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Abstract

It is shown that the minimal depth of an optimal prefix circuit (i.e.,
a zero-deficiency circuit) on N inputs with fanout bounded by k is
logαk

N ±O(1), where αk is the unique positive root of the polynomial
2 + x+ x2 + . . .+ xk−2 − xk. This bound was previously known in the
cases k = 2 and k = ∞.

Introduction

Let (S, ◦) be a semigroup. The set of functions

si = x1 ◦ x2 ◦ . . . ◦ xi, 1 ≤ i ≤ N, (1)

is called the system of prefix sums of variables x1, . . . , xN taking values in S. Cir-
cuits of functional elements over the basis {x◦y, x} that implement the system (1)
are called prefix circuits. The number N (of circuit inputs) is called the width of
a circuit. By the complexity of a circuit we will (as usual) mean the total number
of binary elements “◦” in it. The need for identity elements appears only when
the circuit fanout is bounded. The depth of a circuit is the maximum number of
elements (of both types) in an input-output path.

We consider universal prefix circuits that correctly compute sums regardless
of the choice of a semigroup S. It is easy to verify that in a minimal (i.e., not
containing elements unconnected to outputs) universal circuit, only interval sums
are computed via operations of the form p1 ◦ p2, where p1 = xi ◦ xi+1 ◦ . . . ◦ xj and
p2 = xj+1 ◦ xj+2 ◦ . . . ◦ xl. If a node in the circuit computes the sum xi ◦ . . . ◦ xj,
then j is called the index of this node.

Obviously, all sums si can be computed sequentially, with a minimum number
of N − 1 operations “◦”. The complexity C and the depth D of a prefix circuit
of width N are related as C + D ≥ 2N − 2 [1, 4], so the complexity of parallel
prefix circuits cannot be significantly less than 2N . Prefix circuits for which the
equality C+D = 2N − 2 holds are called optimal or circuits with zero deficiency.

As is known, an optimal prefix circuit of depth D on N inputs (when it
exists) has the following structure. Its elements either belong to the framework
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tree of depth D, which is the subcircuit computing the sum of all inputs, or are
outputs of the circuit. Each of these two sets of elements has cardinality N − 1,
but D elements of the principal chain, i.e., the chain connecting the first input
with the last output of the circuit, belong to both sets1. Therefore, a circuit has
complexity 2N −D − 2. For more details, see, e.g., [5].

Let D(N, k) denote the minimum possible depth of an optimal circuit on
N inputs with fanout bounded by k.

It is shown in [5] that

D(N,∞) = d = logφ −O(1) ≈ 1.44 log2 N −O(1), (2)

where Φd+3 is the nearest number from the Fibonacci sequence {Φm} to N + 1

from above, and φ = 1+
√
5

2
. From [2, 3] it follows that D(N, 2) = ⌊log2 N⌋ +

⌊log2(2N/3)⌋. Exact or at least asymptotic closed-form estimates for D(N, k),
where 2 < k < ∞, have apparently not yet been obtained, despite the fact
that, for example, in [3] optimal fanout-bounded circuits of extreme width were
constructed.

Let αk denote the unique positive root of the polynomial Pk(x) =
2 + x+ x2 + . . .+ xk−2 − xk. Further, we will prove

Theorem. D(N, k) = logαk
N ±O(1).

It is easy to verify that αk → 1+
√
5

2
as k → ∞, which is consistent with (2).

In particular, the theorem implies D(N, 3) ∼ 1.65 . . . · log2 N , D(N, 4) ∼ 1.54 . . . ·
log2 N and already D(N, 9) ≲ 1.45 log2 N .

Proof of the theorem

Consider an optimal prefix circuit of depth D with N inputs. Let its principal
chain be formed by a sequence of nodes v0, v1, . . . , vD, where v0 coincides with
input x1 and an arbitrary node vd is located at depth d.

The nodes of the principal chain naturally partition the circuit into segments.
If the sums st and st+w, respectively, are calculated at nodes vd and vd+1, then the
d-th segment includes the inputs and nodes with indices in the interval [t, t+w].
The parameter w denotes the segment width. The structure of a segment of an
optimal circuit is shown in Fig. 1 (the notation is standard, see, e.g., [3, 5]). There
h = D − d.

The segment’s construction is determined by two trees-subcircuits: a binary
tree directed from the inputs xt+1, . . . , xt+w to the root ud, and a tree consistent
with it, directed from the root vd to the outputs st, . . . , st+w−1. The fanout of
the second tree is bounded by k. Tree consistency means that the second tree
employs exactly the interval sums calculated by the first tree. In particular, all
descendant neighbors of the node vd receive second inputs strictly from nodes in
the chain connecting xt+1 and ud.

1Moreover, upon transposition, i.e., reversing the direction of the circuit, both sets are
mapped into each other.
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Figure 1: Structure of a segment of an optimal prefix circuit

The structure of one segment is independent of the structure of the other
segments. Therefore, the maximum width of a circuit of a given depth and
fanout is the sum of the maximum possible widths of the segments.

Let wk(d, h) denote the maximum width of a pair of consistent trees, the first
of which has depth ≤ d and the second has depth ≤ h and fanout bounded by k.
By wk(D) we denote the maximum width of an optimal depth-D fanout-k circuit.
We introduce the notation

w∗
k(D) =

D∑

d=0

wk(d,D − d).

Note that
w∗

k(D − 1) ≤ wk(D) ≤ w∗
k(D). (3)

The upper bound describes the maximum width of circuits in which fanout k+1
is allowed as an exception for the nodes vd of the principal chain. The lower
bound describes the width of circuits in which the fanout of nodes vd is bounded
by two. In particular, w2(D) = w∗

2(D − 1).

Claim. Let d, h > 0 and l = min{d, k − 1}. Then

wk(d, h) =
l−1∑

i=1

wk(d− i, h− 1) + 2wk(d− l, h− 1). (4)

� We continue using Fig. 1 as an illustration. Let it depict a pair of consistent
trees I and Q with root nodes ud and vd, respectively. The immediate descendants
of node vd determine a partition of the index interval [t, t+ w] into subintervals
defined by the indices of the nodes of the chain connecting xt+1 and ud, and also
a partition of both trees into pairs of consistent subtrees (Ij, Qj). Consequently,

wk(d, h) = wk(d1, h−1)+. . .+wk(dr, h−1), d > d1 > d2 > . . . > dr−1 ≥ dr. (5)
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Obviously, for any d, h,

wk(d, h) ≤ wk(d+ 1, h). (6)

Let us check that for d ≥ 1 and any h, we also have

wk(d, h) ≤ 2wk(d− 1, h). (7)

The argument is illustrated in Fig. 2. Consider a pair of consistent trees of width
w = wk(d, h), consisting of a binary tree I of depth ≤ d and a k-ary tree Q of
depth ≤ h. Let y denote the closest ancestor node of root u of tree I lying on the
path from the first input x1. Let subtree I1, rooted at y, have width τ . Let I2
denote the subtree of tree I whose leaves are the remaining w− τ inputs. By the
consistency property, the second tree Q contains a node z that is an ancestor of
exactly w − τ higher outputs. Let Q2 denote the subtree rooted at node z, and
Q1 denote the tree obtained from Q by removing subtree Q2.
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Figure 2: Transformation of a pair of consistent trees

By construction, the pairs of trees (I1, Q1) and (I2, Q2) are consistent. The
total width of the pairs is w. Moreover, the depth of trees I1, I2 does not exceed
d− 1, and the depth of trees Q1, Q2 does not exceed h. Hence, (7) is proved.

Now (4) immediately follows from (5) by applying rules (6), (7) and taking
into account r ≤ k and dr ≥ 0.

We proceed directly to the proof of the theorem. Let us estimate w∗
k(D). In

view of (4), for D ≥ k we have

w∗
k(D) = wk(D, 0) +

k−1∑

i=2

w∗
k(D − i) + 2w∗

k(D − k) + wk(0, D) +
k−1∑

i=2

wk(0, D − i).

Since w(0, h) = w(d, 0) = 1 for any d, h ≥ 0, we obtain the recurrence relation

w∗
k(D) =

k−1∑

i=2

w∗
k(D − i) + 2w∗

k(D − k) + k.
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This relation, given the initial values w∗
k(0), . . . , w

∗
k(k − 1), is resolved in the

standard way as w∗
k(D) ∼ c · αD

k , where c is some constant, since αk has the
largest absolute value among the roots of polynomial Pk(x): indeed, the modulus
of an arbitrary root x satisfies the inequality

|x|k ≤ 2 + |x|+ |x|2 + . . .+ |x|k−2,

whence |x| ≤ αk. The assertion of the theorem now follows from (3).
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