

l

), ȳ = (0, . . . , 0
︸ ︷︷ ︸

k

, 1, . . . , 1
︸ ︷︷ ︸

l

).

Notice that x̄, ȳ ∈ TE (regardless of E). Let T ′
E be the space of solutions of the

system
S ′(E) = S(E) ∪ {x1 = y1 = 0}.

Then dimT ′
E = n − 2 and TE = T ′

E + {αx̄ + βȳ | α, β ∈ R} (A + B hereafter
denotes the element-wise sum (Minkowski sum) of sets A and B). Write

T ′
E =

{

(x1, . . . , xk+l)

∣
∣
∣
∣
∣
xi =

n−2∑

j=1

αi,jxij , 1 ≤ i ≤ k + l

}

,

where xi1 , . . . , xin−2
is a set of free variables of the system S ′(E), and αi,j are real

constants. Then setting in−1 = 1 and in = k + 1 we conclude that xi1 , . . . , xin is
a set of free variables of the system S(E), and

TE =

{

(x1, . . . , xk+l)

∣
∣
∣
∣
∣
xi =

n∑

j=1

αi,jxij , 1 ≤ i ≤ k + l

}

,

where αi,n−1 = αk+j,n = 1, and αi,n = αk+j,n−1 = 0 for 1 ≤ i ≤ k, 1 ≤ j ≤ l.
Consider a linear mapping ψE from R

k+l to the space R
n−2 with Euclidean

metrics and orthonormal basis {e1, . . . , en−2} defined by ψE : ξi →
∑n−2

j=1 αi,jej for
any i. In particular, ψE(ξ1) = ψE(ξk+1) = 0 (0 hereafter stands for the zero vector
of a space if it does not lead to a misunderstanding).

Set AE = ψE({ξ1, . . . , ξk}), BE = ψE({ξk+1, . . . , ξk+l}).
Recall that the dimension dimA of a set A in a Euclidean space is the minimum

of dimensions of affine subspaces containing A.

Lemma 3. |AE +BE| = m(E), dim(AE +BE) = n− 2.

Proof. The first equality holds due to the following chain of equivalent transfor-
mations:

ar + bs = au + bv ⇐⇒
( (x1, . . . , xk, y1, . . . , yl) ∈ TE =⇒ xr + ys = xu + yv ) ⇐⇒

(

(x1, . . . , xk, y1, . . . , yl) ∈ TE =⇒
n∑

j=1

(αr,j + αk+s,j)xij =
n∑

j=1

(αu,j + αk+v,j)xij

)

⇐⇒ ∀j, 1≤j≤n(αr,j + αk+s,j = αu,j + αk+v,j) ⇐⇒
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∀j, 1≤j≤n−2(αr,j + αk+s,j = αu,j + αk+v,j) ⇐⇒

ψE(ξr + ξk+s) =

n−2∑

j=1

(αr,j + αk+s,j)ej =

n−2∑

j=1

(αu,j + αk+v,j)ej = ψE(ξu + ξk+v).

The second equality is straightforward, since 0 ∈ AE∩BE and {e1, . . . , en−2} ⊂
AE ∪ BE.

In the next section, we will estimate m(E).

3 The cardinality of the sum of two sets in a

Euclidean space

The following result is due to I. Ruzsa [10].

Theorem 1 (Ruzsa [10]). Let A and B be finite sets in the Euclidean space R
n

satisfying |A| ≤ |B| and dim(A+B) = n. Then

|A+B| ≥ n|A|+ |B| − n(n + 1)

2
.

Ruzsa also provided a more accurate bound

|A+B| ≥ |B|+
|A|−1
∑

i=1

min{n, |B| − i}.

W.l.o.g. we can assume 0 ∈ A ∩B throughout this section.
Already, these bounds are sufficient to principally achieve results announced

in the introduction. However, the bounds are not asymptotically tight for large n.
On the contrary, the bound |A+B| ≥ ⌊n2/4⌋ established in [2] is rough for small
n (though its advantage is the simplicity of the proof). The method [8] allows to
exhibit tight bounds.

Let {e1, . . . , en} be an orthonormal basis of a Euclidean space En. Following [8],
we define long simplex as a set F of the form

{me1|m = 0, . . . , |F | − k} ∪ {ei1 , . . . , eik−1
}, (1)

with numbers 1, i1, . . . , ik−1 being pairwise different, k ≥ 0.
The next lemma is a reformulation of the Corollary 3.8 [8].

Lemma 4. Under conditions of Theorem 1 the minimum of |A + B| is either

|A||B| (in this case dimA + dimB = n), or it is witnessed by a pair of long

simplices.

5



The proof can be found in [8]. It is crucial to observe that the sets A and
B delivering the minimum in the lemma satisfy the definition (1) with the same
basis and, in particular, with the same vector e1.

Tight bounds (for any values of parameters) were not determined in [8].
Though, they can be easily derived from the lemma above.

Theorem 2. Let A,B ⊂ R
n, K = |A| ≤ |B| = L, and dim(A + B) = n. We

have:

(i) if n = K + L− 2, then |A+B| = KL;
(ii) if n ≤ L−K, then |A+B| ≥ L+ n(K − 1);
(iii) if L−K ≤ n ≤ L, then

|A+B| ≥ (n+ 1)K − (n− L+K)(n− L+K + 1)

2
;

(iv) if L ≤ n ≤ K + L− 3, then

|A+B| ≥ KL− (K + L− n)(K + L− n− 1)

2
.

Proof. In the case dimA + dimB = n, the set A + B has the maximal possible
cardinality KL, thus, (i) follows. Therefore, in the case n < K + L − 2, we may
assume that dimA+ dimB > n.

So, by Lemma 4, it suffices to consider sets A, B being long simplices (1).
Assume w.l.o.g.

A = CA ∪D ∪DA, B = CB ∪D ∪DB,

where
CA = {me1|m = 0, . . . , K − s− sA − 1},
CB = {me1|m = 0, . . . , L− s− sB − 1},

D = {e2, . . . , es+1}, DA = {es+2, . . . , es+sA+1}, DB = {es+sA+2, . . . , en},
s = |D|, sA = |DA|, sB = |DB|, s+ sA + sB = n− 1. Hence,

|A+B| = |CA + CB|+ |(CA ∪ CB) +D|+ |CA +DB|+
|CB +DA|+ |D +D|+ |D + (DA ∪DB)|+ |DA +DB|.

It can be verified directly that

|CA + CB| = K + L− s− n, |(CA ∪ CB) +D| = s(max{L− sB, K − sA} − s),

|CA +DB| = (K − s− sA)sB, |CB +DA| = (L− s− sB)sA,

6



|D +D| = s(s+ 1)

2
, |D + (DA ∪DB)| = s(sA + sB), |DA +DB| = sAsB.

Summing all, we obtain

|A+B| = (sA+1)K+(sB+1)L+s·max{L−sB, K−sA}−n−
s(s + 1)

2
−sAsB. (2)

Thus, the problem reduced to finding the minimum of the expression (2). Let s∗,
s∗A, s

∗
B denote the values of parameters s, sA, sB delivering this minimum. Let us

list restrictions on the parameters:

s+ sA + sB = n− 1, s+ sA ≤ K − 1, s+ sB ≤ L− 1. (∗)

Consider (ii). Suppose n ≤ L−K. Then

L− sB ≥ K + (n− sB) ≥ K ≥ K − sA.

Thus, minimization of (2) (with eliminated constant terms) is equivalent to max-
imization of the expression

sB(n + L−K − 1− sB) +
s(s+ 1)

2
. (3)

For a fixed s the value of (3) grows when sA decreases (and sB increases ac-
cordingly), since 2sB < n + L − K − 1 and due to the fact that the function
x(a− x) monotonically grows in the interval [0, a/2]. Yet, the conditions (∗) are
not violated. Hence, s∗A = 0.

Set sB = n−1−s. Then, after elimination of constant terms the expression (3)
reduces to

−s(s + 1)

2
− ((L−K)− n)s.

Consequently, s∗ = 0. By the assignment sB = n − 1 and s = sA = 0 in (2), we
derive the inequality (ii).

Let us prove (iii). Assume L−K ≤ n ≤ L. Consider two cases.
Case A. Suppose L − sB ≥ K − sA. As above, the problem reduces to maxi-

mization of (3). Note that for a fixed sB the value of (3) grows with decreasing of
sA (and corresponding increasing of s), and the conditions (∗) are not violated.
Therefore, either s∗B ≤ L−K and s∗A = 0, or s∗B = L−K + s∗A.

In the former subcase, assign s = n − 1 − sB. Then, after elimination of
constant terms the expression (3) reduces to

sB(2(L−K)− 1− sB),

hence, s∗B ∈ {L−K − 1, L−K}.

7



In the latter subcase, assign sB = L−K + sA and s = n− 1− L+K − 2sA.
Then, the expression (3) has the form

sA(sA + L−K − n).

The second factor is sB − n, and so it is negative. Consequently, s∗A = 0, and
s∗B = L−K follows as well, as in the previous subcase.

Case B. Suppose L− sB ≤ K − sA. Then,

s+ sA = n− 1− sB ≤ L− 1− sB ≤ K − 1− sA ≤ K − 1.

So, only the first of conditions (∗) is essential. Here, minimization of (2) is equiv-
alent to maximization of the expression

sA(n− L+K − 1− sA) +
s(s+ 1)

2
. (4)

For a fixed sA the value of (4) grows, when s increases and sB accordingly de-
creases, thus, s∗B = L −K + s∗A. That is the very situation already discussed in
the second subcase of the case A.

Via assignment sA = 0, sB = L−K, s = n− 1− L+K in (2), we obtain the
inequality (iii) (the assignment is in a sense correct also in the case L−K = n).

Now, turn to (iv). Assume L ≤ n ≤ K + L− 3. Again, consider two cases.
Case A. Suppose L − sB ≥ K − sA. In this case, the latter of conditions (∗)

follows from the second:

s+ sB ≤ s+ sA + L−K ≤ L− 1.

Again, the problem is to maximize the expression (3). Observe that for a fixed
sB the value of (3) grows when sA decreases (and s correspondingly increases),
and conditions (∗) are not violated. Hence, s∗A = s∗B − L +K (it is the minimal
possible value of sA for a fixed sB).

Under the assignment s = n + L −K − 1 − 2sB and elimination of constant
terms, the expression (3) reduces to

sB(sB − n− L+K).

Since 2sB < (L−K + sA) + (n− sA) = n+ L−K, the second factor is negative
and greater than the first factor by absolute value. Consequently, the maximum
is achieved on the minimal possible value of sB under the conditions (∗). Hence,
we deduce that s∗B = n−K.

Case B. Suppose L − sB ≤ K − sA. In this case, the second condition in (∗)
is inessential:

s+ sA ≤ s+ sB − L+K ≤ K − 1.

8



We have to maximize (4). Observe that it grows when sA is fixed, s increases and
sB decreases, and conditions (∗) are fulfilled. Thus, s∗B = L−K + s∗A. So, we are
under the conditions of the already investigated case A.

Under assignment sA = n − L, sB = n − K, s = L + K − 1 − n in (2), we
exhibit the inequality (iv).

As follows from the proof, the bounds of the theorem are achievable.
Under the conditions of Theorem 2, define the function

ρ(K,L) = max
1≤n≤K+L−2

n+ 2

|A+B| . (5)

Lemma 5. ρ(2, L) = L+2
2L

. If K ≥ 3, then

ρ(K,L) = max

{
K + L

KL
,
K + L− 1

KL− 3
,

2(L+ 2)

K(2L−K + 1)

}

<
K + L+ 2

KL
.

In particular, ρ(K,K) = 2(K+2)
K(K+1)

.

Proof. Define additionally ρ(K,L, n) = n+2
minA,B |A+B|

. By the definition, ρ(K,L) =

maxn ρ(K,L, n).
First, we need to verify that the function ρ(K,L, n) achieves its maximum at

the endpoints of intervals defined in pp. (ii)–(iv) of Theorem 2.
In the case 1 ≤ n ≤ L−K, the function

ρ−1(K,L, n) =
L+ n(K − 1)

n + 2
= K − 1 +

L− 2K + 2

n+ 2

is evidently monotone (hereafter, we consider ρ(K,L, n) as a function of vari-
able n).

In the case L−K ≤ n ≤ L, denote n′ = n− (L−K). Then

ρ−1(K,L, n) = K − n′(n′ + 1) + 2K

2(n′ + L−K + 2)
.

The subtrahend function is convex downward for n′ ≥ 0, since it has the form
cn

′(n′+1)+a
n′+1+b

with a, b, c ≥ 0. Therefore, with respect to the interval [0, K] it takes
its maximal value in the endpoints (it holds for K ≥ 3; for K = 2 the argument of
the maximum lies in the interval [0, 1]). Consequently, there takes its maximum
the function ρ(K,L, n).

In the case L ≤ n ≤ K + L− 3, denote n′ = n− L. Then

ρ−1(K,L, n) = K − 2(n′ + 2)K + (K − n′)(K − n′ − 1)

2(n′ + L+ 2)
=

= K − n′(n′ + 1) +K(K + 3)

2(n′ + L+ 2)
.

9



We treat this case the same way as the previous one.
Thus, for K ≥ 3 we have

arg max
1≤n≤K+L−2

ρ(K,L, n) ∈ {1, L−K, L, K + L− 3, K + L− 2},

arg max
1≤n≤K+L−2

ρ(2, L, n) ∈ {1, L− 2, L− 1, L}.

Let us check that ρ(K,L, 1) ≤ ρ(K,L,K + L− 2). Indeed,

ρ(K,L, 1) =
3

K + L− 1
≤ 4

K + L
≤ 1

K
+

1

L
=
K + L

KL
= ρ(K,L,K + L− 2),

due to the well-known inequality a2

b
+ c2

d
≥ (a+c)2

b+d
, where b, d > 0.

Notice further that

ρ(K,L, L−K) =
1

K

(

1 +
1

L− (K − 1)

)

≤ 1

K

(

1 +
K

L

)

= ρ(K,L,K + L− 2).

Yet,

ρ(2, L, L− 1) =
L+ 1

2L− 1
≤ L+ 2

2L
= ρ(2, L, L).

Therefore, it is proved that ρ(2, L) = ρ(2, L, L) = L+2
2L

and

ρ(K,L) = max {ρ(K,L,K + L− 2), ρ(K,L,K + L− 3), ρ(K,L, L)} =

max

{
K + L

KL
,
K + L− 1

KL− 3
,

2(L+ 2)

K(2L−K + 1)

}

.

Applying the simple estimation

2(L+ 2)

K(2L−K + 1)
=
L+ (K + 3) L

2L−K+1

KL
≤
L+ (K + 3) K

K+1

KL
<
K + L+ 2

KL
,

the inequality ρ(K,L) < K+L+2
KL

can be easily checked. The last statement of the
lemma concerning ρ(K,K) is easy to verify.

4 Weight of thin circulant matrices

A circulant matrix is entirely defined by its one row, say, the first row. Let
cj = c0,j, 0 ≤ j ≤ N − 1, denote the entries of the row, where N is the size of the
matrix. For convenience, assume that the other entries satisfy ci,j = c(i+j) mod N

(that is, 1-uniform diagonals of the matrix are parallel to the secondary diagonal).
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Then, the condition that a matrix (ci,j) contains an all-ones submatrix con-
stituted by rows with numbers a1, . . . , ak and by columns with numbers b1, . . . , bl
can be written as

c(ai+bj) mod N = 1, 1 ≤ i ≤ k, 1 ≤ j ≤ l.

Let γ0, . . . , γN−1 be independent random variables taking value 1 with proba-
bility p and value 0 with probability 1− p. Denote γ =

∑
γi.

Hereafter, we denote by P(Q) the probability of the event Q. Let Mξ and Dξ
denote the expectation and the variance of a random variable ξ, respectively.

Lemma 6. P
(
γ ≥ pN − 2

√
pN
)
≥ 3/4.

Proof. The required inequality follows from the Chebyshev’s inequality

P (|γ −Mγ| > ε) <
Dγ

ε2

by setting Mγ = pN , Dγ = p(1− p)N ε = 2
√
pN .

Set formally γi = 0, when i ≥ N . Let Q(E, γ0, . . . , γN−1) with E =
(a1, . . . , ak, b1, . . . , bl) ∈ Rk,l ∩ {0, . . . , N − 1}k+l denote the event

∀i, j(γai+bj = 1).

Substantially, it implies that a random circulant 2N × 2N matrix Γ with the first
row (γ0, . . . , γN−1, 0, . . . , 0) contains an all-ones k× l submatrix in the intersection
of rows a1, . . . , ak and columns b1, . . . , bl.

Observe that any all-ones submatrix of a matrix Γ can be translated to an
all-ones submatrix entirely contained in the upper left N ×N submatrix (that is,
constituted by rows and columns numbered from 0 to N −1) of Γ by a cyclic shift
(of numbers of rows and columns). Generation of all-ones submatrices by cyclic
shifts is illustrated on the picture below; submatrices Ci are shown as rectangles,
the submatrix C0 is a desired one.

Therefore, the matrix Γ is (k, l)-free iff its left upper N ×N submatrix is.

Theorem 3. There exists a (k, l)-free circulant N × N matrix of weight

Ω
(
k+l
k2l2

N2−ρ(k,l)
)
.

Proof. It follows directly from the definition that the probability of the event

11
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0

0

C0

C1

C2

C3

Q(E, γ0, . . . , γN−1) is at most pm(E). Then

P
(
∃E∈Rk,l

(Q(E, γ0, . . . , γN−1))
)
≤

∑

E∈Rk,l∩{0,...,N−1}k+l

P (Q(E, γ0, . . . , γN−1) ) =

k+l∑

n=3

∑

E∈Rk,l∩{0,...,N−1}k+l,

n(E)=n

P (Q(E, γ0, . . . , γN−1) ) ≤

k+l∑

n=3

∑

E∈Rk,l∩{0,...,N−1}k+l,

n(E)=n

pm(E) ≤
k+l∑

n=3

∑

C(E)⊂Rk,l,

n(E)=n

Nnpm(E) ≤

k+l∑

n=3

∑

C(E)⊂Rk,l,

n(E)=n

(
pNρ(k,l)

)m(E)
.

Here, the second from the last inequality follows from Lemma 1, and the last one
is justified by Lemma 3 and the definition (5).
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Set p =
(

k+l
ek2l2

)
N−ρ(k,l), and continue exploiting the inequality of Lemma 2:

k+l∑

n=3

∑

C(E)⊂Rk,l,

n(E)=n

(
pNρ(k,l)

)m(E) ≤
k+l∑

n=3

∑

C(E)⊂Rk,l,

n(E)=n

(
k + l

ek2l2

)m(E)

≤

k+l∑

n=3

Ck+l−n
k2l2

(
k + l

ek2l2

)k+l−1

≤
k+l∑

n=3

(
ek2l2

k + l − n

)k+l−n(
k + l

ek2l2

)k+l−1

=

k+l∑

n=3

(
k + l

ek2l2

)n−1(

1 +
n

k + l − n

)k+l−n

≤
k+l∑

n=3

(
k + l

ek2l2

)n−1

en =

e

k+l∑

n=3

(
k + l

k2l2

)n−1

≤ e(k + l)

k2l2
≤ e/4.

Here, we use well-known inequalities Cm
n ≤

(
en
m

)m
and (1 + 1/x)x < e for x > 0,

and assume xx |x=0= 1 (this quantity appears in the form (k+ l−n)k+l−n |n=k+l).
Hence, as follows form the note before the theorem, a random circulant (2N ×

2N) matrix Γ is (k, l)-free with probability at least (4 − e)/4. In the sight of
Lemma 6, we can conclude that this random matrix is (k, l)-free and also has
weight 2Nγ ≥ 2N(pN − 2

√
pN) = Ω(pN2) with positive probability.

5 Corollaries

Theorem 3 and Lemma 5 lead to

Corollary 1. There exists a (k, l)-free N × N circulant matrix of weight

Ω
(

k+l
k2l2

N2− k+l+2

kl

)

.

In the case k = l = Θ(logN), the weight of a circulant matrix provided by
the corollary is Ω

(
N2 log−3N

)
. This fact together with complexity bounds for

Boolean sums’ systems with (k, l)-free matrices [9] (see also [2, 11]) yields

Corollary 2. There exists a circulant N × N matrix such that for the com-

plexity of the corresponding system of Boolean sums the following bounds hold:

Ω
(
N2 log−4N

)
with respect to implementation via depth-2 rectifier circuits,

Ω
(
N2 log−5N

)
— for circuits over the basis {∨} or unbounded-depth rectifier

circuits, Ω
(
N2 log−6N

)
— for the number of disjunctors in a circuit over the

basis {∨,∧}.
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For the same choice of the parameters, the function λ(N) defined in the intro-
duction can be bounded as follows (taking [1] into account).

Corollary 3. λ(N) = Ω
(

N
(logN)6 log logN

)

.

Boolean convolution of order N is the function

UN (x0, . . . , xN−1, y0, . . . , yN−1) = (u0, . . . , u2N−2), uk =
∨

i+j=k

xiyj.

Cyclic Boolean convolution of order N is defined as

ZN(x0, . . . , xN−1, y0, . . . , yN−1) = (z0, . . . , zN−1), zk =
∨

i+j≡k mod N

xiyj.

Let V (f) be the minimal number of disjunctors in a circuit over the basis {∨, ∧}
that implements a function f . Then, the following relations are straight from the
definition of convolutions:

V (ZN) ≤ V (UN ) +N − 1, V (UN) ≤ V (Z2N−1).

A cyclic Boolean convolution (up to a permutation of its components) can be
viewed as a system of Boolean sums of arguments x0, . . . , xN−1 with a variable
circulant matrix defined by the row yN−1, . . . , y0. Since the complexity of a circuit
(here, in the sense of the complexity measure V (f)) does not increases after a
replacement of some inputs by constants, we can conclude that the complexity of
the cyclic convolution of order N is at least the complexity of a system of Boolean
sums with an arbitrary circulant N ×N matrix. So, by Corollary 2, we obtain

Corollary 4. V (UN), V (ZN) = Ω
(
N2 log−6N

)
.
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Notes (2017)

By now, λ(N) is proven to be Ω(N/ log2N). There are several ways to show it,
see e.g. [Jukna S., Sergeev I. Complexity of linear boolean operators. Foundations
and Trends in Theoretical Computer Science. 2013. V. 9(1). 1–123] and references
there.

An explicit circulant matrix A achieving L∨(A)/L⊕(A) = N1−o(1) was con-
structed in [Gashkov S. B., Sergeev I. S. A method for deriving lower bounds
for the complexity of monotone arithmetic circuits computing real polynomials.
Sbornik: Mathematics. 2012. V. 203(10), 1411–1447] with the use of a combina-
torial result by J. Kóllar, L. Rónyai and T. Szabó.
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