

A note on the depth of optimal fanout-bounded prefix circuits

I. S. Sergeev*

Abstract

It is shown that the minimal depth of an optimal prefix circuit (i.e., a zero-deficiency circuit) on N inputs with fanout bounded by k is $\log_{\alpha_k} N \pm O(1)$, where α_k is the unique positive root of the polynomial $2 + x + x^2 + \dots + x^{k-2} - x^k$. This bound was previously known in the cases $k = 2$ and $k = \infty$.

Introduction

Let (\mathbb{S}, \circ) be a semigroup. The set of functions

$$s_i = x_1 \circ x_2 \circ \dots \circ x_i, \quad 1 \leq i \leq N, \quad (1)$$

is called the system of *prefix sums* of variables x_1, \dots, x_N taking values in \mathbb{S} . Circuits of functional elements over the basis $\{x \circ y, x\}$ that implement the system (1) are called *prefix circuits*. The number N (of circuit inputs) is called the *width* of a circuit. By the *complexity* of a circuit we will (as usual) mean the total number of binary elements “ \circ ” in it. The need for identity elements appears only when the circuit fanout is bounded. The *depth* of a circuit is the maximum number of elements (of both types) in an input-output path.

We consider *universal* prefix circuits that correctly compute sums regardless of the choice of a semigroup \mathbb{S} . It is easy to verify that in a minimal (i.e., not containing elements unconnected to outputs) universal circuit, only interval sums are computed via operations of the form $p_1 \circ p_2$, where $p_1 = x_i \circ x_{i+1} \circ \dots \circ x_j$ and $p_2 = x_{j+1} \circ x_{j+2} \circ \dots \circ x_l$. If a node in the circuit computes the sum $x_i \circ \dots \circ x_j$, then j is called the *index* of this node.

Obviously, all sums s_i can be computed sequentially, with a minimum number of $N - 1$ operations “ \circ ”. The complexity C and the depth D of a prefix circuit of width N are related as $C + D \geq 2N - 2$ [1, 4], so the complexity of parallel prefix circuits cannot be significantly less than $2N$. Prefix circuits for which the equality $C + D = 2N - 2$ holds are called *optimal* or circuits with zero deficiency.

As is known, an optimal prefix circuit of depth D on N inputs (when it exists) has the following structure. Its elements either belong to the *framework*

*e-mail: isserg@gmail.com

tree of depth D , which is the subcircuit computing the sum of all inputs, or are outputs of the circuit. Each of these two sets of elements has cardinality $N - 1$, but D elements of the *principal chain*, i.e., the chain connecting the first input with the last output of the circuit, belong to both sets¹. Therefore, a circuit has complexity $2N - D - 2$. For more details, see, e.g., [5].

Let $D(N, k)$ denote the minimum possible depth of an optimal circuit on N inputs with fanout bounded by k .

It is shown in [5] that

$$D(N, \infty) = d = \log_{\varphi} - O(1) \approx 1.44 \log_2 N - O(1), \quad (2)$$

where Φ_{d+3} is the nearest number from the Fibonacci sequence $\{\Phi_m\}$ to $N + 1$ from above, and $\varphi = \frac{1+\sqrt{5}}{2}$. From [2, 3] it follows that $D(N, 2) = \lfloor \log_2 N \rfloor + \lfloor \log_2(2N/3) \rfloor$. Exact or at least asymptotic closed-form estimates for $D(N, k)$, where $2 < k < \infty$, have apparently not yet been obtained, despite the fact that, for example, in [3] optimal fanout-bounded circuits of extreme width were constructed.

Let α_k denote the unique positive root of the polynomial $P_k(x) = 2 + x + x^2 + \dots + x^{k-2} - x^k$. Further, we will prove

Theorem. $D(N, k) = \log_{\alpha_k} N \pm O(1)$.

It is easy to verify that $\alpha_k \rightarrow \frac{1+\sqrt{5}}{2}$ as $k \rightarrow \infty$, which is consistent with (2). In particular, the theorem implies $D(N, 3) \sim 1.65 \dots \log_2 N$, $D(N, 4) \sim 1.54 \dots \log_2 N$ and already $D(N, 9) \lesssim 1.45 \log_2 N$.

Proof of the theorem

Consider an optimal prefix circuit of depth D with N inputs. Let its principal chain be formed by a sequence of nodes v_0, v_1, \dots, v_D , where v_0 coincides with input x_1 and an arbitrary node v_d is located at depth d .

The nodes of the principal chain naturally partition the circuit into segments. If the sums s_t and s_{t+w} , respectively, are calculated at nodes v_d and v_{d+1} , then the d -th segment includes the inputs and nodes with indices in the interval $[t, t+w]$. The parameter w denotes the segment width. The structure of a segment of an optimal circuit is shown in Fig. 1 (the notation is standard, see, e.g., [3, 5]). There $h = D - d$.

The segment's construction is determined by two trees-subcircuits: a binary tree directed from the inputs x_{t+1}, \dots, x_{t+w} to the root u_d , and a tree consistent with it, directed from the root v_d to the outputs s_t, \dots, s_{t+w-1} . The fanout of the second tree is bounded by k . Tree consistency means that the second tree employs exactly the interval sums calculated by the first tree. In particular, all descendant neighbors of the node v_d receive second inputs strictly from nodes in the chain connecting x_{t+1} and u_d .

¹Moreover, upon transposition, i.e., reversing the direction of the circuit, both sets are mapped into each other.

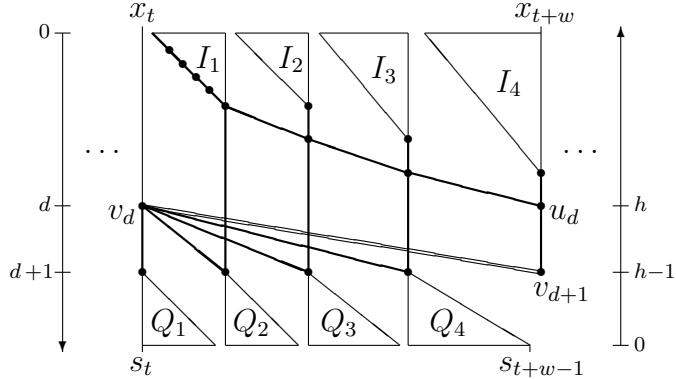


Figure 1: Structure of a segment of an optimal prefix circuit

The structure of one segment is independent of the structure of the other segments. Therefore, the maximum width of a circuit of a given depth and fanout is the sum of the maximum possible widths of the segments.

Let $w_k(d, h)$ denote the maximum width of a pair of consistent trees, the first of which has depth $\leq d$ and the second has depth $\leq h$ and fanout bounded by k . By $w_k(D)$ we denote the maximum width of an optimal depth- D fanout- k circuit. We introduce the notation

$$w_k^*(D) = \sum_{d=0}^D w_k(d, D-d).$$

Note that

$$w_k^*(D-1) \leq w_k(D) \leq w_k^*(D). \quad (3)$$

The upper bound describes the maximum width of circuits in which fanout $k+1$ is allowed as an exception for the nodes v_d of the principal chain. The lower bound describes the width of circuits in which the fanout of nodes v_d is bounded by two. In particular, $w_2(D) = w_2^*(D-1)$.

Claim. *Let $d, h > 0$ and $l = \min\{d, k-1\}$. Then*

$$w_k(d, h) = \sum_{i=1}^{l-1} w_k(d-i, h-1) + 2w_k(d-l, h-1). \quad (4)$$

▷ We continue using Fig. 1 as an illustration. Let it depict a pair of consistent trees I and Q with root nodes u_d and v_d , respectively. The immediate descendants of node v_d determine a partition of the index interval $[t, t+w]$ into subintervals defined by the indices of the nodes of the chain connecting x_{t+1} and u_d , and also a partition of both trees into pairs of consistent subtrees (I_j, Q_j) . Consequently,

$$w_k(d, h) = w_k(d_1, h-1) + \dots + w_k(d_r, h-1), \quad d > d_1 > d_2 > \dots > d_{r-1} \geq d_r. \quad (5)$$

Obviously, for any d, h ,

$$w_k(d, h) \leq w_k(d + 1, h). \quad (6)$$

Let us check that for $d \geq 1$ and any h , we also have

$$w_k(d, h) \leq 2w_k(d - 1, h). \quad (7)$$

The argument is illustrated in Fig. 2. Consider a pair of consistent trees of width $w = w_k(d, h)$, consisting of a binary tree I of depth $\leq d$ and a k -ary tree Q of depth $\leq h$. Let y denote the closest ancestor node of root u of tree I lying on the path from the first input x_1 . Let subtree I_1 , rooted at y , have width τ . Let I_2 denote the subtree of tree I whose leaves are the remaining $w - \tau$ inputs. By the consistency property, the second tree Q contains a node z that is an ancestor of exactly $w - \tau$ higher outputs. Let Q_2 denote the subtree rooted at node z , and Q_1 denote the tree obtained from Q by removing subtree Q_2 .

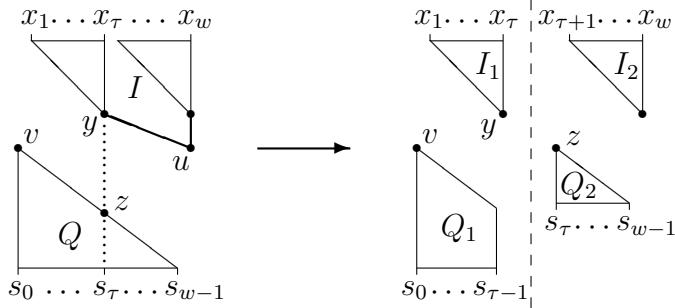


Figure 2: Transformation of a pair of consistent trees

By construction, the pairs of trees (I_1, Q_1) and (I_2, Q_2) are consistent. The total width of the pairs is w . Moreover, the depth of trees I_1, I_2 does not exceed $d - 1$, and the depth of trees Q_1, Q_2 does not exceed h . Hence, (7) is proved.

Now (4) immediately follows from (5) by applying rules (6), (7) and taking into account $r \leq k$ and $d_r \geq 0$. \square

We proceed directly to the proof of the theorem. Let us estimate $w_k^*(D)$. In view of (4), for $D \geq k$ we have

$$w_k^*(D) = w_k(D, 0) + \sum_{i=2}^{k-1} w_k^*(D - i) + 2w_k^*(D - k) + w_k(0, D) + \sum_{i=2}^{k-1} w_k(0, D - i).$$

Since $w(0, h) = w(d, 0) = 1$ for any $d, h \geq 0$, we obtain the recurrence relation

$$w_k^*(D) = \sum_{i=2}^{k-1} w_k^*(D - i) + 2w_k^*(D - k) + k.$$

This relation, given the initial values $w_k^*(0), \dots, w_k^*(k-1)$, is resolved in the standard way as $w_k^*(D) \sim c \cdot \alpha_k^D$, where c is some constant, since α_k has the largest absolute value among the roots of polynomial $P_k(x)$: indeed, the modulus of an arbitrary root x satisfies the inequality

$$|x|^k \leq 2 + |x| + |x|^2 + \dots + |x|^{k-2},$$

whence $|x| \leq \alpha_k$. The assertion of the theorem now follows from (3).

References

- [1] Fich F. E. New bounds for parallel prefix circuits. Proc. 15th STOC (Boston, 1983). NY: ACM, 1983, 100–109.
- [2] Lin Y.-C., Hung L.-L. Straightforward construction of depth-size optimal, parallel prefix circuits with fan-out 2. ACM Trans. on Design Autom. of Electr. Systems. 2009. **14**(1), Art. 15.
- [3] Sheeran M., Parberry I. A new approach to the design of optimal parallel prefix circuits. TR-2006-1, Chalmers Univ. of Technology, 2006.
- [4] Snir M. Depth-size trade-offs for parallel prefix computation. J. Algorithms. 1986. **4**, 185–201.
- [5] Zhu H., Cheng C.-K., Graham R. On the construction of zero-deficiency parallel prefix circuits with minimum depth. ACM Trans. on Design Autom. of Electr. Syst. 2006. **11**(2), 387–409.