On the monotone complexity of the shift operator

Igor S. Sergeev*

Abstract

We show that the complexity of minimal monotone circuits implementing a monotone version of the permutation operator on n boolean vectors of length q is $\Theta(q n \log n)$. In particular, we obtain an alternative way to prove the known complexity bound $\Theta(n \log n)$ for the monotone shift operator on n boolean inputs.

Introduction. The recent paper [1] shows that a plausible hypothesis from network coding theory implies a lower bound $\Omega(n \log n)$ for the complexity of the n-input boolean shift operator when implemented by circuits over a full basis. As a corollary, the same bound holds for the multiplication of n-bit numbers. (Definitions of boolean circuits and complexity see e.g. in [12].) Curiously, nearly at the same time an upper bound $O(n \log n)$ for multiplication has been proved in [5]. Actually, for the shift operator, the bound $O(n \log n)$ is trivial.

The shift can be implemented by monotone circuits. Lamagna [7, 8] and independently Pippenger and Valiant 11 proved that its complexity is bounded by $\Omega(n \log n)$ with respect to the circuits over the basis $\{\vee, \wedge\}$. Essentially the same bound was established by Chashkin [3] for the close problem of implementation of the real-valued shift operator by circuits over the basis of 2-multiplexors and binary boolean functions. We show that the argument from [3] works for the boolean setting as well thus obtaining yet another proof of the known result. On the other hand, an upper bound $O(n \log n)$ is easy to obtain when a suitable encoding of the shift value is chosen.

A version of the shift operator may be seen as a partially defined ordern boolean convolution operator. It is known that the complexity of the

[^0]convolution is $n^{2-o(1)}$ [4], while the complexity of the corresponding shift operator is $\Theta(n \log n)$.

A more general form of shift is permutation. By analogy, one can introduce a monotone permutation operator. If a special encoding on the set of permutations is chosen, then the permutation operator on n boolean inputs can be implemented with complexity $O(n \log n)$ employing the optimal sorting network from [2]. If size- n boolean vectors are given as inputs, then there exists a version of the permutation operator, which is the restriction of the $n \times n$ boolean matrix multiplication operator. The boolean matrix multiplication complexity is known to be $\Theta\left(n^{3}\right)$ [9, 10]. It can be compared with the complexity $\Theta\left(n^{2} \log n\right)$ of the corresponding permutation operator. (The lower bound follows from the bound on the complexity of the shift operator.)

Preliminaries. Further, $L(F)$ denotes the complexity of implementing the operator F by circuits over the basis $\{\vee, \wedge\}$.

Let $\mathbb{B}=\{0,1\}$ and $A=\left\{\alpha_{0}, \ldots, \alpha_{n-1}\right\} \subset \mathbb{B}^{m}$ be an antichain of cardinality n. By $X=\left(x_{0}, \ldots, x_{n-1}\right), x_{i}=\left(x_{i, 0}, \ldots, x_{i, q-1}\right)^{T}$, denote the (q, n) matrix of boolean variables. Let $Y=\left(y_{0}, \ldots, y_{m-1}\right)$ denote the vector of boolean variables encoding elements of the antichain A. By $v \gg k$ we denote the vector obtained from v via a cyclic shift by k positions to the right.

Monotone cyclic shift $(n q+m, n q)$-operator $S_{q, A}(X, Y)=\left(s_{0}, \ldots, s_{n-1}\right)$ is a partially defined operator taking values $X \gg k$ for $Y=\alpha_{k}$, where $k=0, \ldots, n-1$.

Consider a few examples of encoding shift values. The vector (v, \bar{v}), where - is the componentwise negation, we call doubling of the vector v. Typically, the shift value k is encoded by its binary representation $[k]_{2}$. For the monotone version, one can use doubling of $[k]_{2}$. In this case, $m=2\left(\left\lfloor\log _{2} n\right\rfloor+1\right)$. The described encoding corresponds to the antichain $A_{0}=\left\{\left([k]_{2}, \overline{[k]_{2}}\right) \mid 0 \leq k<n\right\}$.

Another natural choice for A is the set A_{1} of all weight- 1 vectors in \mathbb{B}^{n}. In this case, $m=n$. Let $q=1$. Define

$$
c_{i}(X, Y)=\bigvee_{j+k=i \bmod n} x_{j} y_{k}
$$

The operator $C(X, Y)=\left(c_{0}, \ldots, c_{n-1}\right)$ is called a cyclic boolean convolution of the vectors X and Y.

By the definition of the shift operator, $S_{1, A_{1}}(X, Y)$ coincides with $C(X, Y)$ on inputs from $\mathbb{B}^{n} \times A_{1}$. It can be checked that

$$
S_{1, A_{1}}(X, Y)=C(X, Y) \vee x_{0} \cdot \ldots \cdot x_{n-1} \cdot g \vee r(X, Y),
$$

where g is an undefined boolean vector, and $r(X, Y)=0$ for $|Y| \leq 1$ (here $|v|$ denotes the weight of the vector v). The complexity of convolution is known
to be almost quadratic, $L(C)=\Omega\left(n^{2} / \log ^{6} n\right)$ 4]. Supposedly, a trivial upper bound $L(C)=O\left(n^{2}\right)$ is tight. At the same time, $L\left(S_{1, A_{1}}\right)=O(n \log n)$. We show below that in fact $L\left(S_{1, A}\right)=\Omega(n \log n)$ for any A.

Now let $\Pi=\left\{\pi_{0}, \ldots, \pi_{n!-1}\right\} \subset \mathbb{B}^{m}$ be an antichain of cardinality $n!$. We can assign to its elements different permutations π on the set $\{0, \ldots, n-1\}$. Denote $\pi(X)=\left(x_{\pi(0)}, \ldots, x_{\pi(n-1)}\right)$. The monotone permutation operator $P_{q, \Pi}(X, Y)$ is defined on inputs $Y \in \Pi$ as $P_{q, \Pi}(X, Y)=\pi(X)$, where the permutation π corresponds to the value of Y. Since a cyclic shift is a special case of permutation, any permutation operator can be viewed as a shift operator defined on a larger domain.

Trivially, any permutation π may be represented by the vector of numbers $\left([\pi(0)]_{2}, \ldots,[\pi(n-1)]_{2}\right)$. Let Π_{0} denote the corresponding coding set (it constitutes an antichain).

Otherwise, permutations may be specified as square boolean matrices with all rows and columns having weight 1 . Denote the set of such matrices by $\Pi_{1} \subset \mathbb{B}^{n \times n}$. The corresponding permutation operator performs the multiplication of the permutation matrix $Y=\left\{y_{j, k}\right\}$ by the matrix of variables X. Define

$$
z_{i, k}(X, Y)=\bigvee_{j=0}^{n-1} x_{i, j} y_{j, k}
$$

Then $Z(X, Y)=\left\{z_{i, k}\right\}: \mathbb{B}^{q \times n} \times \mathbb{B}^{n \times n} \rightarrow \mathbb{B}^{q \times n}$ is the operator of boolean product of matrices X and Y. By definition, the operators $P_{q, \Pi_{1}}$ and Z take the same values on inputs from $\mathbb{B}^{q \times n} \times \Pi_{1}$. It is known that $L(Z)=$ $q n(2 n-1)$ [10] (see also [12]), which means: the naive method to multiply boolean matrices is optimal. On the other hand, $L\left(P_{q, \Pi_{1}}\right)=O\left(q n \log n+n^{2}\right)$ (see below). Moreover, we manage to show that $L\left(P_{q, \Pi}\right)=\Omega(q n \log n)$ for any Π, and this bound is achievable.

Upper complexity bounds. For $v=\left(v_{0}, \ldots, v_{m-1}\right) \in \mathbb{B}^{m}$ let $Y^{v}=$ $\bigwedge_{v_{i}=1} y_{i}$ denote the monomial of variables y_{i} corresponding to the vector v. Let $L(A)$ stand for the complexity of computation of the set of monomials $\left\{Y^{\alpha} \mid \alpha \in A\right\}$.

Theorem 1. $L\left(S_{q, A}\right) \leq L(A)+O(q n \log n)$.
Proof. The standard circuit for the shift operator consists of $\log _{2} n$ layers of n multiplexors in each. It can be built according to the binary representation of the shift value k. The first layer shifts the input by either 0 or 1 positions, depending on the value of the least significant bit of k. The second layer shifts by 0 or 2 positions, etc.

The monotone circuit employs indicators $Y^{i, \beta}=\bigvee_{\left\lfloor k / 2^{i}\right\rfloor=\beta \bmod 2} Y^{\alpha_{i}}$ of equality of bits of Y to zeros or ones. Instead of multiplexors, there are used
similar monotone subcircuits that calculate operators of the form $Y^{i, 1} a \vee Y^{i, 0} b$.
It remains to note that all boolean sums $Y^{i, \beta}$ can be computed with complexity $O(n)$.

In particular, since $L\left(A_{0}\right)=O(n)$ and $L\left(A_{1}\right)=0$, we obtain $L\left(S_{1, A_{0}}\right), L\left(S_{1, A_{1}}\right) \in O(n \log n)$.

To derive the upper bounds on the complexity of the permutation operator, we use a circuit Σ sorting n elements with complexity $O(n \log n)$ provided by [2]. Such a circuit consists of comparator gates that order a pair of inputs.

Theorem 2.

(i) There exists an antichain Π such that $L\left(P_{q, \Pi}\right)=O(q n \log n)$.
(ii) $L\left(P_{q, \Pi_{1}}\right)=O\left(q n \log n+n^{2}\right)$.

Proof. A set Π can be specified following the circuit Σ. Assign to any permutation π a linear order $x_{\pi(0)}>x_{\pi(1)}>\ldots>x_{\pi(n-1)}$ on the set of inputs of Σ (in general, we do not consider these inputs boolean). Let Σ receive inputs ordered in correspondence to a given permutation π. Assign to each comparator e a boolean parameter y_{e} whose value is determined by the result of the comparison. Let the doubling of the vector of parameters $y_{e}, e \in \Sigma$, encode a permutation π.

Now, we transform the circuit Σ to a monotone circuit for $P_{q, \Pi}(X, Y)$, replacing any comparator e receiving vector inputs a, b with a subcircuit that evaluates vectors $a y_{e} \vee b \overline{y_{e}}$ and $a \overline{y_{e}} \vee b y_{e}$.

Let us prove ($i i$). First, recode Y from Π_{1} to Π_{0}. To do this, one simply needs to compute positions $y_{0}^{\prime}, \ldots, y_{n-1}^{\prime}$ of 1 s in the columns of the matrix Y. The position of 1 in a weight- 1 column may be calculated by a trivial circuit of linear complexity. Therefore, the complexity of the recoding is $O\left(n^{2}\right)$.

Next, arrange the inputs x_{i} in accordance to the ordering of numbers y_{i}^{\prime} with the use of the circuit Σ. At each node of the obtained circuit two y_{i}^{\prime} inputs are compared and, depending on the result of the comparison, the order of the vectors x_{i} accompanied by the numbers y_{i}^{\prime} is determined. The complexity of comparison is linear, so the complexity of the subcircuit at each node is $O(q+\log n)$.

Lower complexity bounds. The proof of the following theorem closely follows the proof of the main result in 3.

Theorem 3. For any choice of antichain A of cardinality n the following inequality holds: $L\left(S_{q, A}\right) \geq q n \log _{2} n-O(q n)$.

Proof. Essentially, it suffices to consider the case $q=1$. Let S be a monotone circuit of complexity L that computes $S_{1, A}(X, Y)$.
a) First, note that for any assignment $Y=\alpha_{k}$ for each i, the circuit S contains a path connecting the input x_{i} and the output $s_{i+k \bmod n}$, and passing exclusively through the gates whose outputs return the function x_{i}.

Indeed, $s_{i+k \bmod n}\left(X, \alpha_{k}\right)=x_{i}$ by definition. It remains to check that if $x_{i}=f \vee g$ or $x_{i}=f g$, where f and g are monotone functions, then either $f=x_{i}$ or $g=x_{i}$. From $x_{i}=f \vee g$ it follows that $f \leq x_{i}$ and $g \leq x_{i}$. Assume that $f \neq x_{i}$ and $g \neq x_{i}$. It means that $f=g=0$ under the assignment $x_{i}=1, x_{j}=0$ for all $j \neq i$. But then $f \vee g=0 \neq x_{i}$. A contradiction. The case $x_{i}=f g$ follows by a dual argument.

So, moving from an output $s_{i+k \bmod n}$ towards the inputs of the circuit, for any gate, we can select an appropriate input computing the function x_{i}. Finally, we obtain the desired path.
b) Denote the path providing by the above argument by $p_{i, k}$. Let $\chi(e)$ stand for the number of paths $p_{i, k}, 0 \leq i, k<n$, passing through the gate e in the circuit S. Note that $\chi(e) \leq n$ for all $e \in S$. Indeed, any assignment $Y=\alpha_{k}$ uniquely defines the function of variables X computed at the output of any gate e. Thus, e does not belong to two different paths $p_{i, k}$ and $p_{j, k}$. Consequently,

$$
\begin{equation*}
\sum_{e \in S} \chi(e) \leq L n . \tag{1}
\end{equation*}
$$

c) Let us estimate the sum $\sum_{e \in S} \chi(e)$ in another way. Denote by $\chi(e, j)$ the number of paths $p_{i, k}$ passing through e to the output s_{j}. By construction, $\sum_{j} \chi(e, j)=\chi(e)$.

Consider the subcircuit S_{j} obtained by combining all n paths $p_{i, k}$ leading to the output s_{j}, i.e. satisfying the condition $i+k=j \bmod n$. By construction, S_{j} is a connected binary ${ }^{11}$ directed graph with n inputs and one output. We manage to bound $\sum_{e \in S_{j}} \chi(e, j)$ following a simple argument from [6] $]^{2}$.

Due to the binarity property, the subcircuit S_{j} has an input at a distance of at least $\log _{2} n$ edges from the output. In other words, some path making up S_{j} contains at least $\log _{2} n$ gates. Exclude this path and consider a subcircuit obtained by combining the remaining $n-1$ paths. Then, it contains a path of length at least $\log _{2}(n-1)$. We proceed this way until there is no path remained. The argument leads to the bound

$$
\begin{equation*}
\sum_{e \in S_{j}} \chi(e, j) \geq \log _{2} n!=n \log _{2} n-O(n), \tag{2}
\end{equation*}
$$

[^1]following by
\[

$$
\begin{equation*}
\sum_{e \in S} \chi(e)=\sum_{j} \sum_{e \in S_{j}} \chi(e, j) \geq n^{2} \log _{2} n-O\left(n^{2}\right) . \tag{3}
\end{equation*}
$$

\]

Putting together (11) and (3), we establish the inequality $L \geq n \log _{2} n-O(n)$.
d) For $q>1$, we consider separately the components of the input and output vectors at the same positions. This results in q groups of paths $p_{i, j}$. The inequality (1) remains valid, and the inequality (2) holds for any of $q n$ outputs. Thus, the required bound finally follows.

Since a permutation operator is a more completely defined shift operator, as a corollary we establish $L\left(P_{q, \Pi}\right) \geq q n \log _{2} n-O(q n)$ for any Π.

The research is supported by RFBR grant, project no. 19-01-00294a.

References

[1] Afshani P., Freksen C., Kamma L., Larsen K. G. Lower bounds for multiplication via network coding. arXiv:1902.10935.
[2] Ajtai M., Komlós J., Szemerédi E. Sorting in $c \log n$ parallel steps. Combinatorica. 1983. 3(1), 1-19.
[3] Chashkin A. V. On the complexity of a cyclic shift of a set of real numbers. Discrete Analysis and Operations Research. Ser. 1. 2006. 13(4), 89-92 (in Russian). [Eng. translation in J. Applied and Industrial Math. 2007. 1(2), 175-177.]
[4] Grinchuk M. I., Sergeev I. S. Thin circulant matrices and lower bounds on the complexity of some Boolean operators. Discrete Analysis and Operations Research. 2011. 18(5), 38-53 (in Russian). [Eng. translation in arXiv:1701.08557.]
[5] Harvey D., van der Hoeven J. Integer multiplication in time $O(n \log n)$. Tech. report no. 02070778, HAL, 2019.
[6] Lamagna E. A., Savage J. E. Combinational complexity of some monotone functions. Proc. 15th IEEE Symp. on Switching and Automata Theory. New Orleans, 1974, 140-144.
[7] Lamagna E. A. The complexity of monotone functions. Ph.D. thesis. Brown Univ., 1975.
[8] Lamagna E. A. The complexity of monotone networks for certain bilinear forms, routing problems, sorting, and merging. IEEE Trans. on Comp. 1979. 28, 773-782.
[9] Mehlhorn K. On the complexity of monotone realizations of matrix multiplication. Univ. Saarlandes, Tech. report 74-11, 1974.
[10] Paterson M. S. Complexity of monotone networks for Boolean matrix product. Theor. Comput. Sci. 1975. 1, 13-20.
[11] Pippenger N., Valiant L. G. Shifting graphs and their applications. J. ACM. 1976. 23(3), 423-432.
[12] Wegener I. The complexity of Boolean functions. Stuttgart: WileyTeubner, 1987.

[^0]: *e-mail: isserg@gmail.com

[^1]: ${ }^{1}$ Any vertex receives at most two incoming edges.
 ${ }^{2}$ In [6], the argument was used to bound the monotone complexity of the boolean sorting operator, see also [12].

