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An explicit finite Bk-sequence

Igor S. Sergeev∗

Abstract

For any n and k, we provide an explicit (that is, computable in
polynomial time) example of integer Bk-sequence of size n consisting
of elements bounded by n

k+o(k).

dedicated to the memory of Vladimir Evgen’evich Alekseev (1943–2020)

Introduction. Recall that a set B in some commutative group is a
Bk-sequence if all k-element sums in B are different, that is, the equality

a1 + . . .+ ak = b1 + . . .+ bk, ai, bj ∈ B,

holds iff the multisets of summands coincide: {a1, . . . , ak} = {b1, . . . , bk}.
B2-sequences are also known as Sidon sequences. Very often, the notion

of Sidon sequence stands as a synonym for Bk-sequence in general.
Easy to check, if ZN contains a size-n Bk-sequence, then N ≥

(

n+k−1
k

)

. We
want to consider only satisfactorily dense size-n Bk-sequences, say, for N =
(n + k)O(k), avoiding trivial examples like {k, k2, . . . kn} with exponentially
large elements. Also, we interest in explicit constructions, that is, those that
can be computed in polynomial time with respect to the binary size1.

History. The most famous explicit examples of the optimal density in-
teger Sidon sequences are: a size-(q+1) set in Zq2+q+1 due to J. Singer [9], a
size-q set in Zq2−1 due to R. C. Bose [2], and a size-(p−1) set in Zp2−p due to
V. E. Alekseev [1]. Here p and q stay for any prime number and prime power,
respectively. The latter set is attributed to I. Ruzsa [7] almost everywhere.

The classical example of a nearly dense-optimal Bk-sequence was pro-
posed by Bose and S. Chowla in [3]. Let us recall this construction that
generalizes [2]. Let GF (q) = {α1, . . . , αq}, and x be a primitive element in
GF (qk). It can be easily verified that the set

D[q, k] = {di | x
di = x+ αi, 1 ≤ di < qk}

∗e-mail: isserg@gmail.com
1That is, the length of the binary code representing the elements of the set.
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is a size-q Bk-sequence in Zqk−1.
There are known also a number of similar constructions including another

Bk-sequence from [3] generalizing [9]. H. Derksen [4] proposed even more
general constructions considering quotient polynomial rings GF (q)[x]/(P (x))
instead of pure fields in the examples from [3]. C. A. Gómez Ruiz and
C. A. Trujillo Solarte [5] extended an example [1] to Bk-sequences in Zpk−p.

Discussion. All these examples of Bk-sequences may be considered ex-
plicit only for constant or extremely slowly growing k’s with respect to n,
since they imply computation of discrete logarithms in groups of generally
non-smooth order. Indeed, probabilistic or greedy constructions that we
haven’t mentioned are even less explicit. It looks like we lack easily com-
putable and dense enough examples of Bk-sequences that could be useful in
some specific situations, e.g. for proving explicit lower bounds in computa-
tional complexity [8]. Thus, we intend to close this gap.

We follow the general idea of previous constructions: computing an ad-
ditive numeric Bk-sequence as an image of some simple multiplicative Bk-
sequence from an appropriate group. All we need to make computations
easy is to choose a basic multiplicative group of smooth order. Note that in
doing this, we will partially sacrifice the density.

Construction. Further, p1, p2, . . . denote odd prime numbers written in
growing order. Let r = 1+ ⌈k log pn⌉. The set of odd numbers-residues from
1 to 2r−1 constitutes the multiplicative group Z

∗

2r of the ring Z2r . For r ≥ 3,
this group is a direct product of cyclic groups of orders 2 and 2r−2, namely,
Z
∗

2r
∼= 〈−1〉2〈5〉2r−2 with −1 and 5 being generating elements. Therefore, any

odd number x has a unique representation x ≡ (−1)j · 5h (mod 2r), where
0 ≤ j ≤ 1 and 0 ≤ h < 2r−2. For details, see e.g. [10].

Consider the number set

H [n, k] = {hi | pi ≡ ±5hi (mod 2r), 0 ≤ hi < 2r−2, i = 1, . . . , n}.

Let us check that the given set is a Bk-sequence in Z2r−2 . By the choice of r,
for different tuples of indices 1 ≤ i1 ≤ . . . ≤ ik ≤ n, all numbers ±pi1 · . . . ·pik
are different and do not exceed 2r−1−1 by absolute value. Hence, all residues
5hi1

+ ...+hik (mod 2r) are different, and all sums hi1 + . . . + hik (mod 2r−2)
are different as well.

The set H [n, k] is not as dense as D[q, k] or similar constructions. Still,
its density is satisfactorily in asymptotic sense: 2r−2 < pkn < (2n log(n+2))k

due to the well-known facts about distribution of prime numbers, see e.g. [6].
We are left to confirm explicitness: that the set H [n, k] requires

(n + k)O(1) time to be constructed. First, we need to obtain the list of prime
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numbers. Second, we have to compute discrete logarithms2 log5(±pi) in Z2r .
For the first part, we may use Eratosthenes sieve or any other known algo-
rithm running in time nO(1). Discrete logarithm in the cyclic group of order
2r−2 may be computed trivially by O(r2) elementary arithmetic operations
mostly consisting of squarings. Indeed, we may determine binary digits of
the number a = [ar−3, . . . , a0]2 = log5 x (mod 2r) sequentially as

a0 = log52r−3 x2r−3

, a1 = log52r−3 (5−a0x)2
r−4

, . . . ,

ar−3 = log52r−3

(

5−2r−4ar−4−...−2a1−a0x
)

.

Inner logarithms are performed in an order-2 subgroup with generating ele-
ment 52

r−3

≡ 2r−1+1 (mod 2r) simply by comparing with 1 and 2r−1+1. If
both comparisons fail, then x /∈ 〈5〉2r−2.

Notes. In the above example, we intentionally used as smooth order for
the basic multiplicative group as possible. Instead, we can work in any ring
Zpr with an odd prime p. The multiplicative group Z

∗

pr has order (p− 1)pr−1

and it is cyclic. The case p = 3 is especially attractive, since there we have
2 as a generating element for the multiplicative group. With more care, we
can consider residue rings of some other smooth orders.

The choice of prime numbers for a “factor base” is also changeable. Say,
we can relax the condition of being prime to the condition of being pairwise
prime. Though, this relaxation alone doesn’t allow to substantially increase
the density of the set.

Essentially, the present text in an excerpt from [8].
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