
ar
X

iv
:1

90
5.

10
74

7v
2

 [
cs

.C
C

]
 3

0
Ju

n
20

20

On the monotone complexity of the shift

operator

Igor S. Sergeev∗

Abstract

We show that the complexity of minimal monotone circuits imple-
menting a monotone version of the permutation operator on n boolean
vectors of length q is Θ(qn log n). In particular, we obtain an alter-
native way to prove the known complexity bound Θ(n log n) for the
monotone shift operator on n boolean inputs.

Introduction. The recent paper [1] shows that a plausible hypothesis
from network coding theory implies a lower bound Ω(n log n) for the com-
plexity of the n-input boolean shift operator when implemented by circuits
over a full basis. As a corollary, the same bound holds for the multiplication
of n-bit numbers. (Definitions of boolean circuits and complexity see e.g.
in [12].) Curiously, nearly at the same time an upper bound O(n logn) for
multiplication has been proved in [5]. Actually, for the shift operator, the
bound O(n logn) is trivial.

The shift can be implemented by monotone circuits. Lamagna [7, 8]
and independently Pippenger and Valiant [11] proved that its complexity is
bounded by Ω(n logn) with respect to the circuits over the basis {∨, ∧}.
Essentially the same bound was established by Chashkin [3] for the close
problem of implementation of the real-valued shift operator by circuits over
the basis of 2-multiplexors and binary boolean functions. We show that the
argument from [3] works for the boolean setting as well thus obtaining yet
another proof of the known result. On the other hand, an upper bound
O(n logn) is easy to obtain when a suitable encoding of the shift value is
chosen.

A version of the shift operator may be seen as a partially defined order-
n boolean convolution operator. It is known that the complexity of the

∗e-mail: isserg@gmail.com

1

http://arxiv.org/abs/1905.10747v2

convolution is n2−o(1) [4], while the complexity of the corresponding shift
operator is Θ(n log n).

A more general form of shift is permutation. By analogy, one can intro-
duce a monotone permutation operator. If a special encoding on the set of
permutations is chosen, then the permutation operator on n boolean inputs
can be implemented with complexity O(n logn) employing the optimal sort-
ing network from [2]. If size-n boolean vectors are given as inputs, then there
exists a version of the permutation operator, which is the restriction of the
n × n boolean matrix multiplication operator. The boolean matrix multi-
plication complexity is known to be Θ(n3) [9, 10]. It can be compared with
the complexity Θ(n2 log n) of the corresponding permutation operator. (The
lower bound follows from the bound on the complexity of the shift operator.)

Preliminaries. Further, L(F) denotes the complexity of implementing
the operator F by circuits over the basis {∨, ∧}.

Let B = {0, 1} and A = {α0, . . . , αn−1} ⊂ B
m be an antichain of cardi-

nality n. By X = (x0, . . . , xn−1), xi = (xi,0, . . . , xi,q−1)
T , denote the (q, n)-

matrix of boolean variables. Let Y = (y0, . . . , ym−1) denote the vector of
boolean variables encoding elements of the antichain A. By v ≫ k we denote
the vector obtained from v via a cyclic shift by k positions to the right.

Monotone cyclic shift (nq + m,nq)-operator Sq,A(X, Y) = (s0, . . . , sn−1)
is a partially defined operator taking values X ≫ k for Y = αk, where
k = 0, . . . , n− 1.

Consider a few examples of encoding shift values. The vector (v, v),
where · is the componentwise negation, we call doubling of the vector v.
Typically, the shift value k is encoded by its binary representation [k]2.
For the monotone version, one can use doubling of [k]2. In this case,
m = 2(⌊log2 n⌋ + 1). The described encoding corresponds to the antichain

A0 =
{(

[k]2, [k]2

)
∣

∣

∣
0 ≤ k < n

}

.

Another natural choice for A is the set A1 of all weight-1 vectors in B
n.

In this case, m = n. Let q = 1. Define

ci(X, Y) =
∨

j+k= i mod n

xjyk.

The operator C(X, Y) = (c0, . . . , cn−1) is called a cyclic boolean convolution

of the vectors X and Y .
By the definition of the shift operator, S1,A1

(X, Y) coincides with C(X, Y)
on inputs from B

n × A1. It can be checked that

S1,A1
(X, Y) = C(X, Y) ∨ x0 · . . . · xn−1 · g ∨ r(X, Y),

where g is an undefined boolean vector, and r(X, Y) = 0 for |Y | ≤ 1 (here |v|
denotes the weight of the vector v). The complexity of convolution is known

2

to be almost quadratic, L(C) = Ω(n2/ log6 n) [4]. Supposedly, a trivial upper
bound L(C) = O(n2) is tight. At the same time, L(S1,A1

) = O(n logn). We
show below that in fact L(S1,A) = Ω(n log n) for any A.

Now let Π = {π0, . . . , πn!−1} ⊂ B
m be an antichain of cardinality n!. We

can assign to its elements different permutations π on the set {0, . . . , n− 1}.
Denote π(X) =

(

xπ(0), . . . , xπ(n−1)

)

. The monotone permutation operator
Pq,Π(X, Y) is defined on inputs Y ∈ Π as Pq,Π(X, Y) = π(X), where the
permutation π corresponds to the value of Y . Since a cyclic shift is a special
case of permutation, any permutation operator can be viewed as a shift
operator defined on a larger domain.

Trivially, any permutation π may be represented by the vector of numbers
([π(0)]2, . . . , [π(n − 1)]2). Let Π0 denote the corresponding coding set (it
constitutes an antichain).

Otherwise, permutations may be specified as square boolean matrices
with all rows and columns having weight 1. Denote the set of such matrices
by Π1 ⊂ B

n×n. The corresponding permutation operator performs the multi-
plication of the permutation matrix Y = {yj,k} by the matrix of variables X .
Define

zi,k(X, Y) =

n−1
∨

j=0

xi,j yj,k.

Then Z(X, Y) = {zi,k} : Bq×n × B
n×n → B

q×n is the operator of boolean
product of matrices X and Y . By definition, the operators Pq,Π1

and Z
take the same values on inputs from B

q×n × Π1. It is known that L(Z) =
qn(2n − 1) [10] (see also [12]), which means: the naive method to multiply
boolean matrices is optimal. On the other hand, L(Pq,Π1

) = O(qn logn+n2)
(see below). Moreover, we manage to show that L(Pq,Π) = Ω(qn logn) for
any Π, and this bound is achievable.

Upper complexity bounds. For v = (v0, . . . , vm−1) ∈ B
m let Y v =

∧

vi=1 yi denote the monomial of variables yi corresponding to the vector v.
Let L(A) stand for the complexity of computation of the set of monomials
{Y α | α ∈ A}.

Theorem 1. L(Sq,A) ≤ L(A) +O(qn logn).

Proof. The standard circuit for the shift operator consists of log2 n layers of
n multiplexors in each. It can be built according to the binary representation
of the shift value k. The first layer shifts the input by either 0 or 1 positions,
depending on the value of the least significant bit of k. The second layer
shifts by 0 or 2 positions, etc.

The monotone circuit employs indicators Y i,β =
∨

⌊k/2i⌋=β mod 2 Y
αi of

equality of bits of Y to zeros or ones. Instead of multiplexors, there are used

3

similar monotone subcircuits that calculate operators of the form Y i,1a∨Y i,0b.
It remains to note that all boolean sums Y i,β can be computed with

complexity O(n).
In particular, since L(A0) = O(n) and L(A1) = 0, we obtain

L(S1,A0
), L(S1,A1

) ∈ O(n logn).
To derive the upper bounds on the complexity of the permutation opera-

tor, we use a circuit Σ sorting n elements with complexity O(n logn) provided
by [2]. Such a circuit consists of comparator gates that order a pair of inputs.

Theorem 2.

(i) There exists an antichain Π such that L(Pq,Π) = O(qn logn).
(ii) L(Pq,Π1

) = O(qn logn+ n2).

Proof. A set Π can be specified following the circuit Σ. Assign to any
permutation π a linear order xπ(0) > xπ(1) > . . . > xπ(n−1) on the set of
inputs of Σ (in general, we do not consider these inputs boolean). Let Σ
receive inputs ordered in correspondence to a given permutation π. Assign
to each comparator e a boolean parameter ye whose value is determined by
the result of the comparison. Let the doubling of the vector of parameters
ye, e ∈ Σ, encode a permutation π.

Now, we transform the circuit Σ to a monotone circuit for Pq,Π(X, Y),
replacing any comparator e receiving vector inputs a, b with a subcircuit
that evaluates vectors aye ∨ bye and aye ∨ bye.

Let us prove (ii). First, recode Y from Π1 to Π0. To do this, one simply
needs to compute positions y′0, . . . , y

′
n−1 of 1s in the columns of the matrix Y .

The position of 1 in a weight-1 column may be calculated by a trivial circuit
of linear complexity. Therefore, the complexity of the recoding is O(n2).

Next, arrange the inputs xi in accordance to the ordering of numbers y′i
with the use of the circuit Σ. At each node of the obtained circuit two y′i
inputs are compared and, depending on the result of the comparison, the
order of the vectors xi accompanied by the numbers y′i is determined. The
complexity of comparison is linear, so the complexity of the subcircuit at
each node is O(q + logn).

Lower complexity bounds. The proof of the following theorem closely
follows the proof of the main result in [3].

Theorem 3. For any choice of antichain A of cardinality n the following

inequality holds: L(Sq,A) ≥ qn log2 n−O(qn).

Proof. Essentially, it suffices to consider the case q = 1. Let S be a monotone
circuit of complexity L that computes S1,A(X, Y).

4

a) First, note that for any assignment Y = αk for each i, the circuit
S contains a path connecting the input xi and the output si+k mod n, and
passing exclusively through the gates whose outputs return the function xi.

Indeed, si+k mod n(X,αk) = xi by definition. It remains to check that if
xi = f ∨ g or xi = fg, where f and g are monotone functions, then either
f = xi or g = xi. From xi = f ∨ g it follows that f ≤ xi and g ≤ xi. Assume
that f 6= xi and g 6= xi. It means that f = g = 0 under the assignment
xi = 1, xj = 0 for all j 6= i. But then f ∨ g = 0 6= xi. A contradiction. The
case xi = fg follows by a dual argument.

So, moving from an output si+k mod n towards the inputs of the circuit,
for any gate, we can select an appropriate input computing the function xi.
Finally, we obtain the desired path.

b) Denote the path providing by the above argument by pi,k. Let χ(e)
stand for the number of paths pi,k, 0 ≤ i, k < n, passing through the gate e
in the circuit S. Note that χ(e) ≤ n for all e ∈ S. Indeed, any assignment
Y = αk uniquely defines the function of variables X computed at the output
of any gate e. Thus, e does not belong to two different paths pi,k and pj,k.
Consequently,

∑

e∈S

χ(e) ≤ Ln. (1)

c) Let us estimate the sum
∑

e∈S χ(e) in another way. Denote by χ(e, j)
the number of paths pi,k passing through e to the output sj . By construction,
∑

j χ(e, j) = χ(e).
Consider the subcircuit Sj obtained by combining all n paths pi,k leading

to the output sj , i.e. satisfying the condition i+ k = j mod n. By construc-
tion, Sj is a connected binary1 directed graph with n inputs and one output.
We manage to bound

∑

e∈Sj
χ(e, j) following a simple argument from [6]2.

Due to the binarity property, the subcircuit Sj has an input at a distance
of at least log2 n edges from the output. In other words, some path making up
Sj contains at least log2 n gates. Exclude this path and consider a subcircuit
obtained by combining the remaining n− 1 paths. Then, it contains a path
of length at least log2(n − 1). We proceed this way until there is no path
remained. The argument leads to the bound

∑

e∈Sj

χ(e, j) ≥ log2 n! = n log2 n−O(n), (2)

1Any vertex receives at most two incoming edges.
2In [6], the argument was used to bound the monotone complexity of the boolean

sorting operator, see also [12].

5

following by

∑

e∈S

χ(e) =
∑

j

∑

e∈Sj

χ(e, j) ≥ n2 log2 n−O(n2). (3)

Putting together (1) and (3), we establish the inequality L ≥ n log2 n−O(n).
d) For q > 1, we consider separately the components of the input and

output vectors at the same positions. This results in q groups of paths pi,j.
The inequality (1) remains valid, and the inequality (2) holds for any of qn
outputs. Thus, the required bound finally follows.

Since a permutation operator is a more completely defined shift operator,
as a corollary we establish L(Pq,Π) ≥ qn log2 n− O(qn) for any Π.

The research is supported by RFBR grant, project no. 19-01-00294a.

References

[1] Afshani P., Freksen C., Kamma L., Larsen K. G. Lower bounds for
multiplication via network coding. arXiv:1902.10935.

[2] Ajtai M., Komlós J., Szemerédi E. Sorting in c logn parallel steps. Com-
binatorica. 1983. 3(1), 1–19.

[3] Chashkin A. V. On the complexity of a cyclic shift of a set of real num-
bers. Discrete Analysis and Operations Research. Ser. 1. 2006. 13(4),
89–92 (in Russian). [Eng. translation in J. Applied and Industrial Math.
2007. 1(2), 175–177.]

[4] Grinchuk M. I., Sergeev I. S. Thin circulant matrices and lower bounds
on the complexity of some Boolean operators. Discrete Analysis and
Operations Research. 2011. 18(5), 38–53 (in Russian). [Eng. translation
in arXiv:1701.08557.]

[5] Harvey D., van der Hoeven J. Integer multiplication in time O(n logn).
Tech. report no. 02070778, HAL, 2019.

[6] Lamagna E. A., Savage J. E. Combinational complexity of some mono-
tone functions. Proc. 15th IEEE Symp. on Switching and Automata
Theory. New Orleans, 1974, 140–144.

[7] Lamagna E. A. The complexity of monotone functions. Ph.D. thesis.
Brown Univ., 1975.

6

http://arxiv.org/abs/1902.10935
http://arxiv.org/abs/1701.08557

[8] Lamagna E. A. The complexity of monotone networks for certain bilinear
forms, routing problems, sorting, and merging. IEEE Trans. on Comp.
1979. 28, 773–782.

[9] Mehlhorn K. On the complexity of monotone realizations of matrix mul-
tiplication. Univ. Saarlandes, Tech. report 74–11, 1974.

[10] Paterson M. S. Complexity of monotone networks for Boolean matrix
product. Theor. Comput. Sci. 1975. 1, 13–20.

[11] Pippenger N., Valiant L. G. Shifting graphs and their applications. J.
ACM. 1976. 23(3), 423–432.

[12] Wegener I. The complexity of Boolean functions. Stuttgart: Wiley–
Teubner, 1987.

7

