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Notes on the complexity of coverings for

Kronecker powers of symmetric matrices

Igor S. Sergeev∗

Abstract

In the present note, we study a new method of constructing effi-
cient coverings for Kronecker powers of matrices, recently proposed by
J. Alman, Y. Guan, A. Padaki [1]. We provide an alternative proof for
the case of symmetric matrices in a stronger form. As a consequence,
the previously known upper bound on the depth-2 additive complex-
ity of the boolean N × N Kneser-Sierpinski matrices is improved to
O(N1.251). This work can be viewed as a supplement to [3].

1 Introduction

Let us recall necessary concepts. See [3] for a more detailed introduction to
the subject.

A rectangle of size a × b is an all-1s matrix with a rows and b columns.
Further, depending on the context, sometimes under rectangle we will un-
derstand a rank-1 matrix, i.e. consisting of an all-1s submatrix and all 0s in
other entries.

We define the complexity1 of an a× b rectangle R as the sum of lengths of
its two sides, w(R) = a+b. We introduce the characteristic of the narrowness
of a rectangle as the ratio of the lengths of its larger and smaller sides,
ρ(R) = max(a, b)

min(a, b)
. The spectral weight of a rectangle is defined as σ(R) =

√
ab.

A set F = {R1, . . . , Rk} of rectangles is a covering of a boolean matrix A,
if

A = R1 + . . .+Rk. (1)

(Here under Ri we mean rank-1 matrices.) If the operation “+” in (1) is an
integer addition, then F is called SUM-covering. If “+” is a disjunction, then

∗e-mail: isserg@gmail.com
1In [3], we used a term weight instead. Here we substitute it with complexity to avoid

confusing with the spectral weight of a rectangle.
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F is called OR-covering. In the case when “+” is a mod 2 addition, then we
have an XOR-covering.

The complexity of a covering F is defined as w(F ) = w(R1)+ . . .+w(Rk),
and the spectral weight as σ(F ) = σ(R1) + . . . + σ(Rk). The L-complexity

of a matrix A is defined for L ∈ {SUM,OR,XOR} as the minimal complexity
of its L-covering, denoted by L2(A) (it means the complexity of computation
of A by depth-2 linear circuits of the corresponding type).

◮ These notions may be extended to the case of matrices over an arbitrary
semiring S. A rectangle over S is a matrix (c1, . . . , ca)

T · (d1, . . . , db), where
ci, dj ∈ S \ {0}. A covering of a matrix is conditioned by

A = e1R1 + . . .+ ekRk, ei ∈ S.

The results presented below may be applied also to the analogously defined mea-

sure of complexity of computation of matrices by algebraic linear circuits of

depth 2. ◭

Let σ(A) denote the minimal spectral weight of a matrix A. Since w(R) ≥
2σ(R) for any rectangle R, spectral weight serves as a simple lower bound
for complexity2: L2(A) � σ(A).

A convenient property of the spectral weight is its multiplicativity with
respect to the Kronecker product. Recall that the Kronecker product of
boolean matrices A, B is a matrix A ⊗ B obtained by replacing 1-entries
of A by copies of B, and 0-entries by all-0s matrices of the same size.

Note that if F and G are coverings of matrices A and B, then F ⊗
G is a covering3 of A ⊗ B, and σ(F ⊗ G) = σ(F )σ(G). In particular, if
we construct a covering of a matrix A⊗n (a Kronecker power of A) by the
product-of-coverings method above using appropriate coverings of A, then
the complexity of a resulting covering H satisfies w(H) � σ(H) � σn(A).

In [1], the authors actually pose a question: can we obtain upper bounds
like L2(A

⊗n) � σn+o(n)(A) or at least L2(A
⊗n) � σn+o(n)(F ) for some appro-

priate coverings F of a matrix A. In general, it is not possible, just consider

an example A =

[
1 1
0 0

]

.

A general obstacle for the desired bounds is the growing narrowness of
the covering rectangles. Note that the complexity and the spectral weight of
a rectangle R are related as4 w(R) ≍

√

ρ(R)σ(R). Nevertheless, under some
conditions, the authors of [1] were able to overcome the indicated obstacle

2Here and below, symbols ≍, ≺, � denote the equality, strict and non-strict inequalities
on the order of growth.

3The Kronecker product of sets of matrices is F ⊗G = {R⊗R′ | R ∈ F, R′ ∈ G}.
4To be precise, w(R) =

(√

ρ(R) +
√

1/ρ(R)
)

σ(R).
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and to derive the desired bounds. The first situation is when the covering
F satisfies some asymmetry criteria, the second one is when the matrix A is
symmetric, and the covering F is one-sided (it means that all rectangles are
stretched in the same direction).

Perhaps, the most challenging object (among boolean matrices) to apply
the theory are the Kneser–Sierpinski (or disjointness) matrices. Recall that
the boolean N × N Kneser–Sierpinski matrix DN is defined for N = 2n as
follows. Rows and columns of DN are labeled by distinct subsets u ∈ [n], and
D[u, v] = 1 iff u ∩ v = ∅. A matrix DN also may be viewed as a Kronecker
product

DN = D⊗n
2 = D2 ⊗ . . .⊗D2

︸ ︷︷ ︸

n

, D2 =

[
1 1
1 0

]

. (2)

The problem of complexity of OR-coverings for DN was almost closed
in [2]. There was established that

N1.16 ≺ OR2(DN) ≺ N1.17

(the lower bound is from [3]). Moreover, the authors of [2] constructed a
covering of almost minimal complexity, up to a factor of order (logN)O(1).

The question about additive (SUM) complexity of matrices is less clear.
In [3], we propose a simple way to show that

SUM2(DN) � σn(D2) =
(√

2 + 1
)n

≺ N1.272

relying on a trivial (and optimal) decomposition of the matrix D2 into rect-
angles of size 1 × 1 and 1 × 2 (or 2 × 1). This approach was nontrivially
generalized in [1]. Due to limitations inherent in the analysis of the proposed
method, the efficient implementation of the Kneser–Sierpinski matrices is
justified only with the basic coverings of matrices D4 and D8. In the latter
case, the obtained bound [1] is

SUM2(DN) � σn/3+o(n)(D8) =
(√

8 +
√
7 + 3

√
3 + 3

)n/3+o(n)

≺ N1.258.

In the present note, we describe a version of this method for the (most
interesting) case of symmetric matrices. The limits of applicability of
the method are (comparatively) extended, and a more elementary proof is
given. As a consequence, an upper bound for the complexity of the Kneser–
Sierpinski matrices is reduced to SUM2(DN) ≺ N1.251.

Note that the question about existence of substantially more efficient
XOR-coverings for matrices DN is still open.
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2 The synthesis method

In this section, we provide a general method for constructing a covering
of a symmetric matrix A⊗n. The method is essentially equivalent to the
method [1]. By the way, we will follow an illustrating example where a non-
trivial covering of DN is obtained from coverings of the matrix D4. This
example doesn’t require the method in its full generality.

Assume there exist two coverings of a symmetric matrix A, or to be
precise, two pairs of coverings, if we count transposed ones. The first covering
F (F T ) is supposed to be efficient in the terms of spectral weight. The second
covering G is one-sided: the longest sides of all its non-square rectangles are
parallel. Coverings G/GT serve to compensate an imbalance caused by the
use of F -type coverings.

◮ Fig. 1 shows appropriate coverings of D4. The covering F2 (on the left) has

optimal spectral weight σ(F2) = 4+
√
3. The covering G2 (on the right) has good

correcting qualities. Its spectral weight is slightly higher, σ(G2) = 3 + 2
√
2. ◭
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Figure 1: Weight-minimal and compensating coverings of D4

Let H be a covering of a matrix B. Then we can build a covering of a
matrix A⊗ B in the form {Fi ⊗ Ri | Ri ∈ H}, where Fi are some coverings
of A. This way we sequentially obtain coverings for matrices A,A⊗2, A⊗3, . . .
In the main process, we choose Fi ∈ {F, F T}. Precisely, we transform an
a× b rectangle R into F ⊗R, if a ≤ b, and into F T ⊗ R, otherwise.

Consider a covering F = {R1, . . . , Rs} consisting of ai × bi rectangles Ri.
The characteristic function of F is defined as

χF (x) = σ(R1)

(
a1
b1

)x

+ . . .+ σ(Rs)

(
as
bs

)x

− σ(F ). (3)

As follows from the definition, χF (0) = 0. We call a covering F compact,
if χF (x) takes negative values on some negative arguments5. For a com-

5It is a weak analogue of imbalanced covering from [1].
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pact covering F , let λF denote the minimal real root of χF in whose right
semineighbourhood the function is negative6.

Note that the condition χ′
F (0) =

∑

i σ(Ri) ln(ai/bi) > 0 is sufficient for F
to be compact.

So, we require the compactness of a covering F for our algorithm of
computation of a Kronecker power of a matrix A.

◮ The covering F2 of D4 is compact. Its characteristic function is χF2(x) =

2 · 4x +
√
3 · 3−x − 2−

√
3, and the minimal root is λF2 ≈ −0.305. ◭

For compensation, we will use a compact one-sided covering G consisting
of a′i × b′i rectangles R′

i satisfying a′i ≥ b′i. The quality of such covering is
characterized by the coefficient

µG =
1

σ(G)

∑

R∈G

σ(R)
√

ρ(R)
=

1

σ(G)

∑

i

b′i.

For x > 1, define the function

πG(x) =
1

σ(G)

∑

R∈G
σ(R) · x−⌊logx ρ(R)⌋/2. (4)

It easily follows from the definition that πG(x) ≥ µG, and πG(x) → µG as
x → 1.

◮ For the covering G2, we have µG2 = 4
3+2

√
2
. ◭

Theorem 1. Let F be a compact L-covering, and G be a compact one-sided

L-covering of a symmetric r×r matrix A, and σ(G) ≥ σ(F ). If the condition

σ(G)

σ(F )
< µ2λF

G (5)

is satisfied, then for N = rn,

L2(A
⊗n) � N logr σ(F ).

◮ The matrix D4 and its coverings F2, G2 satisfy the conditions of the theorem,

since λF2 < −0.3 and µG2 =
4

3+2
√
2
. Hence, SUM2(DN ) � N log4(4+

√
3) ≺ N1.26. ◭

6The compactness of a covering implies that bi < ai for some i. Then, λF is correctly
defined since χF (x) → +∞ as x → −∞, and any exponential sum of the form (3) has a
finite number of real zeros, see e.g. [4].
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Proof. The proof strategy is the following. First, we analyze the evolution of
rectangle sizes after multiple application of type-F coverings. Then, do the
same for type-G coverings. Finally, we propose an appropriate combination
of these two types of coverings.

I. By compactness of the covering F , for some (small enough) δ, ǫ > 0,
and λ = λF + δ such that χF (λ) < −ǫ, the inequality (5) holds true after
replacing λF by λ. Let us check that for all small enough τ > 1,

σ(R1)τ
λ⌊logτ (a1/b1)⌋ + . . .+ σ(Rs)τ

λ⌊logτ (as/bs)⌋ ≤ σ(F ). (6)

Indeed, the left side of (6) doesn’t exceed

τ−λ(χF (λ) + σ(F )) < τ−λ(σ(F )− ǫ),

thus to satisfy (6), it is sufficient to require τ−λ ≤ 1 + ǫ
σ(F )

. Therefore, any

choice from the interval 1 < τ ≤
(

1 + ǫ
σ(F )

)−1/λ

is suitable.

We assign to the parameter τ the meaning of a discretization step of
changing the ratios between the rectangle’s sides in the classification of rect-
angles. The final choice of τ will be decided later.

Let us introduce a classification on the set R of all rectangles depending
on the ratio between the longer and the shorter sides. Set R =

⋃

k≥0 Ik,
where I0 contains rectangles R satisfying ρ(R) ≤ r, and for k ≥ 1, the set Ik
contains rectangles with ratios r · τk−1 < ρ(R) ≤ r · τk. Recall that r is the
size of the matrix A.

◮ In the example with the covering F2, we set τ = 4. Then, I0 = {R | ρ(R) ≤ 4},
and Ik = {R | 4k < ρ(R) ≤ 4k+1} for k > 0. The function χF2(x) is negative in

the interval (λF2 , 0), thus we are quite free in choosing λ. The specific value will

be determined later. ◭

When performing compositions with coverings of A, we will track the
distribution of the spectral weight of rectangles among the sets Ik. In doing
so, we will be guided by the principle of error to the right. It means that: (a)
we allow a rectangle to be placed into a set Ik with a higher index k, but not
otherwise, and (b) we estimate the distribution of the weight of a covering
of A⊗R only on the basis of information about assigning R to a certain set
Ik. As a consequence, the estimated distribution of a covering obtained as a
result of a series of iterations (with possible errors to the right) may differ
from the true distribution only in that some rectangles appear in sets Ik with
higher indices.

The redistribution of the spectral weight of a set of rectangles under the
composition with type-F coverings (with possible errors to the right) may be

6



estimated from the coefficients of the Laurent polynomial

PF (x) =
∑

i∈Z
βix

i =
σ(R1)

σ(F )
x⌊logτ (a1/b1)⌋ + . . .+

σ(Rs)

σ(F )
x⌊logτ (as/bs)⌋ (7)

obtained from (6). It means that for R ∈ Im, the weight of rectangles from
(F/F T )⊗R is distributed so that the portion βk of the total weight belongs
to Im−k in the case m− k > 0, and to I0, otherwise.

◮ For the covering F2, and τ = 4, we obtain PF2(x) = 2x+2+
√
3x−1

4+
√
3

. The corre-

sponding redistribution diagram is shown on Fig. 2. ◭

r r r r❳❳③ ❳❳③ ❳❳③✘✘ ✘✘ ✘✘ ❳❳③ ❳❳③✘✘ ✘✘❳❳② ❳❳② ❳❳②✘✘ ✘✘ ✘✘ ❳❳② ❳❳②✘✘ ✘✘
✂✂✌ ✂✂✌ ✂✂✌ ✂✂✌❇❇ ❇❇ ❇❇ ❇❇

I0 I1 I2 Ik2/ω 2/ω 2/ω 2/ω 2/ω

√
3/ω

√
3/ω

√
3/ω

√
3/ω

√
3/ω

2/ω 2/ω 2/ω4/ω

. . . . . .

Figure 2: Diagram of spectral weight redistribution under the action of the
composition with the covering F2/F

T
2 (here ω = σ(F2) = 4 +

√
3)

Let pk(t) stand for the fraction of the spectral weight of the constructed
covering of A⊗t associated with the set Ik. In the beginning, one has p0(0) =
1, and pk(0) = 0 for all k > 0. Set ν = τλ. By (6), PF (ν) ≤ 1. Denote
d = deg PF = maxβi>0 |i|.

We are going to show that the distribution {p∗k(t)} with p∗k(t) = νk for
k ≤ dt, and p∗k(t) = 0 for all k > dt, is a majorant for {pk(t)}, meaning that
the values p∗k(t) upper bound the components of some distribution {p′k(t)}
obtained from {pk(t)} by a partial shift of the distribution to the right: from
components with smaller indices to components with greater indices7.

Obviously, in the moment t = 0, the majorization condition is fulfilled.
Let us prove the induction step: apply the composition with F/F T to a
set of rectangles with the distribution {p∗k(t)}. Rectangles from Ik, where
k > d(t + 1), do not appear here. For 0 < k ≤ d(t + 1), the weight of
rectangles from Ik may be upper bounded as

∑

i∈Z
βiν

k+i = νkPF (ν) ≤ νk. (8)

In the case k = 0, this bound is, generally speaking, wrong, since an essential
portion of the total weight remains in I0.

7Though the distribution {pk(t)} is probabilistic, we don’t require the same from the
majorant {p∗k(t)} allowing the sum of its components be greater than 1. Our goal is just
deriving upper bounds on pk(t).
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However, if I0 receives exceptional weight, then other sets I1, I2, . . . (in
general) suffer from the weight deficit, as follows from (8). Therefore, we can
redistribute the exceptional weight from I0 to other sets, in accordance to
the error-to-the-right principle. It is possible, since the composition preserves
the conditional total weight, i.e. the sum of distribution components.

As a consequence, after t steps of composition with coverings F/F T , any
set Ik contains a portion at most νk of the total weight σt(F ) of the resulting
covering of A⊗t, up to some errors to the right.

◮ In our example with D4, we may choose ν =
√
3/2 (it’s a root of the polynomial

PF2(x)). The choice allows us to avoid a redistribution of the weight from I0. The

distribution {1, ν, ν2, . . . , νk, . . .} is stationary for the diagram on Fig. 2. Implicitly,

we also chose λ = log4 ν > λF2 . ◭

II. The redistribution of the spectral weight of a set of rectangles under
the composition with type-G coverings (again, with possible errors to the
right) may be described by the polynomial

PG(x) = αlx
l + . . .+ α1x+ α0 =

1

σ(G)

∑

R∈G
σ(R)x⌊logτ ρ(R)⌋.

For R ∈ Im, the spectral weight of rectangles from (G/GT )⊗R is distributed
so that the portion αk belongs to Im−k in the case k < m, and to I0, otherwise.

◮ Actually, for the covering G2, and τ = 4, one can assign (assuming some errors

to the right) PG2(x) = (x + 2)/3. The weight redistribution under the action of

coverings G2/G
T
2 is shown by the diagram on Fig. 3. ◭

r r r r✛ ✛ ✛ ✛ ✛✂✂✌ ✂✂✌ ✂✂✌ ✂✂✌❇❇ ❇❇ ❇❇ ❇❇

I0 I1 I2 Ik
2/3 2/3 2/3 2/3 2/3

1/3 1/3 1/31

. . . . . .

Figure 3: Diagram of spectral weight redistribution under the action of the
composition with the covering G2/G

T
2

Assuming that the initial weight distribution has a form qm(0) = 1,
qi(0) = 0 for all i 6= m, that is, all rectangles are located in Im, then af-
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ter t steps of compositions with G-type coverings, we obtain a distribution8

qm−k(t) =
∑

k1+...+kl≤t

k1+2k2+...+lkl=k

Ck1,...,kl
t αk1

1 · . . . · αkl
l α

t−(k1+...+kl)
0 (9)

for 0 ≤ k < m. For a component associated with I0, we use a trivial estimate
q0(t) ≤ 1. By consideration, if αi = 0, then ki = 0, and the corresponding
factor αki

i in (9) should be replaced by 1. This remark will be implied in
further calculations. The total weight of the (considered part of the) covering
under construction will increase σt(G) times in t steps.

Note that PG(1/
√
τ ) = πG(τ), see (4). Recall that πG(x) → µG as x → 1.

Our final choice of τ is such that the inequality (5) remains valid after re-
placing λF by λ, and µG by πG(τ) (τ should be small enough).

Observe that our choice implies α0 6= 1, since otherwise πG(τ) ≡ 1, and
the inequality (5) cannot be satisfied. On the other hand, µG < 1 due to the
compactness of G: there should exist rectangles R ∈ G with ρ(R) > 1.

III. Now we are ready to state the synthesis algorithm, namely the rule
of combination of the coverings F and G. Choose γ satisfying the condition

− 1

λ
logτ

σ(G)

σ(F )
< γ ≤ −2 logτ πG(τ). (10)

Such γ does exist, since the inequality between the left and the right sides
of (10) is equivalent to (5), where λF is replaced by λ, and µG is replaced by
πG(τ) (just apply a base-τ logarithm to (5) and divide by λ).

To construct the required covering of A⊗n, we assign two sets of rectangles,
F and G.

(i) Before the start of the algorithm, the set G is empty, and the set F
contains a 1× 1 rectangle (a trivial covering of the matrix A⊗0).

(ii) Then, perform n similar steps. A step t does the following:
— with the use of a suitable covering F or F T , transform any rectangle

R ∈ F into (F/F T )⊗ R;
— with the use of a suitable covering G or GT , transform any rectangle

R ∈ G into (G/GT )⊗R;
— relocate from F to G all rectangles R ∈ F belonging to the sets Im

with m ≥ γ(n− t).
(iii) By construction, after any t steps, the set F ∪ G is a covering of

the matrix A⊗t. In the end of the algorithm, the set F is empty, and G is
a covering of A⊗n.

8Here Ck1,...,kl

t stands for the multinomial coefficient representing the number of ways
to select from t elements l groups, with ki elements in i-th group.
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Essentially, this is the algorithm [1]. The parameter γ controls the switch-
ing between the two stages of the algorithm. Next, we are going to prove
that G has the desired complexity.

For any m, we have to relocate rectangles belonging to Im∩F on at most
d
γ
+ 2 = O(1) (consecutive) steps, namely while m− d < γ(n− t) ≤ m, and

one more time, when m− d ≥ γ(n− t). On the subsequent steps, rectangles
in Im don’t appear.

Let us turn to complexity bounds. The complexity of a rectangle R ∈ Im
in relation to its spectral weight is estimated to be higher, when m is greater.
Recall that w(R) ≍

√

ρ(R)σ(R). Therefore, an erroneous assignment of a
rectangle to a set Im with a higher index m (an error to the right) leads to
overestimation of the complexity.

The complexity of the part of the covering G derived from rectangles that
belonged to Im ∩ F at the moment of relocation is bounded from above as

Lm � σn(F )νm

(
σ(G)

σ(F )

)m
γ

·

·



1 +
∑

k1+...+kl≤m
γ

Ck1,...,kl
m
γ

αk1
1 · . . . · αkl

l α
m
γ
−(k1+...+kl)

0 τ
m−(k1+2k2+...+lkl)

2



 . (11)

Here the first factor σn(F ) is the expected weight of the entire covering
under the (optimistic) assumption that we apply only F -type coverings. The
second factor νm is the upper bound for the weight portion of the covering F
associated with Im at the moment of relocation. The third factor reflects
the weight increase caused by the application of G-type coverings instead
of F/F T on the last m/γ − O(1) steps of the algorithm. In brackets, an
additional factor taking into account the final distribution of the spectral
weight is written. Namely, the term 1 represents the complexity of rectangles
from I0, and under the sum are written the products of the partial weight
portions of rectangles from Im−k with k = k1 + 2k2 + . . . + lkl (provided

by (9)), and the estimate τ
m−k

2 of the ratio between the complexity and the
spectral weight of rectangles from Im−k. The summands with m ≤ k are
excess.

Multinomial coefficients satisfy the standard inequality9

Ck1,...,kl
n ≤ 2nH(k1/n,...,kl/n), where

H(x1, . . . , xl) = −
l∑

i=0

xi log2 xi, x0 = 1−
l∑

i=1

xi,

9Easily follows by induction on l from the well-known relation Ck
n ≤ 2H(k/n).
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is the binary entropy function defined on the l-dimensional simplex10 R
l
+ ∩

{x1 + . . .+ xl ≤ 1}.
It is easy to check that for any ci > 0,

H(x1, . . . , xl) +
l∑

i=1

xi log2 ci ≤ log2

(

1 +
l∑

i=1

ci

)

. (12)

Indeed, it immediately follows from the variant of the Hölder’s inequality

l∏

i=0

abii ≤
l∑

i=0

aibi

that holds for ai, bi > 0, and
∑

bi = 1, see e.g. [5, Ch. V] (just assign bi = xi,
ai = ci/xi, where c0 = 1, and take a logarithm; in the case xi = 0 for some i,
evaluate the limit).

By setting ki =
xim
γ

for i = 1, . . . , l, and applying (12), we obtain

log2

(

Ck1,...,kl
m
γ

αk1
1 · . . . · αkl

l α
m
γ
−(k1+...+kl)

0 τ
m−(k1+2k2+...+lkl)

2

)

≤

m

γ

(

H(x1, . . . , xl) +
l∑

i=1

xi log2
αi

α0τ i/2
+ log2

(
α0τ

γ/2
)

)

≤

m

γ
·
(

log2

(
l∑

i=0

αi

τ i/2

)

+ log2
(
τγ/2

)

)

.

Thus, we continue (11) as

Lm � σn(F )
(

C
m
γ

0 +mlC
m
γ

1

)

, where

C0 =
σ(G)νγ

σ(F )
, C1 = C0 · PG

(
1/
√
τ
)
· τγ/2.

Here the power of C0 corresponds to the contribution of rectangles from I0,
and the power of C1 to the contribution of the remaining rectangles.

Let us check that C1 ≤ C0 < 1. Indeed, in the case σ(G) = σ(F ), the
inequality C0 = νγ < 1 holds trivially. In the other case σ(G) > σ(F ), from
the left part of (10), it follows that

C0 =
σ(G)

σ(F )
τλγ < 1.

10On the boundary, the function is defined by continuity.
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Further, the right part of (10) implies τγ/2 ≤ 1/πG(τ), hence C1 ≤ C0.

◮ For our example A = D4, choose γ = 1/5. Then C0 < 0.99, and C1 < 0.95. ◭

Finally, we conclude

L2(A
⊗n) � w(G) =

∑

m≥0

Lm � σn(F )
∑

m≥0

(

C
m
γ

0 +mlC
m
γ

1

)

≍ σn(F ).
�

As a reserve for improving the method, one can suggest a more subtle
combination of the two types of coverings involving reverse relocations of
rectangles from G to F .

3 Coverings of the Kneser–Sierpinski matri-

ces

For a matrix Dr, r = 2t, we propose a covering Ft consisting solely of rectan-
gles of width 1. It generalizes the examples of Fig. 1 (for t = 2), and from [1]
(for t = 3).

We exploit a simple gradient-fashion approach. First, put into Ft a col-
umn labeled by ∅, then add a row labeled by ∅ from the remaining part of
the matrix. Next, we sequentially extract ones from all columns, and then
from all rows labeled by the size-1 subsets of [t]. Then, we do the same with
columns and rows labeled by the size-2 subsets, and go on until we reach
t/2-size labels. At this point, all ones in Dr are covered.

Let s(m, k) denote the binomial sum

s(m, k) = Ck
m + Ck+1

m + . . .+ Cm
m .

By construction, any rectangle corresponding to a column labeled by a
size-k subset has height s(t − k, k), and a rectangle corresponding to a row
labeled by a size-k subset has length s(t− k, k + 1). Hence,

σ(Ft) =

t/2
∑

k=0

Ck
t

(√

s(t− k, k) +
√

s(t− k, k + 1)
)

.

Direct calculation shows that the quantity logr σ(Ft) attains its minimum
1.2502... when t = 18, and, as easy to verify, it tends to the limit 1.259... as
t → ∞.

As a correcting covering Gt, we take a covering of all columns of Dr by
individual rectangles, as shown on Fig. 1. Easy to see that σ(Gt) = (

√
2+1)t,

and µGt
=
(

2√
2+1

)t

.

12



With the use of coverings Ft, Gt, it is possible to satisfy the conditions of
Theorem 1 only for t ≤ 15. It can be directly verified that σ(F15) < 442412,
and λF15 < −0.04.

Corollary 1. SUM2(DN) � N log215 σ(F15) ≺ N1.251.

It’s a kind of surprise, that coverings of matrices Dr by width-1 rectangles
appear so efficient for the iterative procedure. However, they are not optimal
in terms of spectral weight. At least starting from t = 7, one can construct
better coverings via uniting common parts of columns or rows.

The author thanks Stasys Jukna for helpful comments.
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