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Preface

Fast computations is one of the most significant areas attracting attention of
mathematicians. In the modern world, the realm of various electronic forms and
artificial intelligence, almost all aspects of life are penetrated with the fruits of this
theory.

The goal of the present notes is to provide a systematic view of the most fruitful
ideas leading to fast computation methods. The exposition is arranged around the
computational model of circuits of functional elements and its particular case, formu-
lae. This is done deliberately: on the one hand, so as not to overload the conceptual
apparatus, on the other — so as not to try to embrace the immensity. Though, it
slightly limits the choice of applications for illustrating ideas.

The proposed examples cover mainly boolean and arithmetic (algebraic) com-
putations as the most practically demanded and intensively studied by complexity
theory. It is worth noting that popular, classical monographs on the complexity of
boolean functions [331, 82, 230, 139] were written with an emphasis on lower complex-
ity bounds. Fast computation methods are given a secondary role in them, mainly
to demonstrate the accuracy of lower bounds. The present work partly fills this gap.

Algebraic algorithms, which usually have a direct connection to applications, re-
ceive more attention. Perhaps, the most thorough exposition of the modern theory
of fast algebraic algorithms is provided by [107]. Polynomial and matrix operations
are given more attention in [34, 238]. A nice introduction to the theory of numeric
algorithms are the books [167, 51]. This work includes only a few fragments of the
theory, demonstrating the diversity of computational techniques.

Indeed, the choice of etudes for the book was dictated by the author’s tastes. In
addition to the widely known classical methods of synthesis, the book provides some
results of the last 10–20 years. The author hopes that in several cases he has managed
to offer more transparent proofs than in the original works and other sources. The
theory of fast computations continues to develop, although each new step is becoming
increasingly difficult.

Igor S. Sergeev
Skhodnya/Moscow,

April 2022.
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Basic notions

The basic computational model we consider is circuits of functional elements
(hereinafter, simply circuits). A circuit over a basis (set of functions) B is a directed
acyclic graph, in which vertices with no incoming edges are marked as inputs, and
some vertices are marked as outputs.

Inputs are associated with variables or constants of the basis B, other vertices
(called functional elements or gates) are associated with functions of the basis B.
The functioning of the circuit is defined in a natural way, from inputs to outputs:
at each node, the function associated with it is applied, the arguments of which are
functions arriving along the edges entering the node.

A circuit implements an operator F if all components of the operator are computed
at the circuit outputs. Fig. 1a) shows a circuit computing the arithmetic sum of
three bits 2y2 + y1 = x1 + x2 + x3 according to the rules1) y1 = x1 ⊕ x2 ⊕ x3,
y2 = x1(x2⊕ x3)⊕ x2x3. In the most common situation, a circuit has a single output
and implements some function.
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Figure 1: Examples of a circuit (a) and of a formula (b)

The circuit complexity is defined as the number of non-input nodes in its graph.
The complexity of an operator F when implemented by circuits over a basis B is
defined as the minimal complexity of a circuit implementing it and is denoted by
CB(F ).

Circuit depth is the length (measured in edges or functional elements) of the
longest directed path connecting an input and an output of the circuit. By analogy,
depth of an operator F is defined as the minimum depth of a circuit implementing
it, and is denoted by DB(F ). The complexity and the depth of a class (i.e. set) of
operators F are defined as CB(F) = maxF∈F CB(F ) and DB(F) = maxF∈F DB(F ).

It is known that the complexity of computing an operator in any complete finite
boolean basis is the same up to an order of magnitude.

Circuits over the basis of a single semigroup operation {+} are called additive
circuits. In view of the special role of additive circuits in synthesis theory, for the
complexity of the implementation of a linear operator LA with a matrix A by such

1Here and below, the conjunction symbol will be omitted, as is usual for multiplicative operations.
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circuits, we use a special notation L+(A) instead of C{+}(LA); in this case, it is
convenient to say that the circuit computes the matrix A itself. Let L(A) also denote
the complexity of computation by universal additive circuits, i.e., those that correctly
compute the matrix A in any commutative semigroup.

Formula is a special case of a circuit in which branching of outputs of elements is
prohibited: no more than one edge goes out of any vertex of the graph. By formula
complexity we usually mean the number of inputs of variables2). Fig. 1b) shows
an example of a formula that computes the majority function maj3(x1, x2, x3) =
(x1 ∨ x2)x3 ∨ x1x2.

A formula can also be interpreted as an expression that can be written in one
line (hence the name of the term). The following inductive formal definition is more
suitable for such an interpretation. Formula over a basis B, formula complexity,
formula depth, and the function computed by the formula are defined as follows:
0) the basis constants are formulae of complexity and depth 0; 1) the symbols of
variables are formulae of complexity 1, depth 0, and implement the corresponding
identity functions; 2) the expression G(F1, ..., Fk), where G is a symbol denoting a
non-constant k-input function g ∈ B, and Fi is a formula of complexity Li and depth
Di, implementing a function fi, is a formula of complexity L1 + . . . + Lk, depth
max{D1, ..., Dk} + 1 and implements the function g(f1, . . . , fk). In the binary case
(k = 2), it is customary to use symbols of binary operations to write formulae: instead
of G(F1, F2), we write F1 ◦ F2, where g = x ◦ y.

In the above definition, F1, . . . , Fk are called principal subformulas of the formula
G(F1, ..., Fk).

Complexity of an operator F when implemented by formulae over the basis B
(independently of the way of definition) will be denoted by ΦB(F ). By analogy with
circuits, the notation ΦB(F) is introduced for the formula complexity of a class of
operators F . The depth of implementation of any operator by circuits and formulae
over the same basis coincides, so we use a single notation DB. When studying the
depth of computations, it is often convenient to consider formulae as a topologically
simpler object compared to circuits.

An important subclass of formulae are read-once formulae. A formula is read-once
if the symbol of each variable occurs no more than once in it. Functions computed
by read-once formulae over a basis B are also called read-once or, more precisely,
read-once expressible over the basis B.

The most popular boolean bases are: the standard basis B0 = {∨,∧, }, Zhegalkin
basis B1 = {⊕,∧, 1}, the monotone basis BM = {∨,∧}, basis B2 of all two-input
boolean functions (binary basis), the unate basis U2 = B2 \ {⊕,∼}. Here “∼” means
the boolean equivalence operation.

The main arithmetic bases for computations over a semiring R are: the complete
basis AR = {+,−, ∗} ∪ {ax|a ∈ R}, the linear basis ARL = {+,−} ∪ {ax|a ∈ R}, the
monotone basis AR+ = {+, ∗}, the complete basis with division ARD = {+,−, ∗, /} ∪
{ax|a ∈ R} (in the case of a basis with division, it is assumed that R is a ring).

2But this is not very important, since in a formula over a finite basis the number of inputs and
the number of functional elements are of the same order of magnitude.
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Considerations

To simplify the notation of expressions, we will omit the basis notation in com-
plexity functionals (say, write C(F ) instead of CB(F )) in cases where the basis is clear
from the context, for example, within the proof of assertions.

Similarly, in the notations of arithmetic bases and operators we will omit refer-
ences to the semiring R over which calculations are performed (for example, write A
instead of AR or Mn instead of MR

n ) when this is clear from the context.
To compare the orders of growth of nonnegative functions, we use standard no-

tations: f ≺ g is equivalent to f = o(g); f 4 g is equivalent to f = O(g); f � g
is equivalent to f = ω(g); f < g is equivalent to f = Ω(g); f � g is equivalent to
f = Θ(g); f ∼ g, f . g, f & g denote asymptotic equality and inequalities.

Further, X (analogously, Y , Z) will usually mean a set of variables xi, possibly
organized as a matrix (xi,j).

Notation

B — boolean set {0, 1}
N — natural numbers 1, 2, 3, . . .
N0 — nonnegative integer numbers 0, 1, 2, . . .
P — prime numbers
[[n]] — set {0, 1, . . . , n− 1}
Ck
n — binomial coefficient, often denoted as

(
n
k

)
Pn — class of boolean functions of n variables
Mn — class of monotone boolean functions of n variables
Sn — class of symmetric boolean functions of n variables
P(A) — probability of an event A
E[A] — mathematical expectation of an event A
‖X‖ — weight of a boolean vector (number of ones)
|A| — weight of a matrix A (number of nonzero entries)
detA — determinant of a matrix A
u� v — componentwise product of vectors u and v
A⊗B — Kronecker product of matrices A and B 59
T1 ⊗ T2 — tensor product of systems of bilinear forms T1 and T2 59
T1 ⊕ T2 — direct sum of systems of bilinear forms T1 and T2 117
CB(F ) — complexity of implementing an operator F by circuits over a basis B 6
ΦB(F ) — complexity of implementing an operator F by formulae over a basis B

7
DB(F ) — circuit (formula) depth of an operator F over a basis B 6
C(F ),Φ(F ) — complexity of an operator F when implemented by cir-

cuits/formulae over an arbitrary complete boolean basis 8
L+(A) — complexity of the implementation of a matrix A by additive circuits

over the basis {+} 7
L(A) — minimal complexity of a universal additive circuit for a matrix A 7
CACd (F ) — complexity of implementing an operator F by AC-circuits of depth d

141
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C
AC[⊕]
d (F ) — complexity of implementing an operator F by AC[⊕]-circuits of

depth d 141
W+
d (A) — complexity of implementation of a matrix A by linear circuits of depth d

over the basis {+} 142
Wd(A) — minimal complexity of a universal depth-d linear circuit for a matrix A

142
DA(n) — minimal depth of an n-input circuit composed of compressors A 47
B2 — basis of all binary boolean functions (binary basis) 7
B0 — standard boolean basis {∨,∧, } 7
B1 — Zhegalkin basis {⊕,∧, 1} 7
BM — monotone boolean basis {∨,∧} 7
B3 — basis {maj3(x, y, z), x, 1} 44
U2 — unate basis of binary functions B2 \ {⊕,∼} 7
Uk — unate basis of k-input boolean functions 44
AR — complete arithmetic basis {+,−, ∗} ∪ {ax|a ∈ R} over a semiring R 7
ARL — linear arithmetic basis {+,−} ∪ {ax|a ∈ R} 7
AR+ — monotone arithmetic basis {+, ∗} 7
ARD — arithmetic basis with division {+,−, ∗, /} ∪ {ax|a ∈ R} over a semiring R

7
ARD+ — monotone arithmetic basis with division {+, ∗, /} over a semiring R 19
AGM(a, b) — arithmetic-geometric mean of numbers a, b 68
cB — basis B uniformity constant 49
Ck — cycle of length k in a graph 132
mon f — set of monomials of polynomial f 153
rkR T — rank of a system of bilinear forms T over a semiring R 57
rkR T — border rank of a system of bilinear forms T over a semiring R 58
tw(G) — treewidth of a graph G 132
CONNn(X) — (s, t)-connectivity function of an n-vertex graph 17
CWk,n(X) — polynomial of cyclic walks of length k in an n-vertex graph 132
DR
n — operator of division of polynomials in R[x] modulo xn 54

DFTN, ζ [R] — discrete Fourier transform of order N with a primitive root ζ over
a ring R 25

HAMn(X) — Hamiltonian polynomial of order n 18
HomG,n(X) — polynomial of homomorphic mappings of a graph G onto a com-

plete n-vertex graph 132
In(x) — operator of inversion of an n-bit number x ∈ [1/2, 1] with accuracy 2−n

53
LA — linear operator with a matrix A 6
Λn — linear boolean function in n variables, x1 ⊕ . . .⊕ xn 11
majn — majority boolean function in n variables 106
Mn, MR

n — operators of multiplication of n-bit numbers and of polynomials of
degree < n over a semiring R 23

M(n),MR(n) — smoothed functions of complexity of operators Mn, MR
n 30

MCR
n — operator of the composition f(g(x)) mod h(x) of polynomials f, g ∈ R[x]

of degree < n modulo a polynomial h of degree n 75
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MMR
n — operator of multiplication of n× n matrices over a semiring R 24

MMR
m,n,p — operator of multiplication of m× n and n× p matrices over R 59

MODm
n — operator of summation of n variables modulo m 43

MODm,r
n — indicator function of equality of the sum of n variables to a number r

modulo m 43
µn(X;Y ) — order n multiplexor function in 2n data variables yi: it takes

a value yX 41
GCDn(a, b) (or GCD(a, b)) — greatest common divisor of n-bit numbers or of

polynomials a and b of degree < n 13 30
QRn,m, QR

R
n,m — operators of division with remainder: of an n-bit number by an

m-bit number, and of a polynomial of degree < n by a polynomial of degree m over R
30 54

PERMn(X) — logical permanent of order n 109
Σn — operator of addition of two n-bit numbers 12
Σm,n — operator of summation of m n-bit numbers 48
SHn(v, x) — shift operator of an n-bit number x by v positions to the left 14
MRGm,n — operator of merging of sorted arrays of lengths m and n 32
SORTn — operator of sorting of an array of length n 31
STG(X) — Kirchhoff polynomial (spanning tree polynomial) of a graph G 19
Tn,b(x) — operator for conversion a number x < 2n from b-ary representation to

binary 30
T kn — monotone symmetric boolean function of n variables with threshold k,

T kn = (x1 + . . .+ xn > k) 31

� Proof of a lemma or corollary.

I Proof of a theorem. �

• Additional notes.



Chapter 1

Sequential method s

In fact, the method does not have a certain, generally accepted name. But
this is the simplest way of computation that immediately comes to mind: to
try to reduce a problem of size n to a problem of size n− 1.

Circuits for linear functions s

Linear boolean function of n variables Λn(x1, . . . , xn) = x1 ⊕ x2 ⊕ . . .⊕ xn is easy to
compute by the rule

Λn = xnΛn−1 ∨ xnΛn−1, or Λn = xnΛn−1 ∨ (xn ∨ Λn−1 ), (1.1)

where Λn−1 is a linear function of variables x1, . . . , xn−1.

Theorem 1.1. CU2(Λn) 6 3n− 3, CB0(Λn) 6 4n− 4.

I Formulas (1.1) lead to the relations CU2(Λn) 6 CU2(Λn−1) + 3 and CB0(Λn) 6
CB0(Λn−1) + 4. It remains to note that CB0(Λn) 6 CB0(Λn−1) + 4 is also true, since
formulas (1.1) remain valid under the inversion of the linear functions involved in
them. The corresponding circuits are shown in Fig. 1.11). �
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Figure 1.1: Circuits for linear functions

The simple method of computation turns out to be optimal. In this case, the
proof of lower bounds is dual to the proof of upper bounds. The corresponding

1The circuit over the basis B0 in Fig. 1.1 implements a linear function or its negation depending
on the parity of n. Small circles at inputs of elements are negations.
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12 CHAPTER 1. SEQUENTIAL METHOD

method of reasoning in the theory of lower complexity bounds is called the method of
substitution by constants or the method of gate elimination. Let us provide a simple
example as an illustration. The following result is due to C. Schnorr [274].

Theorem 1.2 ([274]). CU2(Λn) > 3n− 3.

I Assume n > 2. Consider an arbitrary minimal circuit computing a linear function
f = Λn⊕σ, where σ ∈ B. There is a gate e1 in the circuit with two inputs connected
to different variables, denote them by x and y. By the property of the functions of
the basis U2, there exist constants α, β ∈ B such that under each of the substitutions
x = α and y = β the output of the gate e1 becomes a constant. Note that at least
one of the variables x, y (in fact, both), say x, is connected to some other gate e2

(otherwise the substitution x = α would eliminate the dependence of function f on y,
and vice versa).

Then, under assignment x = α, the circuit is simplified: at least the gates e1, e2,
and some gate e3 to which the output of the gate e1 was attached can be removed
from it. The new circuit implements a linear function of n− 1 variables. We obtain
CU2(f) > min{CU2(Λn−1), CU2(Λn−1)}, from which the required bound immediately
follows. �

• The tightness of the bound of Theorem 1.1 for the basis B0 was proved by N. P. Red’kin in [257]

also by the method of substitution by constants, but the proof requires consideration of several

cases. Moreover, Red’kin [260] proved that in any complete boolean basis B, CB(Λn) 6 7(n − 1)

holds for n > 2, and this bound is tight, for example, over the basis B = {∧, }.

Standard adder circuits s

By Σn we will denote the boolean (2n, n+1)-operator of addition of n-digit numbers:
Σn(A,B) = A+B. Let in binary notation

A = [an−1, an−2, . . . , a0], B = [bn−1, bn−2, . . . , b0], A+B = [zn, zn−1, . . . , z0].

Theorem 1.3. CB2(Σn) 6 5n− 3.

I The result is provided by a circuit implementing a simple school method of addi-
tion. Its structure is shown in Fig. 1.2.
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· · · FA3
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Figure 1.2: Standard adder circuit
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Sequentially moving from the least significant digits to the most significant ones,
each time the next digit of the sum and the carry to the next position is computed
by a three-bit adder circuit, denoted FA3 (full adder), according to the formulas

xi = ai ⊕ bi, yi = aibi, zi = xi ⊕ ci, ci+1 = yi ⊕ xici (1.2)

with complexity 5, see Fig. 1a). There is no carry in the least significant digit, so
the addition is performed by a simpler HA (half adder) circuit: z0 = x0 = a0 ⊕ b0,
c1 = y0 = a0b0. �

• N. P. Red’kin in [259] showed that the described circuit is minimal, i.e., CB2(Σn) = 5n− 3. This

proof is much more involved than for the circuit complexity of a linear function.

If the basis does not contain linear functions (case B0 or U2), then it is more
convenient to compute carries by the formulas2)

ci+1 = yi ∨ xici, xi = ai ∨ bi, yi = aibi. (1.3)

For example, this way we can obtain the bounds CU2(Σn) 6 7n − 4 and CB0(Σn) 6
9n− 5.

The circuits for subtraction are constructed similarly.

Greatest common divisor. Binary algorithm s

The greatest common divisor of two n-digit numbers GCD(a, b), as almost everybody
knows, can be computed via the Euclidean algorithm in O(n) iterations of the form3)

(a, b) := (b, a mod b).
When working in binary arithmetic, the binary algorithm proposed by J. Stein

seems somewhat more natural [310]. It constitutes the cyclic execution of iterations:

1. If a < b, then GCD(a, b) = GCD(b, a).

2. If b = 0, then GCD(a, b) = a.

Let a′ = a mod 2, b′ = b mod 2.

3. If a′ = b′ = 0, then GCD(a, b) = 2 ·GCD(a/2, b/2);

else if a′ = 0, b′ = 1, then GCD(a, b) = GCD(a/2, b);

else if a′ = 1, b′ = 0, then GCD(a, b) = GCD(a, b/2);

else, then GCD(a, b) = GCD((a− b)/2, b).

Thus, the method scans the given numbers (in binary notation) from right to left
and modifies them along the way. It is quite obvious that at each iteration the total
length of the numbers a and b decreases by at least 1, so computing the GCD of
n-digit numbers requires no more than 2n− 1 such iterations.

2The difference between (1.2) and (1.3) comes from two ways of representing the majority func-
tion: maj3(a, b, c) = ab⊕ ac⊕ bc = ab ∨ ac ∨ bc.

3As soon as (r, 0) is obtained at some step, the conclusion GCD(a, b) = r is made.



14 CHAPTER 1. SEQUENTIAL METHOD

Theorem 1.4. C(GCDn) 4 n2.

I As usual, representing a GCD algorithm as a circuit requires a little extra
work. We connect 2n − 1 blocks in series, each implementing the next itera-
tion of the algorithm. More precisely, the i-th block performs the transformation
(ai, bi, ei, ki) → (ai+1, bi+1, ei+1, ki+1, ri), where (ai, bi) and (ai+1, bi+1) denote a pair
of numbers (a, b) at the input and output assuming a0 = a and b0 = b. Here
ei+1 = ei ∨ (min{ai, bi} = 0) is an indicator of the fulfillment of the condition of
step 2 at some of the first i iterations (we assume e0 = 0), ki+1 = ki + a′i · b′i is the
exponent of the power of two accumulated during the execution of the case 1 of step 3
(initially, k0 = 0), ri = min{ai, bi} is the odd component of GCD(a, b) in the case
when the condition of step 2 is met.

The computations are finalized by a subcircuit for choosing the correct value. The
iteration number at which the algorithm terminates is determined by the condition
ei−1 · ei = 1. Then GCD(a, b) = 2kiri.

Each of the blocks in the chain includes comparison, subtraction, addition, and
selection (multiplexor) subcircuits and therefore has linear complexity. The final cir-
cuit includes a selection subcircuit of complexity O(n2) (the choice can be performed
by the formula4) [k, r] =

∨
i(ei−1 · ei)[ki, ri]) and a shift subcircuit whose complexity

is estimated as O(n log n) by the following lemma (see also in [205]).
Let SHn(v, x) denote the operator of shifting an n-digit number x by v < n

positions to the left: (v, x)→ 2vx.

Lemma 1.1 ([205]). C(SHn) 4 n log n.

� A simple circuit implementing a shift may be built via the sequential method. We
use the binary notation of the shift value: v = [vk, . . . , v0]. Set x0 = x and further
xi = 22ivixi−1 for i = 1, . . . , k. Then xk = 2vx.

The shifting circuit is obtained by connecting k ∼ log2 n subcircuits of (2, 1)-
multiplexors in series, each of which, depending on the value of vi, selects either xi−1

or 22ixi−1.

�

• There are at least a dozen variations of both the Euclidean algorithm and the binary algorithm:

in particular, there is a right-handed version of the former and a left-handed version of the latter.

Theoretically faster GCD algorithms are discussed in the next chapter, see p. 30.

Formulae for natural numbers s

The next problem is a rather entertaining. Write a natural number n as a formula
using addition, multiplication, brackets and as few 1s as possible. For example, the
shortest formula for the number 11 is (1 + 1)(1 + 1 + 1 + 1 + 1) + 1. In other words,
the problem is to determine the value ΦAN

+
(n), which we will simply denote5) Φ+(n).

4Disjunction is performed bitwise.
5Usually this value is denoted by ||n||.
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The first mention of this problem is found in the paper of K. Mahler and J. Pop-
ken [211] from 1953. Despite the interest in the problem and several particular results,
for a long time only trivial general bounds were known: 3 log3 n 6 Φ+(n) < 3 log2 n ≈
4.33 lnn (for n > 2). The upper bound here is provided by Horner’s scheme. Only
in 2009 J. Zelinsky obtained the first nontrivial upper bound and later improved it
to Φ+(n) < 3.76 lnn [339]. Below, we present a simplified version of his method.

Theorem 1.5 ([339]). For any n > 2, we have Φ+(n) 6 10 log12 n ≈ 4.02 lnn.

I Let vp(n) denote the number of digits p − 1 at the lower end of p-ary notation
of n. In other words, this is the largest k for which n ≡ −1 mod pk.

Also consider a transformation
[∗−a

b

]
: n→ n−a

b
. Assuming b | (n− a), note that

Φ(n) 6 Φ

([
∗ − a
b

]
n

)
+ Φ(a) + Φ(b). (1.4)

We will prove by induction on n that Φ(n) 6 C lnn for a suitable (possibly
smaller) constant C — its value will be established in the course of the proof.

0) For 2 6 n 6 6, the inequality holds with the constant C = 5/ ln 5 ≈ 3.11. Now,
assuming n > 7, we prove the induction step from n − 1 to n. Further, for brevity,
we set vp = vp(n).

1) Let v2 6 1, in other words, n 6≡ 3 mod 4. If the least significant binary digits
of n are n1 and n0, then we pass from n to n′ =

[∗−n1

2

] [∗−n0

2

]
n > 1 and apply (1.4).

So we obtain Φ(n) 6 Φ(n′) + 5. As a consequence, the induction step is proved for
any C > 5/ ln 4 ≈ 3.61.

2) Let v3 = 0. Then a = n mod 3 6 1. We pass from n to n′ =
[∗−a

3

]
n. According

to (1.4), we obtain Φ(n) 6 Φ(n′) + 4. In this case, the induction step is proved for
any C > 4/ ln 3 ≈ 3.64.

3) In the remaining case, v2 > 2 and v3 > 1. In particular, n > 11. Note that
n ≡ (2v23v3 − 1) mod 2v2+13v3 .

3.1) Consider n′ =
[∗−1

2

]v2n. It is easy to check that 2 | n′ and v3(n′) = v3(n).
Therefore, for n′′ = n′/2 we have n′′ ≡ 3v3−1

2
mod 3v3 . Thus, the ternary notation

of n′′ ends in v3 ones. Therefore, for n′′ 6= 3v3−1
2

the transition to n′′′ =
[∗−1

3

]v3n′′ is

possible, otherwise — to 1 =
[∗−1

3

]v3−1
n′′. In the former (general) case, we obtain

Φ(n) 6 Φ(n′′′) + 3v2 + 2 + 4v3 6 C ln(n/(2v2+13v3)) + 3v2 + 4v3 + 2.

As a consequence, to justify the induction step, we need

3v2 + 4v3 + 2 6 C((v2 + 1) ln 2 + v3 ln 3).

For C > 2/ ln 2 ≈ 2.88, this inequality follows from the simpler one:

3v2 + 4v3 6 C(v2 ln 2 + v3 ln 3). (1.5)

In the particular case n′′ = 3v3−1
2

we directly obtain a formula for n = 2v23v3 − 1
of size 3v2 + 4v3 − 2. It remains to notice that condition (1.5) is sufficient to verify
the induction step, since ln(n+ 1) 6 lnn+ 1

11
for n > 11.
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3.2) Let v3 < v2/2. Set n′ =
[∗−2

3

]v3n. It is easy to check that a = (n′ mod 3) 6= 2
and v2(n′) = v2(n). Then n′ has the form

n′ = 2v2+1(3m− δ) + 2v2 − 1, δ =

{
0, a = (v2 mod 2)

1, a 6= (v2 mod 2)
.

Consider n′′ =
[∗−a

3

]
n′. Then

(n′′ mod 2v2+1) ∈
{

2v2 − 1

3
,

2v2 − 2

3
,

5 · 2v2 − 2

3
,

5 · 2v2 − 1

3

}
.

In the base-4 representation, these remainders have the form, respectively

4
v2
2
−1 + . . .+ 4 + 1, 2(4

v2−1
2
−1 + . . .+ 4 + 1),

4
v2
2 + 2(4

v2
2
−1 + . . .+ 4 + 1), 3 · 4

v2−1
2 + (4

v2−1
2
−1 + . . .+ 4 + 1).

Therefore, for n′′ 6= 2v2−1
3

, a transition to n′′′ =
[∗−d

4

]bv2/2c
n′′ is possible, where

d ∈ {1, 2}. Representing, as in item 1), the transformation
[∗−d

4

]
as the composition[∗−n1

2

] [∗−n0

2

]
, we obtain

Φ(n) 6 Φ(n′′′) + 5v3 + 4 + 5bv2/2c 6 C ln(n/(3v3+14bv2/2c)) + 5bv2/2c+ 5v3 + 4.

In this case, to justify the induction step, we require the condition

5bv2/2c+ 5v3 + 4 6 C(2bv2/2c ln 2 + (v3 + 1) ln 3).

For C > 4/ ln 3, this inequality follows from

5bv2/2c+ 5v3 6 C(2bv2/2c ln 2 + v3 ln 3). (1.6)

In the remaining case n′′ = 2v2−1
3

(with 2 | v2 and a = 0) the transition to

1 =
[∗−1

4

](v2/2)−1
n′′ is performed. Thus we obtain a formula for n = 2v23v3 − 1 of size

5v3 + 5bv2/2c − 2. As in item 3.1) above, condition (1.6) ensures the induction step.
3.3) It remains to determine the minimal constant C with which the proof pro-

ceeds. Its value is determined by inequalities (1.5) and (1.6). For any v2, v3, we need
to satisfy

C > min

{
3v2 + 4v3

v2 ln 2 + v3 ln 3
,

5bv2/2c+ 5v3

2bv2/2c ln 2 + v3 ln 3

}
.

For v3 > v2/2, we use the first estimate, its maximum is achieved at v3 = v2/2, and
for v3 6 bv2/2c, we use the second, the maximum of which is achieved at v3 = bv2/2c.
In both cases the maximal values are 10/ ln 12. �

• A stronger bound Φ+(n) < 3.76 lnn was obtained by Zelinsky by analyzing expansions over a

large number of prime bases. It is assumed that the maximum of the ratio Φ+(n)/ lnn is achieved

at n = 1439 and is equal to 26/ ln 1439 ≈ 3.58. Of course, this does not exclude the possibility of

obtaining bounds of the form (C+o(1)) lnn with much smaller constants C. K. Amano [13], relying

on computer calculations, proved that Φ+(n) < 3.24 lnn for almost all n.
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Dynamic programming algorithms. Computation of the connectivity func-
tion and the Hamiltonian s

Let us associate the edges of a complete directed graph Kn on n vertices with boolean
variables X = {xe}. The values of the variables define an arbitrary graph G ⊂ Kn:
xe = 1 means that e ∈ G; xe = 0 — that e /∈ G. The (s, t)-connectivity function of
a graph determines the presence of a directed path connecting vertices s and t. It
can be defined by the formula

CONNn(X) =
∨

P — (s, t)-path in Kn

∧
e∈P

xe.

Richard Ernest
Bellman

University of South Carolina,
1965 to 1984

Even though the number of paths connecting two ver-
tices in a graph may be exponentially large, they can all
be “searched” by a simple algorithm of polynomial com-
plexity. This algorithm was independently discovered by
L. Ford [91], E. Moore [221], and R. Bellman [22] in the
1950s.

Theorem 1.6 ([22, 91, 221]). CBM (CONNn) 4 n3.

I Let the graph vertices be numbered with natural num-
bers from 1 to n. For convenience, we assume s = 1 and
t = n.

Let y
(l)
j denote the function indicating the presence of a

path of length l from vertex 1 to vertex j. All y
(l)
j can be

computed by the recurrent formulas

y
(1)
j = x1,j, y

(l+1)
j =

n−1∨
i=2

y
(l)
i · xi,j (1.7)

with complexity 4 n3. Finally, CONNn = y
(1)
n ∨ y(2)

n ∨ . . . ∨ y(n−1)
n . �

The principle of progressive approaching towards solving a problem via solving
similar subproblems is known as dynamic programming (the term was proposed by
Bellman). It is the basis for constructing efficient algorithms for many optimization
problems (the Steiner tree problem, finding a maximal independent set in a graph,
etc.).

• The Bellman—Ford—Moore algorithm works not only in boolean, but also in many other arith-

metic semirings. It has a considerable practical significance for tropical semirings (R,min,+). The

boolean connectivity problem corresponds to the problem of finding the shortest path connecting

two vertices in a graph. In the latter problem variables xe take real values and are interpreted as

weights assigned to edges, the computed function has the form minP
∑
e∈P xe, where P runs over a

set of paths. The algorithm relies heavily on the idempotency of the additive operation of a semiring

(note that formulas (1.7) involve paths with cycles). The common real polynomial — the analogue

of the function CONNn — already has superpolynomial monotone arithmetic complexity < n22n,

as shown by M. Jerrum and M. Snir [135].
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Let Π(j1, . . . , jk) denote the set of cyclic permutations of numbers j1, . . . , jk.
Hamiltonian of order n is a polynomial

HAMn(X) =
∑

(i1, ..., in−1)∈Π(1, 2, ..., n−1)

x0,i1xi1,i2 · . . . · xin−2,in−1xin−1,0,

in which each monomial corresponds to a Hamiltonian cycle in the complete directed
graph on n vertices 0, 1, . . . , n− 1. When substituting the variables for indicators of
the presence of edges in an arbitrary graph G (as above), the polynomial takes the
value of the number of Hamiltonian cycles in G.

The dynamic programming algorithm of Bellman [23], M. Held and R. Karp [126]
allows one to construct an optimal monotone arithmetic circuit for the Hamiltonian.

Theorem 1.7 ([23, 126]). CA+(HAMn) 4 n22n.

I Denote by Hs,J , where J ⊂ [[n]] \ {0, s} and |J | = k, the polynomial

Hs,J =
∑

(i1, ..., ik)∈Π(J)

xs,i1xi1,i2 · . . . · xik−1,ikxik,0

enumerating Hamiltonian paths from a vertex s to a vertex 0 in the complete graph
on the vertex set J ∪ {0, s}.

Let Hs,∅ = xs,0. Generally, we have

Hs,J =
∑
j∈J

xs,j ·Hj,J\{j} and HAMn =
n−1∑
j=1

x0,j ·Hj,[[n]]\{0,j}. (1.8)

If all polynomials Hs,J for 1 6 s 6 n − 1 and |J | = k − 1 are computed, then the
calculation of polynomials Hs,J , |J | = k, according to formula (1.8) requires no more
than 2knCk

n−2 operations. Therefore,

C(HAMn) 6 2n+
n−2∑
k=1

2knCk
n−2 � n22n.

�

• Jerrum and Schnir [135] showed that the bound of Theorem 1.7 is tight in order not only for

the real arithmetic ring, but also for the tropical semiring (R,min,+), in which the Hamiltonian

corresponds to the optimization problem of the travelling salesman — finding the shortest tour

visiting all vertices of the graph. At the same time, the multiplicative complexity of the algorithm

of Theorem 1.7, which, if calculated carefully, is (n− 1)((n− 2)2n−3 + 1), is the minimum possible.

The complexity of optimization problems solved by the dynamic programming approach is discussed

in detail in [140].
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Monotone circuits for the Kirchhoff polynomial s

The idea of sequential computation allows us to obtain, among others, quite nontrivial
results, as we will see in the example of computing Kirchhoff polynomials.

Consider a connected undirected graph G whose edges are labeled by symbols of
real variables xe (weights). Recall that a spanning tree of a graph is a subgraph that
is a tree connecting all the vertices of the graph. Kirchhoff polynomial (spanning tree
polynomial) of graph G is defined as

STG(X) =
∑

T — span. tree in G

∏
e∈T

xe.

The Kirchhoff polynomial of a disconnected graph is conveniently defined as the prod-
uct of Kirchhoff polynomials of connected components. Multiple edges are allowed.

Dmitry Yur’evich
Grigoriev

French National Centre
for Scientific Research, Lille,

since 1998

The monotone arithmetic complexity of the Kirchhoff
polynomial is large: S. Jukna and H. Saiwert [141] proved6)

that CAR
+

(STKn) = 2Ω(
√
n). The situation may change when

the computational basis extends. So, recently S. Fomin,
D. Grigoriev and G. Koshevoy [90] proposed simple mono-
tone circuits with division for this problem7). The method
is based on sequentially adding nodes to a graph.

Theorem 1.8 ([90]). For any graph G on n vertices,
CAR

D+
(STG) 4 n3, where AD+ = {+, ∗, /}.

I It suffices to construct a circuit for the complete
graph Kn. A circuit for an arbitrary graph is obtained by
assigning zeros to some variables.

Label the graph vertices by numbers from 1 to n, and
the edges — by pairs of numbers.

The circuit is constructed inductively. Let wn = x1,n+x2,n+ . . .+xn−1,n. Remove
vertex n from the graph and add new edges ei,j connecting all possible pairs i, j of
the remaining vertices8). Assign weight x′i,j = xi,n · xj,n/wn to the edge ei,j. Denote
the new graph by K ′n−1.

Our goal is to prove the equality

STKn(X) = wn · STK′n−1
(X,X ′). (1.9)

If we select edges incident to vertex n in an arbitrary spanning tree of graphKn, we
obtain the following method of enumerating all spanning trees. Let J = {J1, . . . , Js}
be some partition of vertex set {1, . . . , n − 1} into subsets. In each complete graph
on vertices Ji we select a spanning tree and connect it with vertex n by an edge, see
Fig. 1.3a.

6The result is valid not only in the arithmetic but also in the tropical semiring (R,min,+).
7In a certain sense, circuits with division are not quite monotone, since they allow computing

some polynomials with negative coefficients, for example, x2 − xy + y2 as (x3 + y3)/(x+ y).
8In the course of the proof, we allow multiple edges to connect the same pair of vertices.



20 CHAPTER 1. SEQUENTIAL METHOD

r rr rZZ�� r r r
r
PP�
�
@@
r rrJJ

 rrJ1

J2

J3

J4

r rr rZZ�� r r r
r
PP�
�
@@
r rrJJ

 rrJ1

J2

J3

J4

a) b)rnJJ
J
J
J
J
J
J
J

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�

Figure 1.3: Structure of spanning trees of graphs Kn (a) and K ′n−1 (b)

Let KA be a complete subgraph of Kn on a vertex set A. Denote wA =
∑

i∈A xi,n.
Then

STKn =
∑
J

∏
A∈J

wA · STKA . (1.10)

Similarly, by selecting a set of additional edges ei,j from a spanning tree of K ′n−1,
we obtain a method for enumerating all spanning trees in K ′n−1. Again, let J =
{J1, . . . , Js} be a partition of the vertex set {1, . . . , n−1}. In each graph KJi , choose
a spanning tree. Connect these trees by edges ei,j, guided by some (external) spanning
tree of the complete graph constructed on the sets Ji as on vertices, see Fig. 1.3b.
For any 1 6 k, l 6 s, set

X ′k,l =
∑

i∈Jk, j∈Jl

x′i,j = wJk · wJl/wn. (1.11)

Let KJ denote the complete graph on “vertices” Ji with edge weights X ′k,l. We obtain

STK′n−1
=
∑
J

STKJ
∏
A∈J

STKA . (1.12)

Now (1.9) follows from (1.10) and (1.12), if STKJ =
(∏

A∈J wA
)
/wn. Let us check

this.
Consider an auxiliary problem. Let the weight of an edge (i, j) in the complete

graph Ks on s vertices be xixj (in fact, we now assign weights to vertices). The
following lemma is a variant of A. Cayley’s theorem [54].

Lemma 1.2 ([54]). STKs = x1x2 · . . . · xs(x1 + x2 + . . .+ xs)
s−2.

� The proof is based on a well-known method of counting spanning trees.
By definition, the contribution of each spanning tree to the polynomial STKs is∏s

i=1 x
di
i , where di is the degree of a vertex i in the tree.

A spanning tree is uniquely determined by the code [a1, a2, . . . , as−2], 1 6 ai 6 s,
as follows: a1 is the number of a vertex with which the minimum number dangling
(i.e. degree-1) vertex is connected; we delete this dangling vertex together with the
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edge incident to it, then a2 is defined similarly, and so on until only one vertex remains
in the tree9).

It remains to note that a tree encoded by [a1, a2, . . . , as−2] corresponds to the
monomial x1x2 · . . . · xs

∏s−2
i=1 xai in the polynomial STKs .

According to (1.11), in Lemma 1.2 we should set xi = wJi/
√
wn, so that taking into

account wJ1 + . . .+wJs = wn we obtain STKJ =
(∏

A∈J wA
)
/wn, which proves (1.9).

Finally, it is easy to see that any set of multiple edges (in the graph K ′n−1) can
be replaced by one whose weight is the sum of the weights of these edges — the
Kirchhoff polynomial will not change. Therefore, formula (1.9) implies the relation

C(STKn) 6 C(STKn−1) +O(n2),

from which the bound of the theorem follows.
In conclusion, we note that when moving from graph Kn to an arbitrary connected

graph G, no divisions by zero occur in the circuit, since wn 6= 0 in all calculation
formulas. In the case of a disconnected graph, it is sufficient to compute the Kirchhoff
polynomials of all connected components. �

• The boolean version of the Kirchhoff polynomial
∨
T

∧
e∈T xe (the sum is taken over spanning

trees of T ⊂ G) determines the connectivity of G. It also has monotone boolean complexity 4 n3.

This can be verified via the dynamic programming algorithm of B. Roy [265], R. Floyd [89], and

S. Warshall [329] that determines whether there are paths connecting every pair of vertices in a

graph. The tropical version of the problem has superpolynomial complexity 2Ω(
√
n) [141].

9This method of enumerating spanning trees was proposed by H. Prüfer [253].



Chapter 2

Bisection method /2

Dividing a problem into similar parts, two or more (also known as divide-and-
conquer approach), is one of the most productive techniques in the theory of
fast computing, allowing one to construct efficient recursive algorithms in a
variety of situations.

Formula complexity of linear functions /2

Short formulae for the linear boolean function Λn(X) over the basis B0 are constructed
by the generalizing (1.1) rule

Λn(X) = Λn1(X
1) · Λn2(X

2) ∨ Λn1(X
1) · Λn2(X

2), (2.1)

where X = (X1, X2), |X i| = ni and n = n1 + n2. The following result was obtained
by S. V. Yablonskii [334] back in the 1950s.

Theorem 2.1 ([334]). For any n,

ΦB0(Λn) 6 n2 +
(
n− 2blog2 nc

) (
2dlog2 ne − n

)
< (9/8)n2. (2.2)

In particular, for n = 2m, we have ΦB0(Λn) 6 n2.

I The required bound is proved by induction using (2.1) via partition of the set of
variables into equal parts: n1 = bn/2c and n2 = dn/2e. �

Theorem 2.1 provides the correct order of complexity of linear functions due to
the well-known lower bound obtained by V. M. Khrapchenko [155] ΦB0(Λn) > n2,
and in the case n = 2m the constructed formulae are simply minimal.

• The question of the accuracy of the bound (2.2) for any n (Yablonskii’s problem [334]) remains

open. Thanks to the efforts of K. L. Rychkov [267, 268] and D. Yu. Cherukhin [61], the tightness of

Theorem 2.1 was established for all n 6 8.

Note that the lower bound for the formula complexity may be proved by a method
that is, in a certain sense, dual to the proof of the upper bound. Namely, a suitable

22
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functional µ(f) is introduced on the set of functions, which, when moving from simple
functions to complex ones, grows about the same as the complexity, but is easier to
calculate for specific functions.

• Such a functional is called a formal complexity measure. If it satisfies the conditions

µ(0) = µ(1) = 0, µ(x), µ(x) 6 1, µ(f ∨ g) 6 µ(f) + µ(g), µ(f · g) 6 µ(f) + µ(g),

then automatically ΦB0(f) > µ(f). The Khrapchenko method [155] corresponds to the measure

µ(f) = max
N⊂f−1(0), P⊂f−1(1)

|R(N,P )|2

|N | · |P |
,

where R(N,P ) is the set of pairs of adjacent sets of N and P , i.e. differing in one coordinate. For

more details, see, for example, [331, 139].

Integer multiplication. Karatsuba’s method /2

Anatoly Alekseevich
Karatsuba

Moscow University,
1959 to 2008

Let’s apply the above technique to the problem of multi-
plying numbers. We divide 2n-digit numbers X and Y into
blocks of size n: X = X12n +X0, Y = Y12n + Y0. Now the
multiplication of the original numbers can be performed via
four multiplications of “halves” and several additions ac-
cording to the formula

XY = X1Y122n + (X0Y1 +X1Y0)2n +X0Y0.

This method yields a quadratic complexity bound C(Mn) 4
n2, as does the direct column multiplication method, where
Mn denotes the boolean (2n, 2n)-operator of multiplication
of n-digit numbers.

Unexpectedly1) in 1960, A. A. Karatsuba [147] discov-
ered a more economical formula including only three half-
size multiplications:

XY = X1Y122n + ((X0 +X1)(Y0 + Y1)−X1Y1 −X0Y0)2n +X0Y0. (2.3)

Theorem 2.2 ([147]). C(Mn) 4 nlog2 3 ≺ n1.59.

I Note that C(Mn+1) 6 C(Mn) +O(n). Then formula (2.3) leads to the recurrence
relation

C(M2n) 6 C(Mn+1) + 2C(Mn) +O(n) = 3C(Mn) +O(n),

which resolves as C(Mn) 4 nlog2 3. �

Despite its apparent simplicity, Karatsuba’s method revolutionized the theory of
fast computing in the early 1960s and opened ways to creating fast algorithms for
many other problems.

1While many experts thought that efforts should be concentrated on proving the bound C(Mn) �
n2.
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• Karatsuba’s method is widely used in practice. A careful estimate of the complexity of the
method for n = 2k is CB2

(Mn) < 25 83
405 · 3

k [295]. The method is applied even more successfully
to the polynomial multiplication. For example, in the most interesting case of binary polynomials,
the complexity of multiplication by the optimized Karatsuba method is estimated as CAF2 (MF2

n ) <
5 13

18 · 3
k [29].

A. L. Toom [320] generalized Karatsuba’s method. Multiplication of long numbers, if divided

into k blocks each, reduces to 2k − 1 multiplications of short numbers (their length corresponds to

the block size). With an appropriate choice of the parameter k, we can deduce C(Mn) 4 2O(
√

logn)n.

Matrix multiplication. Strassen’s method /2

Let us turn to the problem of implementing the product of square matrices Z = XY
over some semiring R by arithmetic circuits. Multiplication of 2n× 2n matrices can
be reduced to multiplication of matrices of size n× n:[

X11 X12

X21 X22

]
·
[
Y11 Y12

Y21 Y22

]
=

[
X11Y11 +X12Y21 X11Y12 +X12Y22

X21Y11 +X22Y21 X21Y12 +X22Y22

]
. (2.4)

Direct computation by formulas (2.4) leads to an algorithm of cubic complexity,
CAR(MMn) 4 n3, where MMR

n denotes the operator of multiplication of n×n matrices
over R.

V. Strassen [313] observed that one submatrix multiplication can be saved if the
computations are performed by formulas

Z11 = U1 + U2 − U3 + (X12 −X22)(Y21 + Y22), Z12 = U3 + U5,
Z21 = U2 + U4, Z22 = U1 − U4 + U5 + (X21 −X11)(Y11 + Y12),

U1 = (X11 +X22)(Y11 + Y22), U2 = X22(Y21 − Y11),
U3 = (X11 +X12)Y22, U4 = (X21 +X22)Y11, U5 = X11(Y12 − Y22).

(2.5)

The use of subtractions implies that R is a ring.

Theorem 2.3 ([313]). If R is a ring, then CAR(MMn) 4 nlog2 7 ≺ n2.81.

I Formulas (2.5) lead to the relation

CAR(MM2n) 6 7CAR(MMn) +O(n2),

which is resolved as CAR(MMn) 4 nlog2 7. �

• If computations are performed over a monotone basis2), then the cubic bound cannot be im-
proved, CAR

+
(MMn) < n3 [152]. Already for the boolean semiring (B,∨,∧) we have CBM

(MMn) =

2n3 − n2 [240].

Formulas (2.5), in addition to 7 multiplications, include 18 additive operations with submatrices.

S. Winograd reduced the number of additions/subtractions to 15 (see, e.g., [167]), and in [332] he

showed that the multiplicative complexity of 2 × 2 matrix multiplication is indeed 7. Later it was

proved that if R is a field, then 15 additive operations are required for any 2×2 matrix multiplication

algorithm of multiplicative complexity 7 [252, 52]. But this limitation can be circumvented by

restructuring matrices, which also changes the definition of the multiplication operation, see further

on p. 87.

2This will be the case, for example, in a semiring R with an irreversible addition operation.
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Fast Fourier transform /2

Let ζ be a primitive root of order N in a commutative associative ring R with unity.
The discrete Fourier transform (DFT) of order N is a linear (N,N)-operator over R,

DFTN, ζ [R](x0, . . . , xN−1)→ (x∗0, . . . , x
∗
N−1), x∗j =

N−1∑
i=0

ζ ijxi. (2.6)

• Basic properties of DFT. The inverse DFT coincides with the forward one up to another primitive
root and normalization:

DFT−1
N, ζ = N−1 ·DFTN, ζ−1 .

In the polynomial notation, DFT computes the values of a polynomial at the points ζi, i =
0, . . . , N − 1. Let Γ(t) = x0 + x1t+ . . .+ xN−1t

N−1. Then

DFTN, ζ(x0, . . . , xN−1) =
(
Γ(ζ0), . . . ,Γ(ζN−1)

)
.

The DFT matrix is a Vandermonde matrix composed of the powers of a primitive root,

ζ0, ζ1, . . . , ζN−1.

At the heart of the theory of fast Fourier transforms lies a technique of decom-
posing composite-order DFTs from the work of J. Cooley and J. Tukey [70].

Lemma 2.1 ([70]). Let ζ be a primitive root of degree P ·Q. Then

CAL(DFTPQ, ζ) 6 P · CAL(DFTQ, ζP ) +Q · CAL(DFTP, ζQ) + (P − 1)(Q− 1).

� For any p = 0, . . . , P − 1 and q = 0, . . . , Q− 1, write

x∗pQ+q =

PQ−1∑
I=0

ζI(pQ+q)xI =

Q−1∑
i=0

P−1∑
j=0

ζ(iP+j)(pQ+q)xiP+j =

=

Q−1∑
i=0

P−1∑
j=0

ζ iqP+jpQ+jqxiP+j =
P−1∑
j=0

(ζQ)jp · ζjq ·
Q−1∑
i=0

(ζP )iqxiP+j. (2.7)

The inner sums are computed by DFTs of order Q. The results are multiplied by
powers of the primitive root ζ (among PQ multiplications, P +Q− 1 multiplications
are performed by unit — those with j = 0 or q = 0). Finally, the outer sums are
computed via DFTs of order P .

• If GCD(P,Q) = 1, then a more economical way of computation is possible, which does not require
additional multiplications by powers of ζ. It was found by I. Good [111] in the late 1950s.

For I = 0, . . . , PQ− 1 denote xI = xi, j , where i = I mod Q and j = I mod P . Let a, b be the
Bezout coefficients from the equality aP + bQ = 1. Note that I = (iaP + jbQ) mod PQ.

For an arbitrary K = 0, . . . , PQ − 1 set s = bK mod P and t = aK mod Q. It is easy to see
that K = (sQ+ tP ) mod PQ.
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Finally, observe that if ζ is a primitive root of order PQ, then ζbQ
2

= ζQ(1−aP ) = ζQ and
similarly ζaP

2

= ζP . Now the following identity is easy to verify:

x∗K =

PQ−1∑
I=0

ζIKxI =

P−1∑
j=0

Q−1∑
i=0

ζ(iaP+jbQ)(sQ+tP )xi, j =

=

P−1∑
j=0

Q−1∑
i=0

ζ(iatP 2+jbsQ2)xi, j =

P−1∑
j=0

Q−1∑
i=0

(ζP )it(ζQ)jsxi, j =

P−1∑
j=0

(ζQ)js
Q−1∑
i=0

(ζP )itxi, j .

Calculations by these formulas require only Q DFTs of order P and P DFTs of order Q. However,

the scope of application of Good’s method is narrower than for the Cooley—Tukey method.

By recursively applying Lemma 2.1 and taking into account CAL(DFT2) = 2, we
prove3)

Theorem 2.4 ([70]). CAL(DFT2k) 6 3k2k−1 − 2k + 1.

• The circuit from Theorem 2.4 contains k2k additions/subtractions and (k − 2)2k−1 + 1 scalar

multiplications by powers of the root other than ±1. The first bound has not been improved yet,

however, the scalar multiplicative complexity of DFT of order n is actually O(n) [333, 125], but this

bound comes at the cost of a significant increase in additive complexity.

Parallel prefix circuits /2

Michael John Fischer
Yale University, since 1981

Consider a system of prefix sums

x1 ◦ x2 ◦ . . . ◦ xi, i = 1, . . . , n, (2.8)

over some semigroup (G, ◦) with an associative, but not
necessarily commutative, addition operation. Circuits over
the basis of a single operation {◦} that implement this sys-
tem are usually called prefix circuits.

The complexity of system (2.8) is obviously n − 1, but
the depth of the minimal circuit is also n− 1. Back in the
1960s, due to the needs of some applications, it became
necessary to construct parallel prefix circuits, i.e. circuits
of depth O(log n). The question is: what could be the
complexity of such circuits. A more specific question is: is
it possible to construct a prefix circuit of the minimal possible depth dlog2 ne and
complexity O(n)? An affirmative answer was given by R. Ladner and M. Fischer [182].

In [182] a family of prefix circuits Πk(n) is proposed. The circuit Πk(n) satisfies
two conditions:

(∗) implements system (2.8) with depth dlog2 ne+ k;
(∗∗) implements the maximal prefix sum x1 ◦ x2 ◦ . . . ◦ xn with depth dlog2 ne.
The Ladner—Fischer method combines two variants of the dividing-by-halves

principle: partitioning the set of variables into groups with major and minor indices,
and partitioning into groups with even and odd indices.

3Strictly speaking, in [70] a weaker complexity estimate of 2k2k is proven.
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The design of the circuit Π0(n) follows the first variant. The circuit is arranged
as follows:

a) the sums σi = x1 ◦ . . . ◦ xi, 1 6 i 6 dn/2e, are computed by the circuit
Π1(dn/2e);

b) the sums τi = xdn/2e+1 ◦ . . . ◦ xi, dn/2e < i 6 n, are computed by the circuit
Π0(bn/2c);

c) the remaining sums x1 ◦ . . . ◦ xi, dn/2e < i 6 n, are computed as σdn/2e ◦ τi.
For k > 1, the constructions of circuits Πk(n) are obtained from the even-odd

partition:
a) first, the sums zi = x2i−1 ◦ x2i, 1 6 i 6 bn/2c, are computed. For odd n, we

additionally set zdn/2e = xn;
b) the sums σi = x1◦ . . .◦x2i, 1 6 i 6 bn/2c, and the sum x1◦ . . .◦xn = z1◦ . . .◦zj

are computed by the circuit Πk−1(dn/2e);
c) the remaining sums x1 ◦ . . .◦x2i−1, 2 6 i 6 bn/2c, are computed as σi−1 ◦x2i−1.
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Figure 2.1: Ladner—Fischer prefix circuits

The described circuits are shown in Fig. 2.1 (rounding in indices and arguments is
omitted). It is easy to verify that the circuits Πk(n) indeed satisfy conditions (∗), (∗∗).

Let {Φk} denote the sequence of Fibonacci numbers: Φ1 = Φ2 = 1, Φk+1 =
Φk + Φk−1. Denote by Pk(n) the minimal complexity of a prefix circuit on n inputs
satisfying the depth constraint dlog2 ne+ k.

Theorem 2.5 ([182]). For k 6 m,

C{◦}(Πk(2
m)) = 2(1 + 2−k)2m − Φ5+m−k + 1− k. (2.9)

Hence, Pk(n) 6 2(1 + 2−k)n.

I By construction,

C(Π0(n)) = C(Π0(bn/2c)) + C(Π1(dn/2e)) + bn/2c, (2.10)

C(Πk(n)) = C(Πk−1(dn/2e)) + 2bn/2c − 1, (2.11)

from where the required relations can be easily deduced by induction. �

In particular, in the most interesting case k = 0 we obtain



28 CHAPTER 2. BISECTION METHOD

Corollary 2.1. P0(2m) 6 4 · 2m − Φm+5 + 1 ∼ 4 · 2m.

• The author in [291, 292] established the tight estimate

P0(2m) 6 3.5 · 2m − (8.5 + 3.5(m mod 2))2bm/2c +m+ 5, (2.12)

which is attained in some semigroups (G, ◦). As a consequence (from the construction), P0(n) 6 3.5n

for any n. Also in [291, 292] the minimal possible complexity of universal prefix circuits satisfying

conditions (∗), (∗∗) in the case n = 2m was established. It turns out that the way of constructing

Πk(2m) circuits in the Ladner—Fischer method is optimal for all k except k = 1. The question

of the existence of more economical commutative prefix circuits4) remains open. In [291, 292] it is

also shown that in the special case of the group (B,⊕) the upper bound (2.12) can be improved to

36n/11.

Parallel prefix circuits have numerous applications (see, e.g., the survey [36]),
the most famous of which are prefix adders. This method goes back to the work of
Yu. P. Ofman [231]. The advantage of this approach is the possibility of constructing
adders with various useful properties depending on the type of the chosen prefix
circuit (there are many known variants of such circuits). In particular, it is easy to
achieve logarithmic depth while maintaining a linear order of complexity (the depth
of the standard adder is linear, see Fig. 1.2).

Recall that the heart of an n-digit integer adder is the computation of a system
of functions (carries)

ci = Fi(X, Y ) = yi−1 + xi−1(yi−2 + . . .+ x2(y1 + x1y0) . . .), i = 1, . . . , n, (2.13)

see (1.2), (1.3).
Let us introduce a binary operation ◦ on vectors of height 2:(

f1

p1

)
◦
(
f2

p2

)
=

(
f2 + p2f1

p2p1

)
. (2.14)

It is easy to verify that this operation is associative:(
f2 + p2f1

p2p1

)
◦
(
f3

p3

)
=

(
f3 + p3f2 + p3p2f1

p3p2p1

)
=

(
f1

p1

)
◦
(
f3 + p3f2

p3p2

)
.

Now formula (2.13) for the carry function can be written as(
Fi

xi−1 · . . . · x0

)
=

(
y0

1

)
◦
(
y1

x1

)
◦ . . . ◦

(
yi−1

xi−1

)
. (2.15)

Thus, the problem of computing all carries is reduced to the implementation of a
system of prefix sums of the form (2.8).

A single operation ◦ can be implemented by a circuit over B2 of complexity 3 and
depth 2. Therefore, based on a circuit that computes n prefix sums with complexity C
and depth D, one can construct an adder circuit of complexity 3(C+n)−1 and depth
2D + 2.

4That is, over groups (G, ◦) with a commutative operation ◦.
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Parallel adders. Khrapchenko’s method /2

Valery Mikhailovich
Khrapchenko

Institute of Applied Math.,
USSR Acad. Sci./ RAS,
Moscow, 1966 to 2019

The depth of a prefix n-digit adder cannot be less than
2 log2 n. A more careful study of expressions (2.13) led
V. M. Khrapchenko [154] to construct an adder of asymp-
totically optimal depth ∼ log2 n. For generality, we will
assume that the calculations are performed over the mono-
tone arithmetic basis A+.

Theorem 2.6 ([154]). For the function Fn from (2.13),
DA+(Fn) 6 log2 n+

√
2 log2 n+O(1).

I Consider the following functions:

Fr,m(X, Y ) = xm+r−1 · . . . · xm+1 · xm · Fm(X, Y ). (2.16)

In particular, F0,m = Fm. From (2.13) follows a decomposi-
tion of the form

Fr,m+n = Fr,m + Fr+m,n (2.17)

(we omit the arguments of the functions here for brevity). Denote d(s, k) =
D(Fs·2k, 2k). Obviously, d(s1, k) 6 d(s2, k) when s1 6 s2. Therefore, as a consequence
of (2.16) and (2.17),

d(2l, k) 6 max{k + l, d(0, k)}+ 1, (2.18)

d(s, k) 6 d(2s+ 1, k − 1) + 1. (2.19)

Lemma 2.2. For C2
l < m 6 C2

l+1, we have d(0,m) 6 m+ l + 1.

� The inequality is proved by induction on m with base m = 1. To prove the
induction step from m− 1 to m = C2

l + r, by applying inequality (2.19) r times, and
then (2.18), we obtain

d(0,m) 6 d(2r − 1, C2
l ) + r 6 C2

l+1 + r + 1 = m+ l + 1.

To finish the proof of the theorem, it remains to substitute the value m =
dlog2 ne into Lemma 2.2 and observe that the condition C2

l < m 6 C2
l+1 implies

l = d(
√

1 + 8m− 1)/2e. �

When implementing carries according to rules (1.3) we establish

Corollary 2.2. DB0(Σn) 6 log2 n+
√

2 log2 n+O(1).

• In [176] S. R. Kosaraju proved the lower bound DA+
(Fn) > log2 n+

√
(2− o(1)) log2 n. Conse-

quently, the result of Theorem 2.6 cannot be significantly improved without additional assumptions
about the properties of a semiring in which the calculations are performed. M. I. Grinchuk showed
that in the boolean semiring {B, ∨, ∧} the bound can be improved [114], see below on p. 96. The
question of the possibility of refining the bound in the field F2 remains open.
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Direct application of the formulas of Theorem 2.6 leads to an adder of nonlinear complexity.

Having slightly modified the computation method, Khrapchenko [154] constructed an n-bit adder

of linear complexity (12 + o(1))n over the basis B0 at the cost of increasing the depth within

log2 n + O(
√

log n). In [103] it is shown that an adder of such complexity can be implemented

with the depth log2 n+
√

(2 + o(1)) log2 n. Over the basis B2 the complexity of adders decreases to

(8 + o(1))n.

Other applications

The scope of the method in the theory of fast computing is so vast that any detailed description
of all possible applications would take up a whole book, or even more than one. Guided by the
principle of respect for information5), we will only briefly list a few more important problems where
the method works efficiently.

Transition between number systems. A simple and asymptotically fast algorithm for conversion
a number between number systems with different bases was proposed by A. Schönhage6).

To convert a number A from a b-ary system to binary, split it in half, A = A1b
k + A0, then

convert the “halves” A0 and A1 to the binary representation by a recursive call of the algorithm.
For number bk the binary representation can be considered precomputed; it remains to perform
the multiplication and addition of binary numbers. In the opposite direction, an n-digit binary
number A is divided with remainder by the power bk � 2n/2, so we obtain A = A1b

k + A0. It
remains to convert the halves A0 and A1 to the b-ary representation.

Thus, for the complexity of the operator Tn,b of converting a number of size < 2n from a b-ary
representation to binary, and for the complexity of the inverse operator, the following recurrence
relations hold:

C(Tn,b) 6 2C(Tn/2,b) + C(Mn/2) +O(n), C(T−1
n,b ) 6 2C(T−1

n/2,b) + C(QRn,n/2),

where QRn,m is the operator of division with remainder of an n-digit number by an m-digit number.
In terms of the smoothed multiplication complexity functional7) M(n) the above relations resolve

as C(Tn,b),C(T−1
n,b ) 4 M(n) log n, since C(QR2n,n) 4 M(n) (proved by S. Cook [69]; see further on

p. 53). By a result of D. Harvey and J. van der Hoeven [119], M(n) 4 n log n.

Fast GCD computation. The dividing-by-halves approach allowed to radically reduce the com-
plexity of classical Euclidean algorithms for computing GCD. Having improved the original method
of D. Knuth [166], A. Schönhage in [276] obtained the upper bound8) C(GCDn) 4 M(n) log n.

The idea of the method is as follows. An operator HGCDn(A,B) = (a, b,M) is introduced,
which, given two n-digit numbers A,B, produces a pair of numbers a, b of length ≈ n/2 while
preserving GCD, as well as a transition matrix M , whose elements also have size ≈ n/2. For
example, one can require the fulfillment of the conditions

GCD(a, b) = GCD(A,B), a > 2n/2 > b,

(
a
b

)
= M

(
A
B

)
.

Thus, the computation of GCD(A,B) is reduced to the operation (a, b,M) = HGCDn(A,B) and
the computation of GCD(b, a mod b) with half-size numbers. Therefore,

C(GCDn) 6 C(GCDn/2) + C(HGCDn) + C(QR2n,n) +O(n log n), (2.20)

5Reduce the volume of presentation where there is a lot of material, and reproduce the material
in full where there is little (formulated by A. T. Fomenko in relation to the analysis of historical
chronicles).

6Apparently, the method was never published by the author. Cited from [167].
7Satisfying the conditions M(n) > C(Mn) and M(x+ y) > M(x) + M(y) for all x, y.
8Strictly speaking, GCD algorithms are usually stated for the model of programs allowing branch-

ing. The adaptation to a circuit implementation is carried out similarly to how it was done for the
binary GCD algorithm above, and does not affect the order of complexity.
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where the last term takes into account the specifics of the implementation of the algorithm by
circuits (as in the proof of Theorem 1.4).

The central point of the method is the implementation of HGCD. It is based on the observation
due to D. Lehmer [185]: the first steps of the Euclidean algorithm are determined by the most
significant digits of numbers A and B. In general terms, the sequence of steps for computing
HGCDn(A,B) is as follows. Let A = A12n/2 +A0 and B = B12n/2 +B0.

1. First, compute (a′, b′,M1) = HGCDn/2(A1, B1). With the use of the resulting transition
matrix, we can obtain a new pair of numbers A′, B′ that satisfy the condition GCD(A′, B′) =

GCD(A,B) and have a length within 3n/4 digits. In the first approximation,

(
A′

B′

)
= M1

(
A
B

)
,

but a correction of several division-with-remainder steps forward or even backward may be required.
2. Writing A′ = A32n/4 + A2 and B′ = B32n/4 + B2, we perform another recursive call to the

HGCD procedure producing (a′′, b′′,M2) = HGCDn/2(A3, B3). Applying matrix M2 of transition
from A′, B′, we obtain a desired pair a, b of length ≈ n/2 bits, as well as the transition matrix M .

Up to the required correction,

(
a
b

)
= M2

(
A′

B′

)
and M = M2M1.

The need of correcting results at each step and additional checks significantly complicate a
careful presentation of the method. Principally, it is necessary to ensure that the intermediate steps
of the algorithm do not generate too small numbers. This would lead to the impossibility of applying
the Lehmer rule: the result would depend on those lower digits that were not taken into account in
the calculations.

As a result, we obtain a recurrence relation

C(HGCDn) 6 2C(HGCDn/2) +O(C(Mn) + C(QR2n,n) + n log n),

which leads to C(HGCDn) 4 M(n) log n and, together with (2.20), to C(GCDn) 4 M(n) log n.
By now the method has received a number of modifications. Schönhage himself in [279] proposed

to use division iterations with the choice of the largest remainder for calculating the GCD, which
made it possible to simplify the control of convergence rate and the verification of correctness of the
method. This algorithm, together with a more efficient HGCD procedure proposed by N. Möller, is
described in [219]. D. Stehlé and P. Zimmermann [309] constructed a fast GCD algorithm based on
the right-hand division with remainder (in this case, the control of the method parameters is also
simpler). Finally, the method of D. Bernstein and B.-Y. Yang [30] is essentially based directly on
the iterations of the binary GCD algorithm (see p. 13). The method [30] has advantage comparing
to the above-mentioned ones due to a small number of branches and extremely simple control of
convergence and correctness.

An arrangement of the fast GCD algorithm for a polynomial ring was made by R. Moenck
in [218], a more modern version of the method is described in [30], and a substantially optimized
version — in [130]. The analysis of the polynomial algorithm is somewhat simpler due to the absence
of carries inside additions (so the correction of intermediate results is simpler). Circuits for the GCD
of polynomials over general rings must inevitably include not only arithmetic operations, but also,
for example, comparison operations.

Sorting and monotone circuits for threshold functions. Monotone threshold boolean func-
tions of n variables together form a sorting operator (of a boolean set) SORTn = (T 1

n , T
2
n , . . . , T

n
n ),

where T kn = (x1 + . . . + xn > k) is the monotone symmetric function of n variables with threshold
k. Therefore, the problems of computing threshold functions and sorting (or selection, if we are
speaking about a single component of the operator) are closely related.

A popular model for implementing sorting is comparator circuits. A comparator is a subcircuit
that orders two input numbers; in the boolean case, it performs the mapping (x, y)→ (x∧ y, x∨ y).
Comparator circuits do not allow branching of comparator outputs9), see also below on p. 60.

9A comparator circuit can be represented as a sequence of ordered n-element sets that satisfies
the following conditions: 1) it starts with the input set; 2) each subsequent set is obtained from
the previous one by ordering one pair of elements; 3) it ends with a linearly ordered set (or, more
generally, contains the required partial order).
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In a complete basis, C(SORTn) � n trivially holds. Bounds on the complexity of monotone
circuits are obtained by transferring known results on the complexity of comparator circuits. The
naive method (compare all elements pairwise) leads to CBM

(SORTn) 4 n2. A significantly more
efficient sorting method with an elegant application of the bisection principle was proposed by
K. Batcher [16]. The method is as follows. The set to be sorted is divided in half, sorting is
performed in each of the halves, then the sorted subsets are merged. Thus,

CBM
(SORT2n) 6 2CBM

(SORT2n) + CBM
(MRGn,n),

where MRGm,n denotes the operator10) of merging of sorted sets of size m and n.
Merging two sets is also done recursively by the bisection method. Separately, merging all even

elements of both sets and all odd elements is done. To sort the two lists together, only n − 1
comparisons are sufficient. Consequently,

CBM
(MRGn,n) 6 2CBM

(MRGn/2,n/2) + 2(n− 1),

whence CBM
(MRGn,n) 4 n log n, therefore, CBM

(SORTn) 4 n log2 n. For a detailed exposition of
the method, see [168, 57].

Later, M. Ajtai, J. Komlós, and E. Szemerédi [4, 5] proved that in fact CBM
(SORTn) 4 n log n

(also proven in Theorem 5.6 below), but for reasonable values of n Batcher’s method takes advantage.
When computing individual functions T kn with small thresholds k, the method of A. Yao [337]

which is asymptotically optimal in the comparator circuit model works well. In it, input elements
are divided into pairs, which are ordered. Note that among the younger elements of the pairs there
are at most k/2 of the k largest elements of the input set. Therefore, we choose k largest elements
among the greater elements of the pairs and bk/2c largest elements among the younger elements of
the pairs, and then determine k largest elements among them. So we obtain the recurrence relation

CBM

(
T 1
n , . . . , T

k
n

)
6 n+ CBM

(
T 1
n/2, . . . , T

k
n/2

)
+ CBM

(
T 1
n/2, . . . , T

k/2
n/2

)
+ CBM

(MRGk,k/2).

A careful transition of Yao’s method to the model of monotone circuits, carried out by the au-
thor [301]11), leads to a bound valid for constant or slowly growing k:

CBM
(T kn ) . (blog2 kc+ blog2(4k/3)c)n.

Combining the results of V. E. Alekseev [7] or Yao [337] (designs of comparator circuits for
threshold functions) with [4, 5] provides a general upper bound CBM

(T kn ) 4 n log k. The best known
universal bound, valid for any threshold value, CBM

(T kn ) . 6n log3 n was obtained by S. Jimbo and
A. Maruoka in [136].

Multiplicative complexity of polynomials. Consider the problem of computing an arbitrary
polynomial f(x) = anx

n + . . .+ a1x+ a0 by circuits over the complete arithmetic basis AR or AC.
The simplest way to compute a polynomial is Horner’s scheme:

f(x) = (. . . ((anx+ an−1)x+ . . .)x+ a0.

It involves n additions and n multiplications. The first estimate (for the number of additive opera-
tions) is generally best possible, as shown by E. G. Belaga [21] and V. Ya. Pan [233, 234]. They also
proved (for the fields C and R, respectively) that n/2 + O(1) multiplications are always sufficient.
Moreover, both estimates can be achieved with an accuracy of O(1) in a single circuit.

The methods of Pan and Belaga are quite nontrivial and require rather complicated preliminary
processing of the coefficients12). An elegant way of computation, leading to only slightly worse
estimate of n/2 + O(log n) multiplications, was proposed by M. Rabin and S. Winograd [254], see

10This is a partially defined boolean operator.
11A special method of circuit synthesis for the function T 2

n is additionally used, see Theorem 11.1.
12If the coefficients of a polynomial are also treated as the inputs of the circuit, in other words,

preliminary processing is impossible, then Horner’s circuit is optimal, as Pan proved in [235].
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also [244]. The method is based on the observation that a monic (i.e., with the leading coefficient 1)
polynomial f(x) of degree 2k+1 − 1 can be represented as

f(x) = (x2k

+ a)f1(x) + f0(x), (2.21)

where f0, f1 are monic polynomials of degree 2k − 1. Therefore, after all powers x2, x22

, . . . , x2k

are
prepared, any intermediate polynomial of degree 2m − 1 can be computed by formulas (2.21) via
2m−1 − 1 multiplications.

The number of nonscalar multiplications required to compute a polynomial of degree n is gen-
erally bounded from below by

√
n [244]. The best upper bound, due to M. Paterson and L. Stock-

meyer [244], is
√

2n + O(log n). The method is conceptually close to the method [254] and also
exploits the idea of division in half. A monic polynomial f(x) of degree p(2k+1 − 1) can be repre-
sented as

f(x) = (xp2
k

+ c(x))f1(x) + f0(x), (2.22)

where f0, f1 are monic polynomials of degree p(2k−1) and deg c < p. After all powers x2, x3, . . . , xp

and x2p, x22p, . . . , x2kp are computed, each intermediate polynomial of degree p(2m − 1) may be

computed by formulas (2.22) via 2m−1 − 1 multiplications. The required estimate follows when

choosing p ≈
√
n/2.



Chapter 3

Method of common parts c

The essence of the method is to select fragments that can be used multiple
times. Surprisingly, this idea alone leads to a number of nontrivial asymp-
totically tight results.

Addition chains. Brauer’s method c

Addition chains are (universal) additive one-input one-output circuits. They imple-
ment transforms x → nx, but traditionally the input of the chain is supposed to be
the constant 1, then the output is a natural number n.

Alfred Theodor Brauer
University of North Carolina,

1942 to 1964

Starting from the binary representation of a number,
an addition chain for n = [nk, nk−1, . . . , n0]2 can be con-
structed by Horner’s formula

n = (. . . (2nk + nk−1)2 + . . .+ n1)2 + n0. (3.1)

This is known as the binary method — it yields the estimate
L(n) 6 log2 n+ν(n)−1 < 2 log2 n, where ν(n) is the weight
of n (the number of ones in binary notation). An obvious
lower bound is L(n) > log2 n (at each step, the size of the
computed number increases by a maximum of two times).
A. Brauer [46] observed that in fact the lower bound is
asymptotically tight.

Theorem 3.1 ([46]). L(n) 6 log2 n+ (1 + o(1)) log2 n
log2 logn

.

I Let n < 2tk. By organizing the digits of n into a matrix A of size t × k, we can
write

n =
(
1, 2k, 22k, . . . , 2(t−1)k

)
·


n0 n1 · · · nk−1

nk nk+1 · · · n2k−1
...

...
. . .

...
n(t−1)k n(t−1)k+1 · · · ntk−1

 ·


1
2
...

2k−1

 . (3.2)

34
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The central point of the method is the choice of parameters satisfying t > 2k. Thus,
the matrix A ends up having many repeating rows.

Lemma 3.1. For an arbitrary boolean t× k matrix A, L(A) 6 2k − k − 1 holds.

� There exist only 2k − k − 1 different rows of length k and weight > 2. It is easy
to compute all such rows using one operation for each.

Carrying out calculations according to formula (3.2) from right to left, by
Lemma 3.1 we obtain

L(n) 6 (k − 1) + (2k − k − 1) + (k + 1)(t− 1),

having in mind that the 2k-ary version of formula (3.1) is used for the last multipli-
cation. It remains to choose k ≈ log2 log2 n− 2 log2 log2 log2 n. �

• P. Erdős [84] showed that for almost all n we have

L(n) > log2 n+ (1− o(1))
log2 n

log2 log n
.

Moreover, as V. V. and D. V. Kochergin [170] established, both in the upper bound of Theorem 3.1

and in the lower bound of Erdős we can substitute (2 + o(1)) log2 log logn
log2 logn for o(1). The best absolute

lower bound up to date is L(n) > log2 n + log2 ν(n) − 2.13 proven by A. Schönhage [277] (the

accuracy of this result is emphasized by an easily verifiable fact that the bound blog2 nc+dlog2 ν(n)e
is achieved for any value of ν(n)).

Asymptotically minimal circuits for boolean functions c

A boolean function of n variables can be specified by a size-2n table of its values,
and in general there is no shorter code1). A well-known result of C. Shannon [307]
shows that O(2n/n) elements are sufficient for encoding functions by (switching)
circuits — so it occurs that the information about a function is contained rather in
the topology of circuits than in elements. D. Muller [224] adapted Shannon’s method
to boolean circuits, and soon O. B. Lupanov developed an asymptotically optimal
synthesis method [201]. Lupanov’s method caused a sensation: it was hard to expect
that a seemingly crude cardinality lower bound & 2n/n would be so precise and
constructively achievable in the asymptotic sense. The method is based on a simple
result of Lupanov on the additive complexity of boolean matrices [200].

Lemma 3.2 ([200]). Assume q < log p. Then for any boolean p× q matrix A,

L(A) 6

(
1 +O

(
log log p

log p

))
pq

log2 p
.

1Since there are 22n

different functions of n variables.
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� Divide the matrix into vertical strips of width k: A = (A1|A2| . . . |As), where
s = dq/ke. By Lemma 3.1, we obtain

L(A) 6 L(A1) + . . .+ L(As) + (s− 1)p 6 s2k + pq/k.

It remains to choose k ≈ log2 p− log2 log2 p.

Note that the lemma uses the same technique as Theorem 3.1 — reduction to the
computation of supernarrow matrices. Thus, using repeated fragments of sums in
different rows allows one to improve a trivial bound L(A) 6 p(q − 1).

• In [200] the complexity bound is proved for rectifier circuits (of depth 2), but the proof for

additive circuits is the same. It is easy to check that the bound of Lemma 3.2 is asymptotically

tight for log q ≺ log p [200] (i.e., when the matrix A is narrow enough).

Theorem 3.2 ([201]). For any boolean function f of n variables,

CB2(f) 6

(
1 +O

(
log n

n

))
2n

n
.

Oleg Borisovich
Lupanov

Moscow University,
1959 to 2006

I Divide the set of n variables into two groups X, Y , where
|X| = k and |Y | = n−k. Let XJ =

∏
j∈J xj, J ⊂ {1, . . . , k},

denote products (monomials) of the variables of the first
group, and let YI =

∏
i∈I yi, I ⊂ {1, . . . , n−k} denote mono-

mials of the variables of the second group. Any boolean
function f(X, Y ) can be represented as a Zhegalkin polyno-
mial

f(X, Y ) =
⊕
I

YI
⊕
J

fI,JXJ , (3.3)

where F = (fI,J) is a boolean matrix of size 2n−k× 2k (note
that in fact formulas (3.2) and (3.3) are similar).

The computation of all XJ is performed by a linear op-
erator of size 2k×k over (B, ∧). According to Lemma 3.1 it
can be implemented by a circuit of complexity 2k. Similarly,
the complexity of computing all YI does not exceed 2n−k.
The complexity of the linear transform with the matrix F (over (B, ⊕)) is estimated
by Lemma 3.2. Another 2 · 2n−k operations are required for multiplying intermediate
sums by monomials YI and for computing the outer sum in (3.3). Thus,

CB2(f) 6 3 · 2n−k + 2k +

(
1 +O

(
log(n− k)

n− k

))
2n

n− k
.

By choosing k ≈ 2 log2 n we obtain the statement of the theorem. �

• In the basis B0, the same bound can be obtained if instead of (3.3) we apply the formula f =∨
I YI

∨
J fI,JXJ derived from a DNF (disjunctive normal form), where XJ and YI are elementary

conjunctions (products of variables and their negations). All elementary conjunctions of k variables
may be computed with complexity ∼ 2k (see Lemma 3.5 below).
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Actually, in [201] Lupanov obtained a more general result CB(f) ∼ 2n/((s − 1)n) for almost
all functions of n variables, where s is the maximum number of essential variables for functions
of a complete finite basis B. Asymptotic high-precision complexity estimates were obtained by
S. A. Lozhkin [193, 196]: for example, over the basis B ∈ {B0,B2}, they take the form(

1 +
log2 n−O(1)

n

)
2n

n
. CB(Pn) .

(
1 +

log2 n+ log2 log n+O(1)

n

)
2n

n
.

Lemma 3.2, establishing the complexity of the class of boolean p× q matrices, is of independent
value. For example, it allows to generalize Theorem 3.1 to the case of computing several numbers.
Let n = maxi ni and s log n→∞. Then

L(n1, . . . , ns) 6 log2 n+ (1 + o(1))
s log2 n

log2(s log n)
+O(s). (3.4)

� Let n < 2tk. By transposing (3.2), we can write

ni = bAiC
T , b = (1, 2, 22, . . . , 2k−1), C =

(
1, 2k, 22k, . . . , 2(t−1)k

)
,

where Ai is a boolean k × t matrix composed of the digits of ni. Then
n1

n2

...
ns

 = BACT , B =


b 0 . . . 0 · · · 0 . . . 0

0 . . . 0 b · · · 0 . . . 0
...

...
. . .

...
0 . . . 0 0 . . . 0 · · · b

 , A =


A1

A2

...
As

 .

As a consequence,

L(n1, . . . , ns) 6 L(B) + L(A) + L(CT ) 6 2s(k − 1) + L(A) + (t− 1)k.

If log s 4 log log n, we set t ≈ log2
2 log2 n. Otherwise (i.e., for large s), we choose k = 1. Further,

the complexity of the matrix A (of size sk × t) is estimated following Lemma 3.2.

Bound (3.4) is a special case of a more general result of N. Pippenger [249] on the complexity
of integer matrices. It is easy to verify by the cardinality method that in the class of all sets of
s numbers of size 6 n the above bound is asymptotically tight [249]. In the case of individually
specified constraints ni 6 ri S. B. Gashkov and V. V. Kochergin [104] refined bound (3.4) to

L(n1, . . . , ns) 6 log2 n+ (1 + o(1))
R

log2R
+O(s), R = log2(r1 · . . . · rs). (3.5)

It is also tight in its class. Later Kochergin refined secondary terms in both estimates (3.4) and (3.5),

see [169].

Circuits for linear boolean operators c

Lemma 3.2 establishes an asymptotic complexity for a class of sufficiently narrow
boolean matrices. In the most interesting case of square matrices, an asymptotically
tight result may be obtained by a more subtle application of the common part method
proposed by E. I. Nechiporuk [226] (see also [228]).

Theorem 3.3 ([226]). For an arbitrary boolean n× n matrix A,

L(A) .
n2

2 log2 n
.
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Eduard Ivanovich
Nechiporuk

Leningrad University,
1960s to 1970

I First, we prove an auxiliary estimate.

Lemma 3.3. For any boolean p× q matrix A,

L(A) 6 |A|/2 + q + p2.

� We divide the ones in each column of the matrix into
pairs. Thus, an arbitrary row σi is represented as the sum
of substrings σ{i,j} common with other rows σj, j 6= i, and
an unpaired substring σ′i. We denote by A1 the total weight
of substrings σ{i,j}, i 6= j, and by A2 the total weight of
substrings σ′i. Then 2A1 + A2 = |A| and A2 6 q.

We compute all substrings σ{i,j} and σ′i, and then the
sums in each row. This requires at most A1 + A2 + p2 6
|A|/2 + q + p2 operations.

• A slightly simpler proof of the lemma may be obtained by applying the transposition principle

(Lemma 8.1).

The proof of the theorem begins in the same way as in Lemma 3.2. We divide the
matrix into vertical strips of width k: A = (A1|A2| . . . |As), where s = n/k (for sim-
plicity, assume k|n). Calculating the sums in the strips corresponds to representing
the matrices Ai as products BiUk of matrices Bi of size n × 2k, having a single one
in each row, and 2k × k matrices Uk composed of all possible rows of length k:

A = (B1|B2| . . . |Bs) ·


Uk 0 · · · 0
0 Uk · · · 0
...

...
. . .

...
0 0 · · · Uk

 .

We split the matrix B = (B1|B2| . . . |Bs) into horizontal strips of height p and
compute the sums in each strip (which is a matrix of size p × s2k and weight ps)
independently by the method of Lemma 3.3. As a result, we obtain

L(A) 6 sL(Uk) + |B|/2 + dn/pe(s2k + p2) = ns/2 +O(ns2k/p+ np).

The required upper bound follows when choosing k ≈ log2 n − 3 log2 log2 n and p �
n/ log2 n. �

• In fact, Nechiporuk [226] obtained a more general result, showing that the asymptotically tight
bound

L(A) 6 (1 + ε)
mn

log2(mn)
, ε = o(1), (3.6)

for the complexity of boolean m×n matrices holds for log2 n ∼ α log2m, where α = r−1 + r/s and
r, s ∈ N. The matching lower bound L(A) > (1− δ)mn/ log2(mn), δ � log logn

logn , for almost all m×n
matrices A can be established by the standard cardinality argument.

N. Pippenger [248] removed the restrictions on m,n, proving the validity of (3.6) for any m,n,

where logm � log n, with ε �
√

log logn
logn . The author in [298] showed that for m ∈ nµ log±O(1) n,

µ ∈ Q, we can assume ε � log logn
logn , as in the lower bound.
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The result for boolean matrices implies the most general form of the complexity bound for
integer matrices [249] (slightly refined in [305]). Let A be an m× n matrix with elements 6 q, and
mn log q →∞. Then

L(A) 6 min{m, n} log2 q + (1 + o(1))
mn log2 q

log2(mn log q)
+ n. (3.7)

It can be proved similarly to bound (3.4) on the complexity of vectors, see [305].

Complexity of monotone circuits. Principle of local coding c e

The problem of asymptotic complexity of the class Mn of monotone functions of
n variables is related to their efficient enumeration (encoding). A suitable pro-
cedure was first proposed by D. Kleitman in 1969 [163], who established that

|Mn| = 2(1+o(1))C
n/2
n . After this, it became possible to develop optimal methods

for implementing monotone functions. For boolean circuits over complete bases, the
corresponding result was obtained by A. B. Ugol’nikov [321]: in particular,

CB0(Mn) ∼ C
n/2
n

n
∼ 2n

n3/2
√
π/2

.

The proof of the same asymptotic bound in the model of circuits over the monotone
basis BM turned out to be much more complicated. This problem was finally solved
by A. E. Andreev [14].

• The asymptotics of the number of monotone functions was found by A. D. Korshunov [174] in

a rather difficult way. Another proof was proposed by A. A. Sapozhenko in [271]. For more details

on the history of the question, see survey [175].

We present a simpler, although nontrivial, result on the order of complexity of
monotone circuits, which was established by N. P. Red’kin [258]. A simplified proof
was proposed by A. V. Chashkin in [58].

The proof method illustrates a general approach to constructing optimal circuits
proposed by O. B. Lupanov [205] and called by him the principle of local coding. The
idea is to represent a function by such a binary code that the value of the function
on each specific input is determined only by a local fragment of the code. Computing
the function thus consists of (1) determining the required fragment and (2) decoding
this fragment. Both stages must allow for simple implementation.

To encode monotone functions, we use partitions of a boolean cube into monotone
chains and the fact that a function can only change value once on each chain.

Theorem 3.4 ([258]). CBM (Mn) 4 C
n/2
n /n.

I Let n = 2k + m. Recall that the boolean cube Bk can be partitioned into C
k/2
k

monotone chains (a consequence of Dilworth’s theorem, see, for example, [138]). We
write

B2k = Bk × Bk =
(⋃

α
)
×
(⋃

β
)

=
⋃
α⊂Bk

⋃
β⊂Bk

(α× β),

where α, β are monotone chains from the (chosen) optimal partition of Bk.
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Lemma 3.4 ([258]). The number of different monotone boolean functions defined on

the Cartesian product of monotone chains α× β is C
|α|
|α|+|β|.

� Let α = (α1 ≺ . . . ≺ αp) and β = (β1 ≺ . . . ≺ βq). Any monotone function
ϕ : α×β → B uniquely corresponds to a sequence of numbers 0 6 k1 6 . . . 6 kp 6 q,
where ki is the number of elements x ∈ β for which ϕ(αi, x) = 1. The number of
such sequences is Cp

p+q.

Fix a partition B2k =
⋃
Ij, where any set Ij (except, perhaps, one) is the union of

products α× β such that k + 2 6
∑

(|α|+ |β|) 6 2k + 2. It follows from Lemma 3.4
that the number of monotone functions defined on Ij does not exceed 22k+2. Since∑

α,β⊂Bk(|α| + |β|) = 2k+1C
k/2
k , the total number t of sets Ij in the partition is at

most 2k+1C
k/2
k /(k + 2).

Let |X| = 2k, |Y | = m. Starting from the monotone DNF, we represent an
arbitrary function f ∈Mn as

f(X, Y ) =
∨
σ∈Bm

fσ(X) · Y σ =
∨
σ∈Bm

Y σ ·
t∨

j=1

fσ,j(X), Y σ =
∏
σi=1

yi,

where a monotone function fσ,j coincides with fσ on the set Ij and is 0 wherever it
is does not contradict monotonicity. Therefore,

f(X, Y ) =
t∨

j=1

∨
s

hj,s(X) ·
∨

σ:fσ,j=hj,s

Y σ, (3.8)

where hj,s runs over a set of distinct functions fσ,j (recall that there are no more than
22k+2 of them for any j).

Any function hj,s can be computed via a monotone DNF as a disjunction of
at most k + 1 monomials of variables X. Finally, the circuit constructed by for-
mula (3.8) contains 22k + 2m conjunctors for computing monomials of variables X
and Y (Lemma 3.1), at most k22k+2t < 24k+3 disjunctors for computing functions hj,s,
at most 2mt elements for computing the internal disjunctions in (3.8), and another
22k+2t internal conjunctors and external disjunctors to complete the computations.
Choosing k = n/4− log2 n, we obtain

CBM (Mn) 6 2mt+ (k + 2)22k+2t+ 22k + 2m .
2m+k+1C

k/2
k

k
∼ 16 · C

n/2
n

n
. (3.9)

�

In this case, a monotone function is defined independently on each of the sets
Ij × Bm, the main complexity resides in the decoding procedure. Theorem 3.2 can
also serve as an illustration of the local coding principle, but coding of a function by
the table of values used in it is trivial.

• The complexity bound (3.9) is quite rough. For example, since almost all chains α in the
partition of the cube Bk have length O(

√
k), for almost all sets Ij one can ensure that the sum of

lengths of the chains satisfies
∑

(|α|+ |β|) = 2k −O(
√
k). Then the bound on t will be reduced by
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about half, to t . 2kC
k/2
k /k. One can reduce the factor in bound (3.9) a little further by applying

Lemma 3.3 to compute the internal disjunctions in (3.8). However, to obtain the correct complexity
asymptotics [14] one needs a much more sophisticated technique.

Various applications of the local coding principle were provided by O. B. Lupanov in [205].

Circuit complexity of the multiplexor function c /2

The idea of extracting common parts is useful not only in general synthesis methods,
but also in computing specific functions. A simple illustration is provided by optimal
circuits for the multiplexor function. The multiplexor function of order n is defined as
µn(X;Y ) = yX , where X is a boolean vector of n address variables, also interpreted
as a number X ∈ [[2n]], and Y is a vector of 2n data variables yi.

The simplest way to construct a multiplexor circuit is provided by the cascade
method: decomposing in the first variable, we obtain

µn(X;Y ) = x1 · µn−1(X ′;Y0) ∨ x1 · µn−1(X ′;Y1),

where X = (x1, X
′), Y = (Y0, Y1). Continuing recursively, we arrive at the estimate2)

CB0(µn) 6 3 · (2n− 1). This estimate turns out to be non-optimal. The reason is that
the factors — elementary conjunctions of variables x1, x2, . . . — independently com-
puted on different “branches” of the cascade circuit intersect, and the computations
are partially duplicated. In an optimal synthesis method proposed by P. Klein and
M. Paterson [162], this drawback is eliminated.

Theorem 3.5 ([162]). CB0(µn) . 2n+1.

I We will need a simple lemma about the complexity of the system {Xσ | σ ∈ Bn}
of all elementary conjunctions of n variables, Xσ =

∏
xσii , where xτ is the boolean

power xτ = x ∼ τ = (x = τ).

Lemma 3.5. CB0({Xσ | σ ∈ Bn}) ∼ 2n.

� The upper bound is obtained trivially by dividing the set of variables in half.

Let X = (X0, X1), |X0| = q, |X1| = n − q. Decompose the function µn in
variables X0:

µn(X;Y ) =
∨
τ∈B q

Xτ
0 · µn−q(X1;Yτ ), (3.10)

where Yτ are independent groups of 2n−q variables Y . Each of the functions µn−q can
be computed as

µn−q(X1;Yτ ) =
∨

σ∈Bn−q
yτ,σ ·Xσ

1 , (3.11)

where we introduce a two-index numbering on the set of variables yi.
All elementary conjunctions of groups of variables X0 and X1 are computed with

complexity of order 2q + 2n−q according to Lemma 3.5. Another 2n+1 + 2q operations

2Or, in general, CB(µn) 6 CB(µ1) · (2n − 1) taking into account µn = µ1(x1;µn−1, µn−1).
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are sufficient to complete the computations by formulas (3.10), (3.11). It remains to
choose q ≈ n/2. �

In fact, the problem of constructing multiplexors is close to the problem of com-
puting arbitrary functions, since the multiplexor function contains as subfunctions
all possible boolean functions of n variables (and even n+ 1 variables, if, in addition
to substituting constants, it is allowed to identify variables with other variables or
their negations).

• As we see, the method of Theorem 3.5 yields the bound CB0
(µn) 6 2n+1+O(2n/2). P. V. Rumyant-

sev [266] announced the tightness of this estimate, which means CB0(µn) = 2n+1 + Θ(2n/2). In a
wider basis, CB2(µn) ∼ 2n+1 follows from the lower bound of W. Paul [247]. A similar bound also
holds for the formula complexity of the function. The only difference is in the remainder term. In
fact, the result of Theorem 3.5 follows directly from O. B. Lupanov’s method of synthesis of switch-
ing circuits [202] in the form ΦB0

(µn) 6 2n+1 + O(2n/n). S. A. Lozhkin and N. V. Vlasov [197]
proved ΦB0(µn) = 2n+1 +(1±o(1))2n/n. For narrower bases, B = {∨, } or B = {∧, }, as V. V. Ko-
rovin [173] showed, the method of Theorem 3.5 also yields an optimal bound, CB(µn) ∼ 3 · 2n (you
just need to express the missing conjunction or disjunction operation through basis functions).

Concerning the complexity of the system of all elementary conjunctions (Lemma 3.5), it is easy

to show that CB({Xσ | σ ∈ Bn}) = 2n + Θ(2n/2) for B ∈ {B0,B2}.
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Potential method U

The potential method is not so much an independent method of synthesis
as a method of control over the key parameters of a circuit, allowing one to
select the best one from a certain family of circuits. The idea is to assign to
the expressions that arise in the process of calculations a simply determined
numerical characteristic (potential), which turns out to be appropriately re-
lated to complexity.

Depth of circuits for summation modulo 3 U /2

Consider the problem of computing the sum of n boolean variables modulo 3 over the
basis B0. The boolean function that checks whether the sum of n boolean variables
is equal to a number r modulo m will be denoted by

MODm,r
n (X) = (x1 + . . .+ xn ≡ r mod m).

The operator of summation of n variables modulo m is defined as MODm
n =

(MODm,0
n , . . . ,MODm,m−1

n ).
Let X = (X1, X2), |X| = n, |X i| = ni. Recursive application of simple formu-

las [206]

MODm,r
n1+n2

(X) =
m−1∨
k=0

MODm,k
n1

(X1) ·MODm,r−k
n2

(X2) (4.1)

by the division-in-half method leads to the bound DB0MODm
n ) 6 (dlog2me+1) log2 n.

In particular, for m = 3 we obtain DB0(MOD3
n) 6 3 log2 n. However, A. Chin [62]

discovered a more economical way of computing via a partition of the set of variables
into unequal parts (a simpler proof is proposed by the author in [297]).

Theorem 4.1 ([62]). DB0(MOD3
n) . 2.89 log2 n.

I Recall that a function f and its negation f have the same depth over the basis B0.
Now note that formula (4.1) has a dual alternative:

MODm,r
n1+n2

(X) =
m−1∧
k=0

(
MODm,k

n1
(X1) ∨MODm,r−k

n2
(X2)

)
. (4.2)
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Let Nk denote the maximal n such that the functions MOD3,r
n are representable

as both conjunctions and disjunctions of formulae of depth k and k − 1. Then from
(4.1), (4.2) it follows that Nk+2 > Nk +Nk−2, which immediately implies

DB0(MOD3
n) 6 2 logϕ n+O(1) < 2.89 log2 n+O(1),

where ϕ = 1+
√

5
2

. �

The proof, although not entirely explicit, exploits the potential function d→ ϕd/2,
which indicates the approximate number of terms in the sum that can be computed
with depth d.

• In [62], Theorem 4.1 was proved in a more complicated way in terms of communication complexity.

For the depth of the summation operator modulo 5, the method yields the bound DB0(MOD5
n) .

3.48 log2 n [62]. Applying special formulas with partitioning the set of variables into three groups,

the author [297] improved the result of Theorem 4.1 to DB0
(MOD3

n) . 2.8 log2 n. In [297], a general

method is also proposed that allows to decrease the depth of summation modulo small primes, see

below on p. 89.

Formula complexity of linear functions in a ternary basis U

Uri Zwick
Tel Aviv University, since 1991

Consider the problem of minimizing the size of formulae for
the linear function Λn = x1 ⊕ x2 ⊕ . . . ⊕ xn over the basis
B3 = {maj3(x, y, z), x, 1}1).

Since any function from U2 is read-once expressible in B3,
ΦB3(Λn) 6 ΦU2(Λn) 4 n2 trivially holds. An illustration of
the more powerful expressive capabilities of the basis B3 is
the formula [65]

x⊕ y ⊕ z = maj3(x, maj3(x, y, z), maj3(x, y, z)). (4.3)

Instead of variables, you can substitute some linear func-
tions into it, which, for n = p + q + r, will lead to the
relation

ΦB3(Λn) 6 3ΦB3(Λp) + 2ΦB3(Λq) + 2ΦB3(Λr). (4.4)

When choosing p = q = r we obtain ΦB3(Λ3n) 6 7ΦB3(Λn), hence, ΦB3(Λn) 4 nlog3 7 <
n1.78. But we can do even better by taking advantage of the non-uniform dependence
of formula (4.3) on the variables.

Theorem 4.2 ([65]). ΦB3(Λn) ≺ n1.74.

1In general, we consider the basis Uk, which serves as a generalization of the basis U2 to the set
of k-ary boolean functions. The basis Uk includes functions that are monotonically non-increasing
or monotonically non-decreasing in each variable, i.e. exactly those functions from which it is
impossible to obtain a linear function of two variables by substituting constants, inversions, and
identifications of variables; for more details, see [60, 65]. It is easy to check that the basis B3 is
equivalent to the basis U3, which means ΦB3(f) = ΦU3(f) for any boolean function f .
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I We will look for a complexity estimate in the form

ΦB3(Λn) 6 c nµ, (4.5)

applying (4.4) recursively with the choice q = r = γn and p = (1 − 2γ)n (here γ, µ
are unknown parameters). Let us relax an assumption that p, q, r should be integers
for a while. To derive (4.5), we need an induction base (small values of n), which is
provided by the choice of the constant c, and the induction step, which is provided
by substituting estimates (4.5) into (4.4) if only the inequality

3(1− 2γ)µ + 4γµ 6 1 (4.6)

holds. In order to minimize the exponent µ, we choose γ ≈ 0.4 and finally obtain
ΦB3(Λn) ≺ n1.74. �

• Taking into account the condition p, q, r ∈ Z does not change anything in essence, it only leads
to a more cumbersome calculation. For example, you can look for an estimate in the form

ΦB3
(Λn) 6 c1n

µ − c2n (4.7)

assuming n > n0.

� Let q = r = bγnc. Then |q − γn| 6 1/2 and |p− (1− 2γ)n| 6 1. Note that for any a > 0, µ > 1
and x ∈ [0, 1] the inequality (a+ x)µ 6 aµ + µ(a+ 1)x holds. Let x = 1/n. Now the induction step
is ensured by the inequality

n−µ(3ΦB3
(Λp) + 4ΦB3

(Λq)) 6

3c1(1− 2γ + x)µ + 4c1(γ + x/2)µ − c2(3p+ 4q)n−µ 6

c1(3(1− 2γ)µ + 4γµ + 3(2− 2γ)µx+ 2(1 + γ)µx)− c2((3− 2γ)n1−µ − n−µ) 6

c1 − c2(3− 2γ − x)n1−µ + c1(8− 4γ)µx 6 c1 − c2n1−µ,

if we choose c2 = βc1, where β = (8 − 4γ)µ/(1 − 2γ). The threshold n0 is chosen such that
nµ−1

0 > β + 1 (then the right-hand side of (4.7) is not less than c1n). Finally, the choice of the
parameter c1 secures the base of induction, namely, the fulfillment of (4.7) for all n ∈ [n0, n1],
where n1 = (n0 + 1)/(1− 2γ) (for example, c1 = 2n1 will do, since obviously ΦB3(Λn) 6 ΦU2(Λn) <
2n2).

The above bound has not been improved yet. In [243] it is shown that a better bound cannot

be obtained using only (4.3). This will be discussed next (see p. 49). In [302] the author proved a

lower bound ΦB3
(Λn) � n1.53.

Depth of circuits for multiple addition U

In the school method, multiplication of n-digit numbers is reduced to addition of
n numbers (generally, 2n-digit numbers). The natural idea to perform addition by
a tree of usual adders, even parallel ones, leads to a circuit of only Ω(log2 n) depth.
Designs of logarithmic depth circuits are based on the idea of compressors, proposed
at the turn of the 1950s and 60s independently by many researchers. The essence of
the idea is to calculate intermediate sums in a certain sense “not completely”.

Let us consider the problem in its general formulation as computing the sum of
n elements in some commutative group (G,+, 0). (k, l)-compressor is a circuit that
performs the transform (x1, . . . , xk) → (y1, . . . , yl) with the condition of preserving
the sum:

∑k
i=1 xi =

∑l
j=1 yj, where k > l.
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Michael Stewart
Paterson

University of Warwick,
since 1971

A circuit composed of (k, l)-compressors2) allows us to
reduce the summation of n elements to the summation of
l elements (we assume that the group unit 0 ∈ G is available
as an additional input of the circuit). An arbitrary (k, l)-
compressor A can be characterized by the mapping a→ b
of the depth vector3) of inputs a = (a1, . . . , ak) to the depth
vector of outputs b = (b1, . . . , bl). Relying on the physical
meaning of the problem, we assume maxi ai < maxj bj for
any a (i.e., none of the compressor inputs is also an output).

For instance, a family of parallel copies of the adder FA3

constitutes an integer (3, 2)-compressor4). If the depths of
the compressor inputs are 0, 0, 1, then the outputs are
computed at depths 2 and 3, see Fig. 1a). An example of
a circuit built from such compressors is shown in Fig. 4.1
(compressors are depicted as polygonal blocks with three inputs and two outputs; the
intermediate sums are arranged according to the depth scale).
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Figure 4.1: Multiple addition circuit of (3, 2)-compressors [243]

The question of how to arrange compressors in a multiple addition circuit to
minimize its depth appeared to be nontrivial. It was not until the early 1990s that
M. Paterson, N. Pippenger, and U. Zwick [243] proposed a general approach to solving
this problem.

2The circuit is a tree in the (non-strict) sense that the outputs of intermediate elements do not
branch.

3The term “depth” is rather conventional here. We assume that the numbers ai are integers only
for convenience of reasoning.

4Indeed, X+Y +Z = U+V holds if the digits of numbers satisfy relations xi+yi+zi = 2ui+1+vi
for all i, and we assume u0 = 0.
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Let us denote the minimum possible depth of an (n, l)-compressor composed of
(k, l)-compressors A by DA(n). The potential method allows to bound this depth
from below. Let gA(a;x) denote the characteristic polynomial of a compressor A:

gA(a;x) =
l∑

j=1

xbj −
k∑
i=1

xai . (4.8)

Lemma 4.1 ([243]). Let λ(a) be the maximal positive root of a polynomial gA(a;x).
Denote λ = supa∈Zk λ(a). Then

DA(n) > logλ(n/l).

Nicholas John
Pippenger

University of British Columbia,
1988 to 2003

� First of all, we note that the polynomial gA(a;x) has the
maximal root satisfying λ(a) > 1, since gA(a; 1) = l−k < 0,
and gA(a;x) → +∞ as x → +∞. Then the supremum
λ > 1 also exists due to λ(a) 6 k, since as x > k,

gA(a;x) > xmaxj bj − k · xmaxi ai > (x− k) · xmaxi ai > 0.

Consider a step-by-step procedure for constructing a cir-
cuit from compressors, from inputs to outputs, and follow
the change in the set of depths of the terms of intermediate
sums. Initially, we have n inputs of depth 0. When adding
a next compressor, k numbers from the list (the depths of
the compressor inputs) are replaced by l other numbers (the
depths of the compressor outputs).

We assign a numerical value (potential) λd to an intermediate term located at
depth d. By the definition of λ, the sum of the potentials of the terms does not
decrease when adding compressors. Therefore, n 6 l · λDA(n).

If a compressor is not just an abstract device but a boolean circuit with depth
defined in the usual way, then the upper bound λ in the condition of Lemma 4.1 is
achieved for some a, see [243].

The proof of the lower bound serves as a guide to obtaining the upper bound.

Theorem 4.3 ([243]). Let λ be the maximal positive root of a polynomial gA(a;x).
Then

DA(n) 6 logλ n+O(1).

I Without loss of generality, we can assume mini ai = a1 = 0. Let b = maxj bj.
Under the level of a compressor (in a circuit composed of compressors) we understand
the depth of its first input.

Let us construct a circuit of compressors A such that for any d it contains

Cd =

{⌈
nλ−d + l

k−l

⌉
, −b < d 6 logλ n

0, otherwise
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compressors of level d. Compressor inputs can be inputs of the circuit and outputs
of other compressors, computed at appropriate depths. Compressor inputs that do
not come from the outputs of other compressors are considered to be circuit inputs.
Compressor outputs that are not connected to the inputs of other compressors are
considered to be circuit outputs.

A compressor of level d receives inputs at depths ai + d and produces outputs
at depths bj + d. By construction, the total number of inputs of depth d required

by compressors of the circuit is
∑k

i=1 Cd−ai , and the number of outputs produced by

compressors at the same depth is
∑l

i=1Cd−bj .
Let us establish several properties of the circuit.
a) At depth d, 0 6 d 6 logλ n, the circuit has no outputs. Indeed, the difference

between the number of inputs and the number of outputs of the compressors at
depth d is positive:

k∑
i=1

Cd−ai −
l∑

j=1

Cd−bj >

k∑
i=1

(
nλai−d +

l

k − l

)
−

l∑
j=1

(
nλbj−d +

l

k − l
+ 1

)
= −nλ−dgA(a;λ) = 0. (4.9)

b) The circuit has more than n inputs at depth 0. Indeed, for d = 0, due to
C−b = 0, in expression (4.9) the difference between the left (input) and right (ouput)
parts is at least nλb > n.

c) The total number of outputs of the circuit at depths greater than logλ n is O(1)
(the circuit may also have outputs at negative depths). Indeed, this number does not
exceed the total number of outputs of compressors of levels d > logλ n− b, i.e.,

l
∑

d>logλ n−b

Cd < lb

(
nλb−logλ n +

l

k − l
+ 1

)
= lb

(
λb + k

)
.

Thus, if n variables xi are connected to the inputs of the circuit at depth 0, and
the constant 0 ∈ G is supplied to the remaining inputs, then the constructed circuit
will be an (n,m)-compressor, m = O(1) (outputs at negative depth do not count —
they implement 0 ∈ G). By adding several more compressors A to the circuit, the
number of outputs will be reduced to l. Finally, the total depth of the resulting
circuit is logλ n+O(1). �

The characteristic polynomial of the mentioned above integer (3, 2)-compressor
FA3 is

gFA3(0, 0, 1;x) = x3 + x2 − x− 2. (4.10)

Its only positive root is λ ≈ 1.2056. Therefore, for the depth of the operator Σm,n of
addition of n m-digit numbers, with the use of Corollary 2.2 we obtain

Corollary 4.1. DB2(Σm,n) 6 3.71 log2 n+ (1 + o(1)) log2(m+ log2 n).

Corollary 4.2. DB2(Mn) . 4.71 log2 n.
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• Exploiting a slightly more complex (6, 3)-compressor, Paterson and Zwick [245] obtained the
bound DB2

(Σ1,n) . 3.57 log2 n, and E. Grove [117], applying a special (7, 3)-compressor, established
the bound DB0(Σ1,n) . 4.94 log2 n.

The authors of [243] also extended the method to the complexity of multiple addition formulae.
Theorem 4.2 serves as a simple example of the application of this method (formula (4.3) describes
a (3, 1)-compressor in (B,⊕)). In general, a compressor A used for constructing formulae is charac-
terized by the mapping a → b of the vector of input sizes a = (a1, . . . , ak) to the vector of output
sizes b = (b1, . . . , bl). The characteristic function of the compressor is defined as

gA(a;x) =

l∑
j=1

bxj −
k∑
i=1

axi .

The maximal positive root of the function is denoted by µ(a). Let µ = supa∈Zk µ(a). Then
the minimal complexity of an (n, l)-compressor composed of compressors A is (n/l)1/µ+o(1). The
synthesis method is similar to the method of Theorem 4.3, but for classification of summands the
rounded logarithm of the formula size dlog2 se is used instead of the depth (and rounding issues lead
to slightly more cumbersome calculations).

In the paper [245] the authors proposed special compressor constructions to obtain the bounds

ΦB2
(Σ1,n) ≺ n3.13 and ΦB0

(Σ1,n) ≺ n4.57 by this method. Stronger bounds are obtained with the

use of a special composite encoding of symmetric functions, see below on p. 92.

Parallel restructuring of arithmetic formulae U

Richard Peirce Brent
Australian National University,

Canberra, since 1972

In the problem of parallel evaluation of an arithmetic ex-
pression, which is of practical interest, it is required, given
a formula of length n, to construct an equivalent5) for-
mula of the smallest possible depth (in a binary basis,
it is desirable to be as close as possible to log2 n). It
is known that in any complete boolean basis and in gen-
eral arithmetic bases there always exists an equivalent for-
mula of depth O(log n). This follows from the results of
V. M. Khrapchenko (announced in [336]) and R. Brent [47],
respectively. A more precise form of the relationship be-
tween depth and complexity depends on the basis. So, the
concept of the uniformity constant6) cB of a basis B is intro-
duced. It is defined as the supremum of numbers c for which
ΦB(f) 6 (c+o(1)) log2 DB(f) holds, where ΦB(f)→∞. In

the study of uniformity constants of arithmetic bases, we assume that a semiring over
which the computations are performed is commutative.

For simplicity, we restrict ourselves to considering formulae over the monotone
arithmetic basis A+. The uniformity of this basis (i.e., the existence of the con-
stant cA+) was proved by R. Brent, D. Kuck, and K. Maruyama in [49].

Lemma 4.2 ([49]). Let a read-once formula of complexity n over A+ compute a func-
tion f(X, y). Then f(X, y) = f1(X) · y + f2(X), where ΦA+(f1),ΦA+(f2) 6 n.

5That is, computing the same function.
6Proposed by V. M. Khrapchenko [158].
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� The proof is trivial by induction on the complexity of a formula.

Theorem 4.4 ([49]). For any monotone polynomial f ,

DA+(f) < 2.47 log2 ΦA+(f) +O(1).

I Consider a recurrent number sequence:

N0 = 1, N1 = 2, N2 = 3, Nk = Nk−2 +Nk−3, k > 3.

We will prove by induction that a formula of length 6 Nk can be reconstructed into a
formula of depth 6 k. For k 6 2 the statement is obvious. Let us prove the induction
step. We will need a simple

Lemma 4.3. For any m 6 n, in an arbitrary binary formula of complexity n, there is
a subformula of complexity > m, the principal subformulas7) of which have complexity
< m.

� It is enough to search the formula tree in the direction from the root to leaves,
moving along subformulas of complexity > m as long as possible. The last subformula
in the chain will be the desired one.

Without loss of generality, we can assume that the formula is read-once (the case
of repeated inputs is reducible to the one under consideration). Consider a formula F
of complexity Nk and, relying on Lemma 4.3, select a subformula G of complexity
> Nk−3 + 1, which has the form G1 ◦G2, where Φ(G1),Φ(G2) 6 Nk−3 and ◦ ∈ {+, ·},
see Fig. 4.2.
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Figure 4.2: Restructuring of an arithmetic formula

Let the formulae F,G1, G2 implement functions (polynomials) f, g1, g2, respec-
tively. Let f ∗(X, y) denote the function into which f(X) turns when substituting
a new variable y into the formula F instead of the subformula G. By construction,

7Recall that the principal subformulas of a formula F1 ◦ F2 are simply the formulae F1, F2.
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Φ(f ∗) 6 Φ(F )− Φ(G) + 1 6 Nk−2. According to Lemma 4.2, f ∗(X, y) = f1 · y + f2,
where Φ(f1),Φ(f2) 6 Nk−2. Finally, the function f can be computed as

f = f1 · (g1 ◦ g2) + f2

with depth 6 k, since by the induction hypothesis, D(gi) 6 k−3 and D(fi) 6 k−2. It
remains to note that Nk � ak, where a ≈ 1.325 is the root of the equation x3 = x+1.
�

• Neither adding subtraction to the basis nor expanding it to a full basis changes the conclusion

of Theorem 4.4 (for example, because subtractions and multiplications by constants can always be

moved to the level of inputs). Thus, cA 6 cA+ < 2.47. A more sophisticated method of decomposing

formulae with the analysis of several cases allowed S. R. Kosaraju [176] to improve the estimate

to cA+
6 2. At the same time, according to the result of D. Coppersmith and B. Schieber [73],

cA+
> 1.5.

David Eugene Muller
University of Illinois,

1953 to 1992

The method of restructuring arithmetic expressions also
applies to boolean monotone formulae. In fact, cB0 6 cBM 6
cA+ (the basis BM is a special case of an arithmetic basis; the
inequality for the basis B0 holds due to De Morgan’s laws,
which allow negations to be lowered to the input level).
However, the mutual distributivity of the boolean basis op-
erations significantly extends the possibilities of transform-
ing boolean formulae, as we will see in the result due to
F. Preparata and D. Muller [251].

Theorem 4.5 ([251]). For any boolean function f ,

DB0(f) < 1.82 log2 ΦB0(f) +O(1). (4.11)

I In view of the possibility of lowering negations in formulae to the input level (De
Morgan’s laws), it suffices to prove the relation (4.11) for the monotone basis BM .
The key point is the following observation, which strengthens Lemma 4.2 for the
boolean case.

Lemma 4.4 ([251]). Let a read-once formula G of complexity n over Bm compute
a function f(X, y). Then the function f can be represented either as f(X, y) =
f1(X) · y ∨ f2(X), or as f(X, y) = (f1(X) ∨ y) · f2(X), where ΦBM (f1) < n/2 and
ΦBM (f2) < n.

� In the tree representing a formula G, select the path from the variable y to the
root, see Fig. 4.3. We can write

G(X, y) = (. . . ((y ◦1 G1) ◦2 G2) . . .) ◦k Gk,

where Gi are formulae attached along the path.
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Figure 4.3: Decomposition of a boolean formula

Then the function f is implemented by any of the two formulas

G∧ · y ∨G(X, 0), (G∨ ∨ y) ·G(X, 1), where G∧ =
∧
◦i=∧

Gi, G∨ =
∨
◦i=∨

Gi.

Since Φ(G∧) + Φ(G∨) = n − 1, one of the formulas satisfies the conditions of the
lemma.

Next we follow the proof of Theorem 4.4. Now a number sequence is defined as

N0 = 1, N1 = 2, N2 = 3, Nk = Nk−1 +Nk−3, k > 3.

We will prove that a formula of size 6 Nk can be reconstructed into a formula of
depth 6 k (it remains to prove the induction step).

Let a read-once formula F of complexity Nk compute a function f(X). According
to Lemma 4.3, we can select a subformula G of complexity > Nk−3 + 1, which has
the form G1 ◦ G2, where Φ(G1),Φ(G2) 6 Nk−3 and ◦ ∈ {∨,∧}. Let f ∗(X, y) denote
the function into which f(X) turns when a new variable y is substituted into the
formula F instead of the subformula G. By construction, Φ(f ∗) 6 Φ(F )−Φ(G)+1 6
Nk−1. Representing f ∗ by Lemma 4.4, we finally obtain

f = (f1 ◦1 (g1 ◦ g2)) ◦2 f2,

where ◦, ◦1, ◦2 ∈ {∨,∧}, Φ(f2) < Nk−1 and Φ(f1) < Nk−1/2 6 Nk−2. Thus, by the
induction hypothesis, D(gi) 6 k − 3, D(f1) 6 k − 2 and D(f2) 6 k − 1. Therefore,
D(f) 6 k. It remains to note that Nk � ak, where a ≈ 1.465 is the root of the
equation x3 = x2 + 1. �

• The bound cBM
< 1.82 of Theorem 4.5 was improved by V. M. Khrapchenko to cBM

< 1.73

in [157]. The lower bound cBM
> 1.06 was obtained by the author in [300]. For complete bases

of arithmetic type, for example, A, B0, nontrivial lower bounds on the uniformity constants are

unknown. For non-arithmetic bases, such bounds exist: in particular, for the complete boolean

basis B = {\} containing the single “Sheffer stroke” operation, the bound cB > 2 was proved by

Khrapchenko in [154].



Chapter 5

Method of approximations ε

The approximation method is based on the following observation: it is often
advantageous to solve the subproblems into which the original problem is di-
vided not completely but approximately, with controlled accuracy. An exact
solution to the original problem is constructed from approximate solutions
to the subproblems.

Fast integer division ε /2

In computing practice, equations f(x) = 0 are often solved by the Newton—Raphson

method (the tangent method) by iterating xi+1 = xi− f(xi)
f ′(xi)

. If the initial value x0 is

chosen well, and the function f(x) satisfies certain simple constraints, then xi → x∗,
where f(x∗) = 0, and the rate of convergence of the method is generally quadratic.
Around 1966, S. Cook [69] noted that this method can be adapted for fast division
of numbers.

Stephen Arthur Cook
University of Toronto,

since 1970

Since division reduces to inversion and multiplication,
and methods for fast multiplication are well known, it is
sufficient to discuss the inversion operation. We define the
(n, n+ 1)-operator of (approximate) inversion In on the set
of n-digit numbers from the interval [1/2, 1] by the condi-
tion |In(a) − 1/a| 6 2−n (the definition is ambiguous and
in fact defines a whole family of operators). By restricting
ourselves to the interval [1/2, 1], we mean that the general
case when a /∈ [1/2, 1] reduces to the considered one by
replacing a with 2ka and then multiplying the result by 2k

(these operations are implemented by shifting the position
of the binary point, which is done for free in the circuit
model). Recall that M(n) denotes the smoothed complexity
function of multiplication.

Theorem 5.1 ([69]). C(In) 4 M(n).

53
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I The proof follows closely the version of J. H̊astad [123]. Let a..k denote the
number a with truncated digits below the k-th after the binary point — this is an
approximation to a with accuracy 2−k. We define the sequence ri as follows1):

r0 = 1, r̃i+1 = 2ri − a..4+2i · r2
i , ri+1 = (r̃i+1)..4+2i+1 . (5.1)

Lemma 5.1. |1− ria..4+2i | < 2−2i−1−1/2.

� Obviously, the inequality is valid for i = 0. Let us prove the induction step from
i to i+ 1.

By the induction hypothesis,

0 6 1− r̃i+1a..4+2i = (1− ria..4+2i)
2 6 2−2i−1.

Hence, 0 < r̃i+1 6 ri+1 6 a−1
..4+2i

6 2. Now the inequality of the lemma follows from
the calculation:

|1− ri+1a..4+2i+1 | 6
|1− r̃i+1a..4+2i |+ |ri+1a..4+2i − r̃i+1a..4+2i |+ |ri+1a..4+2i+1 − ri+1a..4+2i| 6

2−2i−1 + a..4+2i |ri+1 − r̃i+1|+ ri+1 |a..4+2i+1 − a..4+2i | 6

2−2i−1 + 1 · 2−2i+1−4 + 2 · 2−2i−4 <
11

16
· 2−2i < 2−2i−1/2.

As a consequence of the lemma, we obtain

|1− ria| 6 |1− ria..4+2i |+ ri |a− a..4+2i | < 2−2i−1−1/2 + 2−2i−4 < 2−2i−1

.

To compute a−1 with an accuracy of 2−n, it is sufficient to determine ri up to
i = dlog2 ne+ 1. Calculation by formulas (5.1) leads to the estimate

C(In) 6
dlog2 ne+1∑

i=0

(2C(M4+2i) +O(2i)) 4 M(n).

�

• In a similar way, circuits are constructed for some other elementary numerical functions, for

example, for the square root, see, e.g., [48].

Fast division with remainder of complex polynomials ε s

The method of successive approximations for polynomials works even better than for
numbers, allowing similar problems to be solved more efficiently.

An elegant method of reducing the operation of division of polynomials with
remainder to simpler operations — division modulo xn and multiplication — was
proposed by V. Strassen in [314]. Let QRR

2n,n and DR
n denote operations with poly-

nomials in R[x]: respectively, the operator computing the quotient and remainder of
the division of a polynomial of degree 6 2n− 1 by a polynomial of degree n and the
operator of division of polynomials modulo xn.

1Guided by the tangent method for finding a zero of the function f(x) = a− 1/x.
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Lemma 5.2 ([314]). CA(QRR
2n,n) 6 CA(DR

n ) + CA(MR
n ) +O(n).

� Let q(x) and r(x) be the quotient and remainder of a(x) divided by b(x), where
deg a 6 2n− 1, deg b = n, and deg q, r < n. Then

a(x) = q(x)b(x) + r(x). (5.2)

By ã(x), q̃(x), b̃(x), r̃(x) we denote, respectively, the polynomials x2n−1a(1/x),
xn−1q(1/x), xnb(1/x) and xn−1r(1/x). Substituting 1/x in place of x in (5.2) and
multiplying by x2n−1, we obtain

ã(x) = q̃(x)̃b(x) + xnr̃(x). (5.3)

Then

q̃ = ã/b̃ mod xn, r̃ = (ã− q̃ b̃)/xn. (5.4)

Calculations by formulas (5.4) are reduced to division modulo xn, multiplication and
subtraction of polynomials.

Joris van der Hoeven
École Polytechnique, Paris,

since 2009

Division can be done by inversion modulo xn and mul-
tiplication. Inversion is performed by a polynomial analog
of the numerical method described in the previous section.
In fact, it is more advantageous in practice and theory to
apply the approximation method directly to the division op-
eration. In the most interesting case of field C (and R as
well), given that the multiplication of complex polynomials
is implemented via the DFT, the complexity of the method
can be conveniently expressed in terms of the complexity of
the DFT. Let us describe the fastest known method, due to
J. van der Hoeven [129].

Theorem 5.2 ([129]). Let the constant cF satisfy the con-
dition CA(DFTN) 6 cFN log2N for any N = 2k. Then

CA(QR2n,n) . 12cF · n log2 n.

Note that the complexity of multiplication is trivially estimated as CA(Mn) .
6cF ·n log2 n (we can ignore the fact that nmay be not close to a power of two)2). Thus,
the complexity of division with remainder is approximately equal to the complexity of
two multiplications. According to Theorem 2.4, for the basis AC we can set cF = 1.5.

I We keep the notation of Lemma 5.2. Let (k + 1)m > n > km. Divide the
polynomials under consideration into blocks of length m:

ã = a0+a1x
m+a2x

2m+. . . , b̃ = b0+b1x
m+b2x

2m+. . . , q̃ = q0+q1x
m+q2x

2m+. . .

2One can always choose an approximation to n of the form b2k, where b is small enough. Then
Lemma 2.1 applies.
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Next, let (a)∗ denote the vector3) DFT2m(a).

Let b−1
0 = 1/b0 mod xm. From the condition b̃ q̃ = ã mod xn we obtain a re-

currence formula for expressing the blocks of the quotient q̃. For 0 6 j < k, we
have

aj =

(
qjb0 +

j−1∑
i=0

(qibj−i + bqibj−i−1/x
mc)

)
mod xm. (5.5)

Assuming b−1 = 0 and introducing the notation4) βi = bi−1 + bix
m for 0 6 i 6 k + 1,

we derive

qj = b−1
0

(
aj −

j−1∑
i=0

bqiβj−i/xmc

)
mod xm, 0 6 j < k. (5.6)

For j = k, formulas (5.5), (5.6) are valid modulo xn−km.
Consider the following algorithm:
I. Find q0. To do this, compute b−1

0 , then (b−1
0 )∗ and (a0)∗, then (a0b

−1
0 )∗, and

finally (via the inverse DFT) restore q0 = a0b
−1
0 mod xm.

II. Then, by formula (5.6), we sequentially determine blocks qj. For each j =
1, . . . , k:

1) Compute (βj)
∗ and (qj−1)∗. Let

α = q0βj + q1βj−1 + . . .+ qj−1β1. (5.7)

2) Compute the vector (α)∗ from the known (βi)
∗ and (qi)

∗, following (5.7).
3) Via the inverse DFT, compute the polynomial α mod (x2m − 1). Note that its

leading m coefficients coincide with the middle m coefficients of α. Denote

γ = aj − bα/xmc mod xm.

4) Successively computing γ, (γ)∗ and (b−1
0 γ)∗, we finally find qj = b−1

0 γ mod xm

for j < k and qk = b−1
0 γ mod xn−km.

III. Thus, the quotient q̃ =
∑k

i=0 qix
im mod xn has been found; it remains to find

the remainder r̃. According to (5.4), for this it is enough to compute the missing part

of the product q̃ b̃. Write

q̃ b̃ = c0 + c1x
m + c2x

2m + . . .+ c2k+1x
(2k+1)m,

where deg ci < m. By construction, cj = aj for 0 6 j < k and ck ≡ ak mod xn−km.
The remaining blocks cj may be computed as

cj =

⌊∑
i

qiβj−i/x
m

⌋
mod xm. (5.8)

3This refers to the polynomial interpretation of the DFT, when the transform is applied to the
vector of coefficients of a polynomial.

4The polynomials βi are introduced only for notational convenience.
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For the boundary block ck, formula (5.8) provides the missing (k + 1)m− n leading
coefficients.

For calculations by formulas (5.8) it is required to compute (βk+1)∗, (qk)
∗, for all

j = k, . . . , 2k + 1 find (
∑

i qiβj−i)
∗, and restore the sums

∑
i qiβj−i mod (x2m − 1),

from which the blocks cj are extracted. Finally, we obtain r̃ = (ã− q̃ b̃)/xn.
Let us estimate the complexity of the algorithm. It starts with inversion mod-

ulo xm. Then, at all stages, 3k + 4 DFTs and 3k + 3 inverse DFTs of order 2m are
performed. The complexity of the remaining operations, among which the compu-
tations of the Fourier transforms of sums (5.7) and (5.8) dominate, is estimated as
O(mk2).

It is advisable to choose the parameters m = 2t and k �
√

log n. The initial
inversion can be performed by any algorithm of complexity O(m logm), for example,
a polynomial analogue of Cook’s method from the previous section. As a result, we
obtain

CA(QR2n,n) 6 (6k + 7)cF · 2m log2(2m) +O(m(k2 + logm)) =

12cF · n log2 n+O(n
√

log n).
�

Note that, unlike the method of Theorem 5.1, where the accuracy was doubled
at each step, the method of Theorem 5.2 is based on iterations (5.6) with a fixed
accuracy increment in order to reduce the specific weight of inversions.

• Separately for the inversion operation modulo xn, the best known upper complexity bound

(7.5 + o(1))cF · n log2 n was established by the author in [290].

Matrix multiplication. Border rank ε

Dario Andrea Bini
University of Pisa, since 1990

Theorem 2.3 is based on a special method of multiplying
2× 2 matrices and can be easily generalized. The rank
rkR T of a system of bilinear forms T (X, Y ) over a semir-
ing R is the minimum number r for which the following
representation is possible:

T =
r∑
l=1

ClXlYl, (5.9)

where Cl is a vector with components in R, and Xl, Yl
are linear combinations over R of the variables X and Y ,
respectively. For example, rkF MM2 = 7 in any field F [332].
Now Theorem 2.3 can be extended as

Theorem 5.3. Let r = rkMMm in a ring R. Then

CAR(MMn) 6 r

(
1 +

6rm2

r −m2

)
nlogm r.
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I Consider some representation of the form (5.9) for the operator MMm involving
r nonscalar multiplications and s linear operations. It is certainly true that s 6 6rm2,
since any sum Xl or Yl requires at most 2m2 linear operations, and any element of
the matrix product is a linear combination of r products XlYl, hence, it is computed
in 2r linear operations.

It can be easily verified by induction that

C(MMmh) 6

(
1 +

s

r −m2

)
rh − s

r −m2
m2h (5.10)

(split an mh×mh matrix into submatrices of size mh−1×mh−1). Finally, for mh−1 <
n 6 mh we obtain

C(MMn) 6 C(MMmh) 6

(
1 +

s

r −m2

)
rh 6 r

(
1 +

s

r −m2

)
nlogm r.

�

The border rank rk T is the minimum number r for which the following represen-
tation is possible:

udT =
r∑
l=1

Cl(u)Xl(u)Yl(u) mod ud+1, (5.11)

where d ∈ N0, Cl(u) ∈ R[u]dimT , and Xl, Yl are linear combinations over R[u] of the
variables X and Y , respectively, dimT is the number of forms in the system T . If we
imagine that u → 0, then formulas (5.11) when dividing by ud define approximate
matrix multiplication. In fact, approximate computation was the goal of the work of
Italian mathematicians [33], in which the concept of border rank actually appears.
Then D. Bini [32] observed that from formulas (5.11) one can effectively pass to exact
matrix multiplication.

Further, formulas of type (5.11) will be called (d, r)-representations.

Theorem 5.4 ([32]). Let R be a ring and m = const. Then

CAR(MMn) 4 nlogm(rkMMm)+o(1).

I The key point of the proof is Bini’s lemma (we prove it in a weakened form).

Lemma 5.3. If a system T has a (d, r)-representation, then rk T 6 C2
d+2 · r.

� Let T be represented by formulas (5.11). Write

Cl(u) =
d∑
i=0

Cl,iu
d, Xl(u) =

d∑
i=0

Xl,iu
d, Yl(u) =

d∑
i=0

Yl,iu
d,

where Cl,i are vectors over R, and Xl,i, Yl,i are linear combinations of variables over R.
Then from (5.11) we obtain

T =
r∑
l=1

∑
a+b+c=d

Cl,aXl,bYl,c.
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It remains to note that the inner sum contains C2
d+2 terms.

We will also need a simple lemma on the composition of (d, r)-representations. The
tensor product of bilinear systems T1 and T2 is defined as follows. If T1 =

∑
Ci,jxiyj,

where Ci,j ∈ R dimT1 , then

T1 ⊗ T2 =
∑

Ci,j ⊗ T2(X i, Y j), (5.12)

where X i, Y j are independent groups of variables5). In particular,

MMm,p,q ⊗MMm′,p′,q′ = MMmm′,pp′,qq′ , (5.13)

where MMm,p,q is the operator of multiplication of m×p and p× q matrices (over R).

Lemma 5.4. If a system T1 has a (d1, r1)-representation and a system T2 has
a (d2, r2)-representation, then T1 ⊗ T2 admits a (d1 + d2, r1r2)-representation.

� With the use of the given representation for T1, write

ud1(T1 ⊗ T2) =

r1∑
l=1

Cl(u)⊗ T2(Xl(u), Yl(u)) mod ud1+1, (5.14)

where Cl(u) ∈ R[u]dimT1 , and Xl(u), Yl(u) are linear combinations6) of vectors of
variables X i and Y j over R[u]. Next, substituting into (5.14) the representations
for T2 and multiplying by ud2 , we obtain

ud1+d2(T1 ⊗ T2) =

r1∑
l=1

Cl(u)⊗

(
r2∑
s=1

C ′s(u)Xl,s(u)Yl,s(u)

)
mod ud1+d2+1 =

=

r1∑
l=1

r2∑
s=1

(Cl(u)⊗ C ′s(u))Xl,s(u)Yl,s(u) mod ud1+d2+1,

where C ′s(u) ∈ R[u]dimT2 , and Xl,s(u), Yl,s(u) are linear combinations of components
of vectors Xl(u) and Yl(u), i.e. ultimately just linear combinations of variables.

Now we complete the proof of the theorem. Let r = rkMMm. Applying
Lemma 5.4 h times to the (d, r)-representation for MMm, we derive an (hd, rh)-
representation for MMmh . Then from Lemma 5.3 we deduce rkMMmh 6 (hd+ 2)2rh.
By Theorem 5.3 we finally obtain

C(MMn) 6 7(hd+ 2)4r2hm2hnlogm r+ 2
h
·logm(hd+2).

A suitable choice of the parameter is h �
√

log n log log n. �

A simple illustration of the advantage that the consideration of the border rank
provides is the following example by A. Schönhage [278].

5The symbol ⊗ on the right-hand side of (5.12) denotes the Kronecker product of matrices (in
this case, vectors). The Kronecker product of m×n matrix A = (ai,j) and p× q matrix B is defined
as the mp× nq matrix obtained by substituting ai,jB for ai,j into A.

6Recall that due to bilinearity T2(aX1 + bX2, Y ) = aT2(X1, Y ) + bT2(X2, Y ) and
T2(X, aY 1 + bY 2) = aT2(X,Y 1) + bT2(X,Y 2).
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Theorem 5.5 ([278]). If R is a ring, then CAR(MMn) 4 nlog3 21+o(1) ≺ n2.772.

I Let us show that rkMM3 6 21. The entries zij of the product Z = XY of 3 × 3
matrices can be determined by the formulas

u2zjj = (xj1 + u2xj2)(y2j + u2y1j) + vjj − wj mod u3,

u2zij = (xj1 + u2xi2)(y2j − uy1i) + vij − wj + u(vji − vii) mod u3, i 6= j,

vjj = (xj1 + u2xj3)y3j, vij = (xj1 + u2xi3)(y3j + uy1i), wj = xj1(y2j + y3j),

involving 21 nonscalar multiplications. It remains to apply Theorem 5.4. �

• Considering 2 × 2 matrices does not improve the estimates of Theorem 2.3 due to rkMM2 =
rkMM2 = 7 [184]. On the other hand, for the rank of 3× 3 matrix multiplication, only the bound
rkMM3 6 23 is known so far [181]. A. V. Smirnov [308] showed that rkMM3 6 20 (but the
corresponding representation is more difficult to describe) — when substituting this estimate into
Theorem 5.5, we establish CAR(MMn) ≺ n2.727.

The bound of Lemma 5.3 can be refined to rk T 6 (2d+ 1)r for a field F of cardinality at least

2d+ 2 [32].

Monotone sorting circuits ε P ·∵

Soon after K. Batcher [16] proposed an elegant way to construct monotone circuits for
sorting n inputs with complexity O(n log2 n), E. Lamagna and J. Savage [183] proved
the lower bound CBM (SORTn) < n log n. Finally, another 10 years later, M. Ajtai,
J. Komlós, and E. Szemerédi [4, 5] obtained the tight bounds CBM (SORTn) � n log n
and DBM (SORTn) � log n inventing a construction now known as AKS-circuits. The
method exploits several ideas at once, the central one being the idea of approximate
computations. It turned out to be advantageous to construct sorting circuits from
subcircuits that perform sorting approximately, with a controlled error probability.

Endre Szemerédi
Institute of Mathematics,

Hungarian Acad. Sci.,
Budapest, since 1965

The original method [4, 5], like most of its modifica-
tions, is difficult to describe and analyze. We will present
a relatively simple version composed by J. Seiferas [282] in
development of M. Paterson’s approach [241].

The circuits considered below belong to a particular
model of comparator circuits (in the terminology of [168],
sorting networks). The comparator circuit receives n ele-
ments of a linearly ordered set as inputs and, by pairwise
comparison operations x, y → min(x, y),max(x, y) (in the
boolean case, x, y → xy, x ∨ y), produces at the outputs
a permutation of the inputs in accordance with some par-
tial order. The outputs of internal comparator subcircuits
do not branch. In a sense, a comparator circuit is almost
a formula. The circuit naturally decomposes into layers of
parallel comparators. For more details, see [168].

Let us introduce the concept of approximate sorting. Assume 0 < ε 6 1 and
0 < λ 6 1/2. A comparator circuit on n inputs is called a (λ, ε)-separator if for any
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m 6 λn the circuit places at least (1− ε)m of the m largest elements among the λn
right outputs and at least (1− ε)m of the m smallest elements — among the λn left
outputs. The following two lemmas establish the existence of separators of constant
depth (and hence of linear complexity).

Lemma 5.5 ([5]). For any ε > 0 and any n, there exists a (1/2, ε)-separator7) on 2n
inputs of depth O(1/ε3) as ε→ 0.

� If n is small, say, n < 64/ε3, then apply any sorting circuit. Therefore, we further
assume that n > 64/ε3.

We will show that the required circuit can be composed of several layers of com-
parators, where at each layer the elements from the junior (left) and senior (right)
halves are compared according to a randomly selected matching. An example of a
circuit is shown in Fig. 5.1a.

Let us associate such a circuit with a bipartite (n, n)-graph: the vertices of one
part correspond to the positions of elements from the junior half, and the other – from
the senior half. Two vertices of the graph are connected by an edge if a comparison of
the corresponding elements was performed at some layer of the circuit, see Fig. 5.1b.
In other words, the graph is a composition of matchings that define the layers of the
circuit.

? ? ? ? ? ? ? ?i i i i i i i i∧ ∧ ∧ ∧ ∨ ∨ ∨ ∨
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Figure 5.1: Comparator circuit (a) and its graph (b)

I. First, we prove that a circuit is a (1/2, ε)-separator if its graph is an (ε, α)-
expander, α = 1/ε − 1/2, which means: for every m 6 εn, any set of m vertices in
one part is connected by edges to at least αm vertices in the other part.

Note that if two nodes are connected by an edge in the graph, then the functions
computed at the corresponding outputs of the circuit satisfy the relation 6 (one part
collects only the minima of ordered pairs, and the other only the maxima).

Now suppose that the circuit is not a separator, i.e., for some input set, say, among
k 6 n largest elements p > εk are placed into the junior half. Consider the set of
nodes in the graph corresponding to the latter elements. In this set m = min{p, bεnc}

7(1/2, ε)-separators are also called ε-halvers.
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nodes are connected by edges with at least αm nodes in the other part. This means
that the minimum of p elements is inferior to at least p−1+αm other elements. But
for m = p we have

p− 1 + αm = p− 1 +m/ε−m/2 > p/ε− 1 > k − 1,

and for m = bεnc < p,

p−1+m/ε−m/2 > (p−1)/2+m/ε > (εn−1)(1/ε+1/2) > (1+ε/2)n−1/ε−1 > n−1.

This contradicts the fact that the chosen element is among the k largest.

II. It remains to prove that a bipartite graph composed of a suitable number
r = r(ε) of random matchings8) is an (ε, α)-expander with a positive probability.

Note that a graph is an (ε, α)-expander if it does not contain empty (i.e. edgeless)
(k, n − αk)-subgraphs for any k 6 εn. The probability that a random matching
does not intersect (by edges) a given (k, n − αk)-subgraph is Ck

αk/C
k
n. Then the

probability Pk that r random matchings do not intersect at least one of the (k, n−αk)-
subgraphs is estimated with the help of simple relations 1

4
√
k
( en
k

)k 6 Ck
n 6 ( en

k
)k as

Pk 6 2Ck
nC

αk
n

(
Ck
αk

Ck
n

)r
6 2(4

√
k)r
(
e1+αn1+α(αk)r

k1+αααnr

)k
=

2(4
√
k)r

(
αe1+α

(
αk

n

)r−α−1
)k

6

(
c2

(
c1αk

n

)r−α−1
)k

,

where c1 = (4
√
k)1/k 6 4 and c2 = 21/kα(c1e)

1+α 6 (8e)1+α.

For k 6 εn/4, we have c1αk 6 (1 − ε/2)n. Otherwise k > εn/4 > 16/ε2, so
c1 = eln(16k)/2k < 1+ln(16k)/k 6 1+ ε2

8
ln 16

ε
6 1+ε/2. Therefore, c1αk < (1−ε2/4)n.

In either case, if r is chosen somewhat larger than α+4 ln(2c2)/ε2, we obtain Pk < 2−k.
Then the probability that the graph under consideration is not an (ε, α)-expander
does not exceed

∑
k Pk < 1.

• The circuit whose existence is established by the lemma has depth r � 1/ε3 as ε → 0. A more
careful argument allows us to refine the estimate to r 4 1

ε log 1
ε , see, e.g., [241].

It is easy to check that any r-regular (all vertices have degree r) bipartite graph is a union of

r matchings, so a circuit can be constructed from a graph. Many explicit constructions of regular

expander graphs are also known, for example, [212, 95].

Lemma 5.6 ([241]). For any constant ε > 0, any λ < 1/2 and n, there exists
a (λ, ε)-separator on 2n inputs of depth O(log4(1/λ)) as λ→ 0.

8The distribution is uniform: all matchings are equally probable.
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Miklós Ajtai
IBM Research center,

San Jose, 1983 to 2015

� Let s = b2λnc and k = dlog2(1/λ)e. The circuit is composed
of k + 1 layers of (1/2, ε0)-separators (the parameter ε0 will be
chosen later): on the first layer — a separator on 2n inputs, on
the next two layers — two separators on the left and right for
2k−1s marginal elements9), on the next layer — separators for
2k−2s elements from each end, and so on up to the last layer of
two separators on 2s marginal elements, see Fig. 5.2.

Of the m 6 s largest (smallest) elements, the separator of
the first layer allocates in the “wrong” half no more than ε0m el-
ements. In the next pair of separators, regardless of their order:
the separator of the right (left) 2k−1s elements leaves a maxi-
mum of ε0m elements beyond the outermost interval, and the
separator on the other side definitely does not worsen the char-

acteristics of cutting off the largest (smallest) elements10). In each of the subsequent
layers, the separator on the corresponding side erroneously throws out no more than
ε0m elements from the outermost interval.
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Figure 5.2: Construction of a (λ, ε)-separator

Thus, no more than kε0m largest (smallest) elements can miss the s extreme right
(left) outputs of the circuit. Therefore, it is sufficient to choose ε0 = ε/k. Now the
circuit depth estimate follows from Lemma 5.5.

Theorem 5.6 ([4, 5]). Sorting n elements may be performed by a comparator circuit
of depth O(log n).

9If 2k−1s = n, then these two separators can be placed in parallel on the same layer.
10In any comparator circuit, the set of m largest (smallest) elements moves strictly to the right

(left).
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I For simplicity of reasoning we assume n = 2k. Let µ, ε > 0 be parameters
to be chosen later. The sorting circuit is constructed from layers of parallel (λ, ε)-
separators, where λ is determined individually for each layer, and λ > µ. It is
convenient to imagine the circuit functioning in time: transformations of one layer
are performed in one time unit. We consider the action of a separator layer as a
rearrangement of elements in a structure associated with the complete binary tree of
depth k. At each vertex of the tree there is a container for storing elements.

At the initial time t = 0 all n elements are in the root container. Then, at any
time, the elements of each non-empty container are subjected to approximate sorting
by a separator: elements from the outermost intervals are sent to the parent node,
the remaining ones are distributed equally between the containers of child nodes, in
the direction to the leaves.

We define the capacity of a container at depth d at time t as Bd,t = nadνt, where
the constant parameters a > 1 and ν < 1 will be specified later. If the container
stores b elements, then in the case µBd,t < b/2 the container’s contents, except for
a possible odd element, are ordered by a composition of (1/2, ε)- and (λ, ε)-separators,
λ = µBd,t/b, after which bµBd,tc elements from each end, as well as the odd element
(if any), are sent to the parent node above. The remaining elements are moved down
one level: the left half — to the container of the left child node, the right half — to
the container of the right one. Otherwise, in the case µBd,t > b/2, no separation is
performed — all elements should be returned to the parent container. The scheme
of migration of elements is shown in Fig. 5.3. The root container is an exception —
its elements are rearranged by a (1/2, ε)-separator, divided equally into two parts
(the number of elements in the container is necessarily even), which are sent to the
corresponding containers of the child nodes.
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Figure 5.3: Scheme of migration of elements

The process continues until all elements are at the bottom O(1) levels of the
tree; the exact termination condition is stated as Bk,t < 1/µ. After that, sorting
circuits are applied in each subtree of depth O(1). The constructed circuit contains
k log1/ν(2a) + O(1) � log n layers of separators and therefore has the desired depth.
It remains to check the correctness of the algorithm.

First of all, note that at any time moment, the containers of the same level are
filled equally. In particular, this is why the root container always has an even number
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of elements. In addition, a leaf container cannot keep more than one element11).
Hence, the described procedure does not throw elements outside the tree.

It is also clear from the construction that at any given time, all elements are
concentrated either at even or at odd levels of the tree.

I . By induction on t we prove that under certain conditions on the parameters
a, ε, µ, ν the number of elements in any container never exceeds its capacity. The
statement is obvious for t = 0.

Consider an arbitrary container at depth d, empty at time t− 1. The number of
elements in it at the next time t in the case Bd,t > aν does not exceed

2(2µBd+1,t−1 + 1) +Bd−1,t−1/2 = Bd,t(4µa+ 1/(2a))/ν + 2 < Bd,t(4µa+ 3/a)/ν,

which is less than Bd,t subject to

ν > 4µa+ 3/a. (5.15)

In the remaining case Bd,t < aν at time t− 1 all containers at higher levels d′ < d
are empty, because Bd′,t−1 < 1. This means that all elements are at levels d+ 1 and
lower. In this case Bd+1,t−1 < a2, and under the additional assumption

a2 = 1/µ (5.16)

we conclude that d + 1 6= k (otherwise the process of constructing the circuit would
have already been completed). This means that in each subtree rooted at a node of
depth d + 1 at time t − 1 there are an even number of elements, therefore, an even
number of elements are at the root of the subtree (this applies to the child nodes with
respect to the one under consideration). Thus, at most 4µBd+1,t−1 = 4µaBd,t/ν < Bd,t

elements are sent to a container of depth d at time t according to (5.15).

János Komlós
Rutgers University,

since 1988

II . The proof of the correctness of the algorithm is based
on the evaluation of the number of irrelevant elements in each
container. We assume that when placed in the tree leaves,
elements should obey to ascending order from left to right.
For any element, the native vertices are the tree leaf in which
the element should be located after ordering, as well as all
vertices on the path from the tree root to this leaf. During
the execution of the algorithm, an element of some container
will be called an r-stranger if it is at a distance > r along the
tree edges from the nearest native vertex.

By induction on t we check that at time t the number
of r-strangers (r > 1) in a container of depth d does not
exceed εr−1µBd,t for an appropriate choice of parameters. The
induction base is trivial, since at time t = 0 all elements are

in the root container, native to them. We are going to prove the induction step.
III . First, let us consider the simpler case r > 2 (then we can assume d > 2). The

r-strangers of a container of depth d can include (r+ 1)-strangers from containers of

11Such elements should go up. However, in reality, the process of constructing the circuit will
finish even earlier.
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child nodes and (r − 1)-strangers from the parent container at the previous moment
of time. Taking into account filtering, their number is bounded from above as

2εrµBd+1,t−1 + ε(εr−2µBd−1,t−1) = εr−1µBd,t(2εa+ 1/a)/ν,

i.e., does not exceed εr−1µBd,t provided

ν > 2εa+ 1/a. (5.17)

IV . Now consider the case r = 1. In a vertex v at time t strangers can arrive
from two sources: 2-strangers from child vertices, and from the parent vertex — both
strangers and elements native to its other child vertex v′ at the previous moment
of time. The number of strangers from child vertices can be easily estimated as
2εµBd+1,t−1 = 2εµaBd,t/ν. The parent container requires a more careful analysis.

Let the parent container at time t− 1 contain q elements, of which q0 are native
elements for v, q1 are native elements for v′, and q2 are strangers. If q0 > q/2,
then the number of strangers for the vertex v sent to its container is estimated as
ε(q1 + q2) 6 εq/2, i.e., as the sum of errors of a (λ, ε)-separator that did not send
strangers upward, and a (1/2, ε)-separator that sent elements native to v′ to a wrong
half. Otherwise, if q0 < q/2, then this number should be estimated as εq/2+(q/2−q0),
where the second term takes into account native elements of v′, which end up in the
container of v even after correct sorting. Let us estimate q/2− q0.

Consider a special hypothetical distribution of elements into containers at time
t− 1 with the same number of elements in each container as in the real distribution.
Sort and distribute all elements uniformly among the nodes at level d (where the
vertices v and v′ reside), and then arbitrarily move elements up and down the tree
to fill all containers correctly, but so that the parent node of v and v′ receives dq/2e
and bq/2c elements from these child nodes, respectively.

In the considered distribution, the subtree rooted at vertex v contains only ele-
ments native to it, and the container of the parent vertex contains > q/2 elements
native to v. Let us estimate the maximum number of elements native to v that can
be moved from this container to any other. This will yield an estimate for q/2− q0.

For containers of the same level d−1: for one container the specified elements will
be 1-strangers, for two — 2-strangers, for four — 3-strangers, etc. The total number
of positions available for placement at this level is estimated as

µ
(
1 + 2ε+ (2ε)2 + . . .

)
Bd−1,t−1 < µBd−1,t−1/(1− 2ε). (5.18)

At an arbitrary higher level d − h, for one container the elements in question
will be native, for another — 1-strangers, for two more — 2-strangers, for four — 3-
strangers, etc. The total number of available positions at these levels (for odd h > 3)
is estimated as

(
1 + µ(1 + 2ε+ (2ε)2 + . . .)

) d/2∑
i=1

Bd−2i−1,t−1 <(
1 +

µ

1− 2ε

)∑
i>1

a−2iBd−1,t−1 =

(
1 +

µ

1− 2ε

)
Bd−1,t−1

a2 − 1
. (5.19)
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Since there are no more free positions to fill in the subtree of the vertex v, at any
lower level d+ h there are available 2h containers12) for which the specified elements
will be (h + 1)-strangers, 2h+1 containers for which these elements will be (h + 2)-
strangers, etc. The total number of available positions does not exceed

(k−d)/2∑
i=1

µ
(
(2ε)2i−1 + (2ε)2i + . . .

)
Bd+2i−1,t−1 <

µ
∑
i>1

(2ε)2i−1

1− 2ε
a2i−1Bd,t−1 =

2εaµBd,t−1

(1− 2ε)(1− (2aε)2)
. (5.20)

Summing up (5.18), (5.19), (5.20), we obtain

q/2− q0 <

(
1

a2 − 1
+

µa2

(1− 2ε)(a2 − 1)
+

2εa2µ

(1− 2ε)(1− (2aε)2)

)
Bd−1,t−1.

As a consequence, the total number of strangers in the container of vertex v at time t,
including those coming from child vertices, is estimated as(

2εaµ+
1

a3 − a
+

µa

(1− 2ε)(a2 − 1)
+

2εaµ

(1− 2ε)(1− (2aε)2)

)
Bd,t/ν,

which does not exceed µBd,t provided

ν > 2εa+
1

µ(a3 − a)
+

a

(1− 2ε)(a2 − 1)
+

2εa

(1− 2ε)(1− (2aε)2)
. (5.21)

V . Now it is easy to see that at the moment t of completion of the circuit construc-
tion procedure there are no strangers in any container (assuming that the parameters
are chosen correctly). Indeed, in an arbitrary container of depth d, according to what
was proved above, there are at most µBd,t 6 µBk,t < 1 strangers.

Moreover, by (5.16), Bd,t = ad−kBk,t < ad−k/µ 6 1 for d 6 k − 2, which means
that all elements are in the lower two layers of the tree.

It remains to specify the choice of parameters that satisfies all the necessary
conditions (5.15), (5.16), (5.17), (5.21). For example, ε = µ = 1/100, a = 10, ν = 0.7
will do. �

Corollary 5.1 ([4, 5]). DBM (SORTn) � log n, CBM (SORTn) � n log n.

• The multiplicative constant factor in the depth bound of Theorem 5.6 is insanely large. A number

of papers have attempted to reduce it. Estimates published with proofs (for various modifications of

the algorithm) have an order of several thousands, see, e.g., [66, 112, 241]. Some rough estimations

admit the existence of circuits with the depth of approximately 100 log2 n (mentioned in [282]). In

practice, better results are provided by variants of Batcher’s circuits [16] of depth � log2 n.

12In the subtree rooted in v′.
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Other applications

Fast computation of logarithm and exponential. Unlike ordinary arithmetic operations,
fast computation of trigonometric, logarithmic and exponential numerical functions with a given
accuracy requires more sophisticated techniques.

Theoretically fast algorithms for computing logarithm (with an accuracy of n digits) have com-
plexity of order M(n) log n; the first of these were proposed by E. Salamin and R. Brent [48]. They
rely on a procedure of finding the arithmetic-geometric mean of two numbers AGM(a, b). By defi-
nition,

AGM(a, b) = lim
k→∞

ak = lim
k→∞

bk, where a0 = a, b0 = b, ak+1 = (ak+bk)/2, bk+1 =
√
akbk.

Let 0 6 b 6 a 6 1. The sequences {an}, {bn} converge quadratically: for ak � bk we have

bk+1

ak+1
=

2
√
bk/ak

1 + bk/ak
≈ 2√

bk/ak
,

and for ak � bk,

0 6 ak+1 − bk+1 =
a2
k+1 − b2k+1

2ak+2
=

(ak − bk)2

8ak+2
6

(ak − bk)2

8AGM(a, b)
.

Therefore, computing AGM(a, b) with an accuracy of 2−n requires log2(a/b)+log2 n+O(1) iterations
for small a, b.

The Gauss formula connects the AGM with the value of the elliptic integral of the first kind:

π

2AGM(a, b)
= I(a, b) =

∫ π/2

0

dτ√
a2 cos τ + b2 sin τ

=

∫ +∞

0

dx

(x2 + a2)(x2 + b2)
. (5.22)

Here, the role of elliptic integrals is just a justification of the formula

| ln(4/b)− I(1, b)| = O(b2) as b→ 0+. (5.23)

Formula (5.23) serves as a guide to constructing an algorithm for calculating lnX. By shifting
the position of the binary point, the argument can be made sufficiently large: 2kX ∈ [2n, 2n+1].
Then, with high accuracy, ln(2kX) ≈ I(1, b), where b = 22−k/X. Finally, lnX is calculated as

lnX ≈ π

2AGM(1, b)
− k ln 2,

where, in the circuit implementation, the constants π and ln 2 (or rather, their approximate values)
are considered precomputed. The complexity of the method is determined by 2 log2 n+O(1) itera-
tions of computing AGM(1, b), which involve arithmetic operations (including root extraction) with
O(n)-digit numbers. The complexity of one iteration is O(M(n)).

There are numerous variations of the described method, some of which rely on identities dif-
ferent from (5.22), (5.23). An optimized algorithm for calculating the logarithm was proposed by
D. Bernstein in [26].

Given a fast way to compute the logarithm, the computation of the exponential eY can be
implemented by Newton’s method of successive approximations, solving the equation f(x) = Y −lnx
via iterations xk+1 = xk(Y + 1− lnxk). The method also has complexity M(n) log n.

The calculation of trigonometric and many transcendental functions is grounded on this foun-

dation, for more details see, e.g., [51].



Chapter 6

Algebraic method A

The essence of the algebraic method lies in transferring computations from
the original algebraic structure to some other one via a transformation that
preserves operations. A gain is obtained if the operations of interest are
performed more simply in the second structure, and the transition itself is
not very complicated.

Boolean matrix multiplication A

Consider the multiplication of matrices over the boolean semiring (B,∨,∧). A pop-
ular application of this operation is constructing of the transitive closure of a graph,
that is, determining its connected components. As is known, over the basis of semir-
ing operations the trivial upper bound for the complexity CBM (MMn) 6 2n3 − n2 is
tight [240]. The situation changes if we allow a computational basis to be extended
to a complete one. Immediately after the appearance of Strassen’s method [313] of
fast matrix multiplication, a number of researchers (e.g., [93, 88]) observed that when
performing boolean multiplication it is advantageous to switch to integer multiplica-
tion.

Lemma 6.1 ([88]). C(MM
(B,∨,∧)
n ) 4 log2 n · CAR(MMZn+1

n ).

� Having embedded the boolean coefficients of matrices into the ring Zn+1, we per-
form the multiplication over this ring. At the end, we perform the inverse transition,
checking the coefficients of the product for equality to zero. It remains to note that
the complexity of arithmetic operations in the ring Zn+1 is, in any case, at most
quadratic in the number of digits.

Corollary 6.1. C(MM
(B,∨,∧)
n ) 4 nω+o(1), where ω < 2.38 is the matrix multiplication

exponent.

• A small advantage in terms of complexity is provided by using a direct product Zp1
× . . .× Zps

of residue rings over several coprime modules instead of Zn+1.

69
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In general, the problem of fast matrix multiplication over monotone semirings has not been

solved. For example, the question of the possibility of matrix multiplication over tropical semirings

(R,min,+), (R,max,+) with subcubic complexity n3−Ω(1) in a nonmonotone basis remains open.

Formula complexity of summation modulo 7 A /2

Let us consider the problem of constructing short formulae over the basis B2 for the
operator MOD7

n(X) of summation modulo 7. The application of formula (4.1) leads
to the bound ΦB2(MODm

n ) 4 ΦB0(MODm
n ) 4 n1+log2m. Obviously, this method does

not reveal all the capabilities of the basis B2.
For the binary basis, W. McColl in [216] proposed a slightly more economical

formula

MODm,r
n1+n2

(X) =
m−1∧
k=1

(
MODm,k

n1
(X1) ∼ MODm,r−k

n2
(X2)

)
, (6.1)

where “∼” denotes the boolean equivalence operation and X = (X1, X2), |X i| = ni.
Computation by this formula leads to the upper bound

ΦB2(MODm
n ) 4 n1+log2(m−1), (6.2)

which for m = 3 still remains a record1). For m = 7 formula (6.1) provides only the
bound ΦB2(MOD7

n) ≺ n3.59.
D. van Leijenhorst [186] proposed in the case m = 7 to switch to calculations

in the multiplicative group of the field F8 with the representation of its elements by
binary matrices of size 3 × 3. This group is isomorphic to the group (Z7,+). The
group operation in the chosen representation of the group F∗8 is the ordinary matrix
multiplication over F2.

Theorem 6.1 ([186]). ΦB2(MOD7
n) ≺ n2.59.

I Let the (7, 4)-operator π : (Z7,+) → F∗8 perform the transition between the two
representations according to the rule r → gr, where g is a generator of the group F∗8.
Denote Hn(X) = g

∑n
i=1 xi . The operator Hn(X) may be computed recursively ac-

cording to the matrix multiplication rule

Hn1+n2 [i, j](X) =
2⊕

k=0

Hn1 [i, k](X1) ·Hn2 [k, j](X
2), (6.3)

from which we obtain ΦB2(Hn) 4 nlog2 6. But in view of

MOD7
n(x) = π−1(Hn(π(x1), . . . , π(xn)))

and ΦB2(π, π
−1) = O(1), we establish ΦB2(MOD7

n) 4 ΦB2(Hn), therefore,
ΦB2(MOD7

n) ≺ n2.59. �

1For m > 5 this bound is superseded by the general complexity bound for the class of symmetric
functions ΦB2(Sn) ≺ n2.82 [306].
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• A similar approach to computing sums modulo 3 and 5 consists of switching to calculations in

fields F4 and F16, respectively, and does not improve (6.2). Computation by rules (6.3) leads to

the depth bound DB2(MOD7
n) . 3 log2 n, which was slightly improved by the author in [297] to

DB2(MOD7
n) . 2.93 log2 n by partitioning variables into three groups and special encoding.

Integer multiplication via DFT A ε

In 1963, A. L. Toom [320] not only generalized Karatsuba’s method, but also proposed
a concept that has been followed by all fast multiplication algorithms since then.
By partitioning numbers into blocks, integer multiplication turns into multiplication
of polynomials over a suitably chosen ring R. Multiplication in the ring R[x] by
interpolation reduces to componentwise multiplication in the ring RN , where N is
the number of interpolation points.

According to [209], the first fast algorithm for multiplying integers based on the
DFT was constructed by N. S. Bakhvalov — his method had complexity O(n log3 n).
Then, in 1971, A. Schönhage and V. Strassen [280] published two faster methods of
multiplication at once. The first of them exploits the natural idea of transition to
calculations over the field of complex numbers C, which admits a DFT of arbitrary
order.

Theorem 6.2 ([280]). For any d = O(1),

C(Mn) 4 n log n log log n · . . . · log(d−1) n · (log(d) n)2.

I Let 2n = 2kq. Split n-digit numbers A and B to be multiplied into blocks of
length q and, via the substitution 2q → x, pass to polynomials:

A→ A(x) =
2k−1−1∑
i=0

aix
i, B → B(x) =

2k−1−1∑
i=0

bix
i.

The desired product AB can be restored from the product of polynomials C(x) =
A(x)B(x) by the inverse substitution x = 2q with complexity of order 2k(2q + k),
since the coefficients of C(x) are (2q + k)-digit numbers.

We interpret the multiplication of polynomials as multiplication in the ring C[x],
where the operations are performed with such precision that the coefficients of the
product polynomial, which are actually integers, are computed with an error < 1/2.
So, they can then be recovered by rounding.

The product of polynomials is calculated via the DFT as2)

C(x) = DFT−1
2k,ζ

(
DFT2k,ζ(A(x))�DFT2k,ζ(B(x))

)
, DFT−1

2k,ζ
= 2−k ·DFT2k,ζ−1 ,

(6.4)
and the DFTs themselves are performed by the method of Theorem 2.4. Recall that
the standard circuit for the DFT of order 2k consists of k layers, on which DFTs of

2Here, polynomial notation is used for the DFT arguments. Recall also that the symbol �
denotes the componentwise product of vectors.
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order 2 are performed in parallel (this is simply addition and subtraction of a pair
of complex numbers), between which there are layers of parallel multiplications by
roots of unity ζj, see Lemma 2.1. Fig. 6.1 shows the circuit for the DFT of order 8.

To perform both scalar and nonscalar multiplications, we use a recursive call of
this multiplication algorithm followed by rounding to s digits after the binary point.
In this case, complex multiplication is performed by a two-layer circuit: on the first
layer — four real multiplications, on the second layer — real addition and subtraction.
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Figure 6.1: Circuit for the DFT of order 8 with primitive root ζ

Note that if the (complex) components of the input vector of the DFT of order 2k

are bounded in absolute value by m, then the coefficients of the intermediate vectors
in the process of computing the DFT are obviously bounded by 2km. Consequently,
when computing the product C(x) by formula (6.4), there will be no numbers whose
absolute value exceed M = 23k+2q (since m < 2q). Thus, to write the real parts of
complex numbers in the process of computation, it is sufficient to use 3k + 2q + 1
digits before the binary point3). We will determine the number s of digits kept after
the binary point later, based on the error estimate.

Let εx denote the error in calculating a (real) value x. We will roughly estimate
the evolution of the absolute value of the error ε from layer to layer. Since (a+ εa)±
(b+εb) = (a±b)+(εa±εb), the error estimate doubles at layers of additive operations,
ε→ 2ε. In the case of multiplication, we have

εab = (a+ εa)(b+ εb)− ab+ εo = bεa + aεb + εaεb + εo,

where εo is the error that occurs during rounding, |εo| 6 2−s. Therefore, in the case
of nonscalar multiplication, we set ε→ 3Mε+ 2−s, and in the case of multiplication
by roots of unity4) (|b| < 1 and εb 6 2−s) we set ε→ ε+ 2M2−s.

3Taking into account that we do not allow an error greater than 1/2.
4These are precomputed constants.
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Therefore, when computing the DFT of order 2k, the error estimate changes from ε
to

4(2M2−s + 4(2M2−s + . . .+ 4(2M2−s + 2ε) . . .)) < M22k−s + 22kε.

Finally, the calculation error according to formula (6.4) is estimated as

0
DFT−→M22k−s �−→ 3M222k−s+2−s<M222k+2−s DFT−→M224k+2−s+M22k−s<M224k+3−s.

When choosing s = 10k+ 4q+ 4, the error is strictly less than 1/2, which is required.
For q � log n and l = s+ 3k + 2q + 1 we obtain the recurrence relation

C(Mn) 6 O(2kk)(C(Ml) + l),

which, if after d steps we apply the standard multiplication method, leads to the
bound in the statement of the theorem. �

• The same complexity bound (and probably by the same method) was previously obtained by
A. A. Karatsuba [146], but not published.

Subsequent faster multiplication methods differ primarily in the choice of a ring for per-
forming the DFT. The second Schönhage—Strassen [280] method achieved a bound of C(Mn) 4
n log n log log n that remained the record for 35 years. It involves a reduction to multiplication in
the polynomial ring ZΦm

[x]/(x2m+1−1), where Φm = 22m

+ 1. The DFT is performed over the
ring ZΦm , which is distinguished by the simplicity of multiplications by roots of unity — they are
simply powers of two.

M. Fürer’s method [92] combines the advantages of both methods mentioned: logarithmic speed
of size reduction and simplicity of multiplications by roots of unity. It transfers multiplication to
the ring Cp[y]/(y2ps − 1), where Cp = C[x]/(x2p

+ 1). The DFT of order 2s(p+1) is used for
multiplication. If (by the method of Lemma 2.1) we represent it as a composition of DFTs of order
2p+1, then multiplications by powers of x will dominate among scalar multiplications. Note that x
is a primitive root5) of order 2p+1 in Cp. The method proves the bound C(Mn) 4 n log n · 2O(log∗ n).

In the method of D. Harvey and J. van der Hoeven [119] integer multiplication is reduced to
multiplication in the ring of polynomials of several variables Cp[x1, . . . , xd]/(x

n1
1 − 1, . . . , xnd

d − 1).
For multiplication in this ring, a multidimensional DFT is used, which, however, is easily reduced
to ordinary DFTs. The transition to a multidimensional space radically solves the problem of the
simplicity of primitive roots of unity (it is sufficient to consider monomials of variables xi), but
introduces a number of technical difficulties, overcoming which allowed the authors [119] to obtain
a record result C(Mn) 4 n log n.

A similar theory is developed for the multiplication of polynomials over an arbitrary ring R.
The method proposed in [120] has a complexity estimate of O(n log n) in the case of the validity of
an unproven conjecture. The unconditionally proven estimate CAR(MR

n ) 4 n log n · 2O(log∗ n) was
obtained earlier by the same authors together with G. Lecerf in [121].

For a more detailed acquaintance with the theory of fast multiplication methods, the survey

papers of D. Bernstein [25, 28] and a modern survey by S. B. Gashkov and the author [105] are

recommended.

Parallel integer division circuits A ε

As is easy to verify, Cook’s method of dividing numbers described above (Theo-
rem 5.1) [69] leads to circuits of depth of order log2 n. An important milestone in

5Here we allow the usual liberty of speech, calling the elements of the factor ring Cp not the
classes of equivalent polynomials modulo x2p

+ 1, but the representatives of classes.
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the development of fast parallel algorithms was the work of P. Beame, S. Cook,
H. Hoover [20], in which the authors constructed circuits of logarithmic depth for di-
vision, as well as for related problems. A somewhat simpler and more efficient method
was proposed by J. H̊astad and T. Leighton [124]. These methods are based on the
transition to modular arithmetic — one of the most popular algebraic techniques. As
explained above, it is sufficient to show parallel circuits for inversion.

Theorem 6.3 ([20]). D(In) � log n.

Paul Beame
University of Washington,

since 1987

I Without loss of generality, we may assume that the input
of the circuit is an n-digit number a ∈ [1/2, 1]. Let also
log2 n ∈ N and n > 16. Denote z = 1− a. Then

a−1 =
∞∑
k=0

zk ≈
2n−1∑
k=0

zk =

log2 n∏
i=0

(1 + z2i), (6.5)

where the approximation error does not exceed 21−2n due
to z 6 1/2. If each of the factors on the right-hand side
of (6.5) is computed with an absolute error of 6 ε, then an
absolute value of the error in computing the product (6.5)
does not exceed

log2 n · ε ·
2n−1∑
k=0

zk 6 2n log2 n · ε 6 21−nε. (6.6)

I. In parallel, we compute all powers of z2i with an accuracy of 2−2n each, i 6
log2 n.

For this, we use modular arithmetic (this is the central part of the method).
Choose coprime numbers p1, . . . , ps satisfying P = p1 · . . . · ps > 2n

2
so that pi 6 2n2

and s 6 2n2. This can be done according to the law of distribution of prime numbers
(see, e.g., [264]).

By assumption, 2nz is an n-digit integer. We raise it to the power 2i in the ring
Zp1 × . . . × Zps and then recover the result (2nz)2i < 2n

2
via the Chinese remainder

theorem.
The procedure is performed in three stages. First, the remainders aj =

2nz mod pj are computed, then the powers a2i

j mod pj, and finally the desired number

(2nz)2i mod P . The depth of the first and third stages is estimated in the following
two lemmas. Recall that D(Mn) � log n and D(Σm,n) � log(mn) (see, for example,
Corollaries 4.1 and 4.2), and D(Pn) � n (see below (11.5) and Corollary 12.1).

Lemma 6.2. The residue A mod p, where A is an n-digit number, and p is an m-digit
constant, can be computed with depth O(m+ log n).

� Split the dividend into blocks of length m: A =
∑n/m

k=0 ak2
km. Compute A mod p

by the formula

A mod p =

n/m∑
k=0

ak(2
km mod p) mod p.
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Since the factors 2km mod P can be considered as precomputed constants, the depth
is estimated as D(Mm) + D(Σ2m,n/m) + D(P2m+log2 n) 4 m + log n, since the sum of
products is 6 (n/m)22m (here we consider the operation of external modulo reduction
as a general boolean operator).

Lemma 6.3. Recovering a number A ∈ [0, P ) from residues modulo m-digit coprime
constants p1, . . . , ps, where P = p1 · . . . · ps, can be performed with depth O(log(ms)).

� Let ai = A mod pi. Then A =
∑s

i=1 uiai mod P , where ui < P/pi are suitable
constants. The sum of products is computed with depth at most D(Mms)+D(Σms, s) 4
log(ms). The final reduction modulo P can be performed by the formula X mod P =
X −bX · (1/P )c ·P with depth of order D(Mms) � log(ms) (we assume the constant
1/P to be precomputed with the required accuracy).

As a consequence, for the depth of approximate computation of all powers z2i we
obtain an estimate O(log n), since the operation of raising to a power in Zpi at the
second stage can be considered as a boolean operator of the general form.

II. Let us compute the final product in (6.5), again via modular arithmetic.

For each of the determined approximate values z̃i ≈ z2i , we find the remainders of
bi = b22n(1+z̃i)c divided by pj (Lemma 6.2). The products

∏log2 n
i=0 bi in Zpj (recall that

bi are O(log n)-digit numbers) may be computed by a binary tree of ordinary integer
multiplications, and the result is finally reduced modulo pj. Eventually, the desired
product

∏
i 2

2n(1 + z̃i) is recovered via Lemma 6.3 (exactly, since 2(2n+1)(log2 n+1) 6
2n

2
< P for n > 16). Restoring the correct position of the binary point, we obtain

an approximation to a−1 with an error of 6 2−n due to (6.6), since the factors in the
product are computed with an accuracy of ε < 21−2n (this consists of the error in z̃i
and rounding when going to bi). The depth of the stage is � log n. �

• Note that both the estimates and the constructions in Lemmas 6.2, 6.3 are far from optimal.

Beame, Cook, and Hoover [20] estimated the complexity of their division circuits of logarithmic

depth as n4+o(1). H̊astad and Leighton [124] proposed a family of circuits of complexity n1+ε

and depth ε−2 log n. In development of this result, J. Reif and S. Tate [261] showed that division is

possible with the depth of order log n log log n and optimal complexity of order Mlog(n) = O(n log n)

(taking into account the result [119]), where the functional Mlog(n) is defined in the same way as

M(n), but assuming the logarithmic depth multiplication algorithm.

Modular composition of polynomials A /2

The operator MCR
n of modular composition of two polynomials f, g ∈ R[x] of degree

< n modulo a third polynomial h of degree n is defined as MCR
n (f, g, h) = f(g) mod h.

The composition operation plays an important role in the arithmetic of finite fields,
in particular, in the problem of factorization of polynomials over finite fields (see, for
example, [144]).
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The first subquadratic complexity algorithm for modular composition was in-
vented by R. Brent and H. Kung [50]6). It exploits reduction to the multiplication of
rectangular matrices. Let rs > n. Write f(x) = f1(x) + xrf2(x) + . . .+ x(s−1)rfs(x),
where deg fi < r. By r+s−2 successive multiplications and divisions with remainder,
the polynomials gi = gi mod h, i = 1, 2, . . . , r, 2r, . . . , (s − 1)r are computed. Next,
the compositions ϕj = fj(g) mod h, j = 1, . . . , s, are computed by substituting the
polynomials gi for the powers of xi. We have

ϕ1

ϕ2

· · ·
ϕs


s×n

=


f1

f2

· · ·
fs


s×r

·


g0

g1

· · ·
gr−1


r×n

,

where the coefficients of the corresponding polynomials are written out in the matrix
rows. Finally, f(g) ≡ ϕ1 + grϕ2 + . . .+ g(s−1)rϕs mod h. When choosing r ∼ s ∼

√
n,

the method provides a complexity bound

C(MCn) ≺ C(MMr,s,n) + (r + s) · (C(Mn) + C(QRn,n)) ≺ n1.63,

if we apply the record complexity bound for the rectangular matrix multiplication [8].

Christopher Umans
California Institute of

Technology, since 2002

Fundamental progress in the problem of modular com-
position was achieved by the algebraic approach proposed
30 years later by C. Umans [325]. Umans’ algorithm has al-
most linear complexity for polynomials over a field of small
characteristic. We restrict ourselves to a slightly less general
case of a field of small order.

Theorem 6.4 ([325]). The modular composition of polyno-
mials over the field Fp for any m 4 log n has complexity

CAFp (MCn) 4
(
(pm2)mn1+O(1/m)

)1+o(1)
.

I Umans’ method is based on interpolation. It is neces-
sary to reduce the problem dimension first, since a poly-
nomial f(g(x)) can have a degree of order n2. To do this,
for n 6 dm, the Kronecker substitution xi = xd

i
, i = 0, . . . ,m − 1, is performed,

under which the polynomial f(x) turns into f ∗(x1, . . . , xm−1). The polynomials
gi(x) = gd

i
mod h are computed in a standard way (by successive raisings to the

power d) with a total complexity of order m log d ·M(n). Now the degree of the

polynomial f̂(x) = f ∗(g0(x), . . . , gm−1(x)) does not exceed N = dmn, and it can be
computed via interpolation at N points. To provide a reserve of interpolation points,
we move from Fp to Fq, where q = pt > N .

First, we consider the auxiliary problems of evaluation of a polynomial on a set of
points and the inverse problem of interpolation. The bisection method leads to the
following result, probably first obtained by H. Kung [180].

6More precisely, in the paper [50] they considered a special case of the problem with h(x) = xn,
but the result is easily generalized.
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Lemma 6.4 ([180]). The following problem are implemented by circuits over AR of
complexity 4 M(n) log n:

(i) evaluating of a polynomial f(x) ∈ R[x] of degree < n at n points
α0, . . . , αn−1 ∈ R;

(ii) recovering a polynomial f(x) ∈ R[x] of degree < n from given values f(αi) = ci
at points αi, i = 0, . . . , n− 1.

� Consider a balanced binary tree T with n leaves, oriented toward the root. The
leaves are numbered from 0 to n− 1 — they correspond to the indices of the interpo-
lation points αi. Next, each vertex v is assigned a set of numbers I(v) = I(v′)∪I(v′′),
where v′, v′′ are vertices preceding v. The root of the tree corresponds to the set [[n]].

Let pI(x) =
∏

i∈I(x−αi). Since f(α) = f mod (x−α), all values f(α1), . . . , f(αn)
can be determined by moving along the tree T from the root and calculating at
each vertex v the polynomials f mod pI(v). At the root of the tree we simply have
f mod p[[n]] = f , at the leaves we obtain f(αi).

The complexity of computing auxiliary polynomials pI(v) is bounded by

C(Mn/2+1) + 2C(Mn/4+1) + . . .+ (n/2)C(M2) 4 M(n) log n.

The complexity of divisions with remainder, providing all f mod pI(v), is estimated
as

2C(QRn,n/2+1) + 4C(QRn/2,n/4+1) + . . .+ nC(QR3,2) 4 M(n) log n.

This proves (i).
Let’s move on to the interpolation problem. Denote p∗I,k(x) =

∏
i∈I\{k}(x − αi).

We will carry out computations exploiting the Lagrange interpolation formula

f(x) =
n∑
k=1

c∗k · p∗[[n]],k(x), c∗k = ck/p
∗
[[n]],k(αk).

First, compute the values p∗[[n]],k(αk). Note that p∗[[n]],k(αk) = p′[[n]](αk), where p′[[n]]

is the derivative of the polynomial p[[n]]. Polynomial p′[[n]] is computed with linear

complexity if p[[n]] is known. Then, according to (i), the values of the polynomial p′[[n]]

at all points αk are computed with complexity 4 M(n) log n. Another n division
operations allow us to determine all c∗k.

Denote fI(x) =
∑

k∈I c
∗
k · p∗I,k(x). Moving along the tree in the direction from

the leaves to the root, we sequentially calculate all the polynomials fI(v) by formulas
fI(v) = fI(v′)pI(v′′) + fI(v′′)pI(v′), where v′ and v′′ precede v. At the leaves, the polyno-
mials fI(v) coincide with constants c∗j . At the root, we obtain the desired polynomial
f(x).

All auxiliary polynomials pI(v) are computed with complexity 4 M(n) log n. After
this, the complexity of computing all fI(v) may be estimated as

2C(Mn/2+1) + 4C(Mn/4+1) + . . .+ nC(M2) 4 M(n) log n.

According to Lemma 6.4, the values of the polynomials gi(x) at the interpolation
points may be determined with complexity 4 mM(N) logN operations in Fq. It
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remains to solve the problem of evaluating of the polynomial f ∗ of m variables on
a set of N vectors αi = (αi,0, . . . , αi,m−1) ∈ Fmq .

Let Fq0 ∼= Fp(β), where q0 = ps > dm2, s | t, and β is a primitive element of the
field Fq0 ⊂ Fq. Compute polynomials ϕ1(x), . . . , ϕN(x) ∈ Fq[x] of degree < m given
their values at points βj:

ϕi(β
j) = (αi,j)

q−j0 = (αi,j)
pt−sj , j = 0, . . . ,m− 1.

The complexity of computing the powers of αi,j is 4 Nm log q, and interpolation
according to Lemma 6.4 may be performed with complexity of 4 NM(m) logm op-
erations in Fq.

Consider the polynomial F (y) = f ∗(y, yq0 , . . . , yq
m−1
0 ). Its nonzero coefficients

coincide with the coefficients of the polynomial f(x), only belong to other terms,
while degF < qm0 . Formally setting F ∈ S[y], where S = Fq[x]/(xq0−1 − β), we
find the values of F (y) at N points ϕi(x) ∈ S by the method of Lemma 6.4 via
4 M(Q) logQ operations in S, where Q = max{N, qm0 }.

We denote the Frobenius powers of the polynomials ϕi(x) =
∑m−1

l=0 alx
l as ϕ

[j]
i =∑m−1

l=0 a
qj0
l x

l. Now we will show that f ∗(αi) = F (ϕi(x))|x=1. Indeed,

F (ϕi(x)) = f ∗
(
ϕi(x), ϕq0i (x), . . . , ϕ

qm−1
0
i (x)

)
=

f ∗
(
ϕi(x), ϕ

[1]
i (xq0), . . . , ϕ

[m−1]
i (xq

m−1
0 )

)
≡

f ∗
(
ϕi(x), ϕ

[1]
i (βx), . . . , ϕ

[m−1]
i (βm−1x)

)
mod xq0−1 − β,

where the degree of the last polynomial does not exceed (d− 1)m2 < q − 1, i.e., this
is exactly the result of the reduction modulo xq0−1−β. It remains to note that (after

the substitution x = 1) ϕ
[j]
i (βj) = (ϕi(β

j))q
j
0 = αi,j, since β ∈ Fq0 . The complexity of

the substitutions does not exceed q0N operations in Fq.
Now the polynomial f̂(x) may be recovered by the method of Lemma 6.4 via

M(N) logN operations in Fq. The final reduction of f̂ modulo h is performed with
complexity C(QRN,n) 4 dm log n ·M(n) over Fp.

The complexity of the described algorithm is bounded by the sum of the com-
plexity estimates of individual steps, which are underlined in the course of the proof.
Finally, we obtain

CAFp (MCn) 4 m log d ·M(n) + dm log n ·M(n) + M(Q) logQ ·M(q0)M(t)+

[mM(N) logN +Nm log q +NM(m) logm+ q0N + M(N) logN ] M(t) 4

(Nt)1+o(1)(q0 + log q) + (qm+1
0 t)1+o(1).

Given N = dmn, choosing dm 6 dn, q0 6 pdm2 and q 6 q0dmn (so that t 4
log(dmn)), we conclude

CAFp (MCn) 4 p(dm)O(1)n1+o(1) + (d2(pm2)m+1n)1+o(1),
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from which the stated bound follows. �

In the case p = no(1), one can choose 1 ≺ m ≺ logn
log logn

such that pm = no(1) and

d = no(1), so CAFp (MCn) = n1+o(1).

• A slightly more subtle argument yields roughly the same complexity estimate as in Theorem 6.4,
only with char Fp instead of p [325].

The refined complexity estimates for the algorithms in Lemma 6.4 obtained by A. Bostan
and É. Schost in [43] are . 1.5M(n) log2 n for the problem (i) of evaluating at n points and
. 2.5M(n) log2 n for the problem (ii) of interpolating given values at points, where n = 2k.

An alternative algorithm for performing the central stage of modular composition — multipoint
evaluation of a polynomial of several variables — is proposed in [31].

J. van der Hoeven and G. Lecerf [131] by modifying the method of K. Kedlaya and

C. Umans [151]7) extended the described algorithm to fields of any cardinality and residue rings,

obtaining for the bit complexity the estimate CB2
(MCRn ) = (n log q)1+o(1), where R = Fq or R = Zq.

Other applications

Multiplication in Mersenne fields. Consider the problem of multiplication modulo a Mersenne
prime 2p − 1, i.e., in fact, multiplication in a prime field Z2p−1. It can be represented as a cyclic
convolution of order p of vectors of binary notation of the numbers being multiplied. Therefore, the
multiplication is performed via the DFT of order p with a primitive root 2 ∈ Z2p−1. But p is also
a prime number, and a DFT of such order is usually not implemented very efficiently. However, in
this situation, one can use a technique proposed by R. Crandall and B. Fagin [76], which in some
cases allows one to reduce a DFT of an “unsuitable” order to a DFT of a “suitable” order.

The technique consists in transition to approximate calculation of real DFT of arbitrary order N .
We split the numberX = [xp−1, . . . , x0] to be multiplied intoN blocks of approximately equal length:
X = [XN−1, . . . , X0]. Let Bi be the position of the beginning of the i-th block. Write X as

X =

N−1∑
i=0

Xi · 2Bi =

N−1∑
i=0

(
Xi · 2Bi−ip/N

)
2ip/N =

N−1∑
i=0

X ′i · 2ip/N .

Now the multiplication of X by Y =
∑N−1
i=0 Y ′i ·2ip/N can be performed via two DFTs of order N with

primitive root 2p/N ∈ (R mod 2p−1) and one inverse DFT. From the resulting vector [Z ′N−1, . . . , Z
′
0]

the desired product may be determined as

XY =

N−1∑
i=0

(
Z ′i · 2ip/N−Bi

)
2Bi mod 2p − 1.

When choosing a block size close to the length of a machine word, the described method is
efficiently implemented on standard computers.

Arithmetic in normal bases of finite fields. A finite field of order qn is isomorphic to
the factor ring of polynomials Fq[x]/(mn(x)) modulo an irreducible over Fq polynomial mn(x) of
degree n. Thus, operations in a finite field are essentially operations on polynomials. Sometimes,
however, alternative representations may be useful.

In general, elements of the field Fqn are represented by linear combinations of basis elements
α0, . . . , αn−1 over Fq. In the standard (polynomial) representation αi = αi (here α is the generator
of the basis, that is, a root of an irreducible polynomial). Of the other representations, the most

popular is the normal one. Its basis elements have the form αi = βq
i

, where β is the generating
element of the basis (a normal element of the field).

7The method [151] is developed for the RAM-program model.
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The idea of transitions between standard and normal bases to speed up computations was
apparently first put forward by E. Kaltofen and V. Shoup in [144]. They also constructed a circuit
of subquadratic complexity O(n1.82) (in operations of the field Fq) for the transition from the normal
to the standard representation. An analogous circuit for the transition in the opposite direction was
constructed by the author in [288]8). These transition algorithms are similar to the Brent—Kung
modular composition algorithm [50].

Let us consider the problem of constructing circuits over the complete arithmetic basis AFq for
the transition between two representations of an arbitrary element y ∈ Fqn :

y = a0 + a1β + . . .+ an−1β
n−1 = b0β + b1β

q + . . .+ bn−1β
qn−1

.

Let n 6 ms. If the normal representation (coefficients bi) is given, we write

y = γ0 + γq
m

1 + . . .+ γq
m(s−1)

s−1 , where γk = bmkβ + bmk+1β
q + . . .+ bmk+m−1β

qm−1

.

Then 
γ0

γ1

· · ·
γs−1


A

s×n

=


γ0

γ1

· · ·
γs−1


B

s×m

·


β
βq

· · ·
βq

m−1


A

m×n

,

where the rows of the matrices labeled by A contain the coefficients of the standard representations
of the elements, and the matrix labeled by B contains the coefficients of the normal representation
at β, βq, . . . , βq

m−1

. Further, the powers of the elements γi in the standard basis may be computed
via modular composition as

f(x)q
k

mod mn(x) = f(xq
k

) mod mn(x) = f(ξ(x)) mod mn(x), ξ(x) = xq
k

mod mn(x).

It remains to compute the sum
∑
γk. The complexity of the indicated method (here a modification

of [144] from [288] is presented) for small q and s ≈ m ≈
√
n is estimated as C(MMs,m,n) +

sC(MCn)+sn ≺ n1.63 when applying known bounds on the complexity of modular composition [325]
(see Theorem 6.4) and multiplication of rectangular matrices [8], when the field characteristic is not
too large.

The method [288] of the transition in the opposite direction is based on the following observation:

normal representations of elements y and yq
k

differ by a cyclic shift of k positions. First, we compute

the powers of yq
m

, yq
2m

, . . . , yq
(s−1)m

. Then, from the known partial normal representations for

1, x, . . . , xn−1 we derive partial representations of elements yq
m

, yq
2m

, . . . , yq
(s−1)m

:
y
yq

m

· · ·
yq

(s−1)m


B

s×m

=


y
yq

m

· · ·
yq

(s−1)m


A

s×n

·


1
x
· · ·
xn−1


B

n×m

.

Their combination, by the above remark, provides all normal coordinates of y. The complexity of
the algorithm does not exceed sC(MCn) + C(MMs,n,m) ≺ n1.63.

For the sake of completeness, we note that transition from one standard representation to
another is performed by the modular composition operation: if y = f(β) in the standard basis with
generator β, then y = f(ξ(x)) mod mn(x) in the basis with generator α, which is the root of the
polynomial mn(x), where β = ξ(α).

The transition between two normal representations is even simpler: it is easy to check that the

transition matrix is circulant9), so the complexity of the procedure does not exceed C(M
Fq
n ) [288].

It is clear that when performing usual arithmetic operations, say, multiplication or division, in
a normal basis it is advantageous to pass to a standard basis. An opposite example, when it is

8In [144] the transition to the normal representation is performed by a probabilistic algorithm.
9Recall that all rows of a circulant matrix are generated by cyclic shifts of the same vector.
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advisable to pass from a standard basis to a normal one, is apparently provided by the operator
computing all Frobenius automorphisms: y → (yq, yq

2

, . . . , yq
n

). In a normal basis this operation is

“free of charge”, and for a standard basis in [288] an algorithm of complexity 4 nC(M
Fq
n ) is proposed

that exploits the idea of transition to a normal basis. This algorithm turns out to be slightly faster
than the algorithm [108] that does not use transition.

In practice, special normal bases with a simple multiplication table (optimal, Gaussian) are
often used — such bases can be found in many fields. But even for them, the standard Massey—
Omura multiplication algorithm [215] has quadratic complexity. At the same time, as shown by
A. A. Bolotov and S. B. Gashkov [39], such bases have low transitive complexity10), usually of order

n log n, so the order of complexity of multiplication in these bases is close to C(M
Fq
n ). A similar

result, exploiting the idea of transition implicitly, was obtained a little earlier in [98].

In [110] the problem of constructing (arithmetic) circuits for transition between polynomial and

normal bases in extensions of fields of characteristic 0 is considered. The proposed algorithms have

complexity O(n1.99) with respect to the extension degree n, but they are probabilistic.

10Complexity of transition to the standard representation and backward.



Chapter 7

Special encoding e

Transition to an alternative encoding (representation) of inputs in which the
required function is computed more easily is especially popular in boolean
computations. This technique is close in spirit to the idea of the algebraic
method, but is free from structural algebraic restrictions.

Circuit complexity of bit counting e

By combining the standard FA3 circuits of three-bit summation, it is easy to con-
struct an n-bit summation (counting) circuit of complexity 5n+O(log n), see Fig. 7.1.

FA3 FA3 FA3 FA3 FA3
- - - - - -· · ·

? ? ? ?? ? ? ? ?

FA3 FA3

C
CW

C
CW

�
��

�
��

- - -· · ·

· · ·

FA3

CCW ���
-

x1 x3 x5 x7x2 x4 x6 x8 xn

y0

y1

ylog2 n

Figure 7.1: Standard n-bit counting circuit

In light of the fact that an n-bit adder composed of FA3 blocks is optimal [259],
it was natural to assume that the same was true for the bit counting operator. Some-
what unexpectedly, in 2010, a group of mathematicians from St. Petersburg [77]
discovered that this was not the case.

Theorem 7.1 ([77]). CB2(Σ1,n) 6 4.5n+O(log n).
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I The design exploits the idea of transition from the usual
bit notation to encoding two bits x, y by the pair (x, x⊕ y).
A special compressor, denoted MDFA, performs summa-
tion of five bits according to the rule x1 +x2 +x3 +x4 +x5 =
2(y1 + y2) + y0 with complexity 8, if two pairs of inputs
are given in the modified encoding, and the pair of out-
puts (y1, y2) is written in the same encoding, see1) Fig. 7.2.
Now replacing the basic compressor in the original circuit
Fig. 7.1, see Fig. 7.3, immediately leads to the required es-
timate. �
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Figure 7.2: MDFA compressor circuit
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-

x1 x3 x5 x7x2 x4 x6 x8 xn−1 xn

y0

y1

ylog2 n

Figure 7.3: n-bit counting circuit composed of MDFA compressors

Corollary 7.1 ([77]). The complexity of the class Sn of symmetric boolean functions
of n variables satisfies CB2(Sn) 6 4.5n+ o(n).

1Recall that small circles at inputs of elements are invertors.
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• The idea of (x, x ⊕ y) encoding goes back to the work of L. Stockmeyer [312], who applied it
to prove an asymptotically tight bound for the complexity of the summation operator modulo 4:
CB2(MOD4

n) = 2.5n±O(1).

The MDFA compressor also allows to improve the standard bound for the complexity of summing

three n-bit numbers. Given that 5n− 3 operations are required to add two numbers [259], it would

be natural to assume that summing three numbers would require about 10n operations. However,

this is also not the case. By organizing MDFA compressors in a chain (in the same style as FA3

compressors in the standard adder circuit, see Theorem 1.3), we obtain a triple adder witnessing

the complexity bound CB2(Σn,3) < 9n.

Real complexity of complex DFT e

Theorem 2.4 estimates the complexity of the DFT of order N = 2k over the field C
asymptotically as 1.5N log2N arithmetic operations, and this bound has not yet
been improved. From a practical point of view, the complexity bound expressed in
real operations is of greater interest. Recall that complex addition or subtraction
is performed in 2 real additions or subtractions, and multiplication by a complex
constant is performed in 6 real operations (4 scalar multiplications and 2 additions,
or 3 multiplications and 3 addition-subtractions). Then from Theorem 2.4 it follows
that CAR

L
(DFTN [C]) < 5N log2N .

A better bound is provided by the so-called “split-radix FFT” algorithm, known
since the 1980s, which takes into account that multiplications by 4th roots ±i are
performed “for free”.

Theorem 7.2 ([338]). Let N = 2k. Then CAR
L
(DFTN [C]) 6 4N log2N .

I Recall that the components of the DFT of order PQ can be computed by formu-
las (2.7):

x∗pQ+q =
P−1∑
j=0

(ζQ)jp · ζjq ·
Q−1∑
i=0

(ζP )iqxiP+j (7.1)

for p = 0, . . . , P − 1 and q = 0, . . . , Q− 1.

Assuming P = 2k−1 and Q = 2, we compute the components with even indices,
i.e., with q = 0, by formula (7.1). For any p = 0, . . . , P − 1,

x∗2p =
P−1∑
j=0

(ζ2)jp(xj + xP+j).

The computations involve P = 2k−1 additions of complex coefficients and performing
the DFT of order 2k−1.

To compute the components with odd indices, set P = 2k−2, Q = 4 and again
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apply formula (7.1). For any p = 0, . . . , P − 1 we have

x∗4p+1 =
P−1∑
j=0

(ζ4)jp · ζj · (xj − x2P+j + i(xP+j − x3P+j)),

x∗4p+3 =
P−1∑
j=0

(ζ4)jp · ζ3j · (xj − x2P+j − i(xP+j − x3P+j)).

These formulas imply 4P complex additions-subtractions, 2P multiplications by pow-
ers of the primitive root ζ, and two DFTs of order 2k−2.

Finally, we obtain the relation

CAR
L
(DFTN) 6 CAR

L
(DFTN/2) + 2CAR

L
(DFTN/4) + 6N,

which is resolved as stated, taking into account the initial conditions CAR
L
(DFT2) = 4

and CAR
L
(DFT1) = 0. �

• The exact complexity of the method is 4N log2N − 6N + 8. It was published by R. Yavne

in [338], but was obtained in a more difficult way. The split-radix FFT method was published

almost simultaneously in [81, 214, 328].

For a long time, the bound of Theorem 7.2 seemed impregnable, until J. van
Buskirk discovered that it can be improved (published in [199]). The key point in the
method is the renormalization of the input vector X → σ�X, due to which some of
the scalar multiplications in the algorithm become simpler. Note that multiplication
by a constant of the form ±1 + ai or a± i can be performed via two real additions-
subtractions and two multiplications.

Let ‖a‖ = max{|<a|, |=a|} denote the l∞-norm of a complex number a =
<a+ =a · i.

Theorem 7.3 ([199]). Let N = 2k. Then CAR
L
(DFTN [C]) 6 37

9
N log2N + 2N .

I Let ζN = e2πi/N be a primitive root of order N in C. For all j ∈ Z, we define the
real coefficients

σN,j =
∏

06l<k/2

∥∥∥ζj·4lN

∥∥∥ .
Due to ‖ζjN‖ =

∥∥∥ζ±j±N/4N

∥∥∥ these coefficients satisfy the symmetry properties σN,j =

σN,−j and the periodicity properties σN,j = σN,j+N/4. Moreover, by construction,

(σN/4,j/σN,j)ζ
j
N = ζjN/‖ζ

j
N‖ has the form ±1 + ai or a± i.

Denote the normalized coefficients of the input vector of the DFT by ẋj: ẋj =
σ−1
N,jxj. We will construct circuits for normalized transforms

DFT′N(x0, x1, . . . , xN−1) = DFTN,ζN [C] (ẋ0, ẋ1, . . . , ẋN−1) .
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According to formula (7.1) with the choice of parameters P = 2k−2 and Q = 4
and the periodicity property of the coefficients σk,j, for the components ẋ∗i of the
normalized transform DFT′N the following holds (hereinafter ζ = ζN):

ẋ∗4p+q =
P−1∑
j=0

(ζ4)jp · ζjq · σ−1
N,j · γj,q, γj,q =

3∑
r=0

irq xrP+j.

The inner sums γj,q constitute components of P order-4 DFTs and can be computed
via 16 real additions-subtractions each. Further computations for q = 0, 1, 3 are
performed according to the formulas

ẋ∗4p =
P−1∑
j=0

(ζ4)jpσ−1
N/4,j · (σN/4,j/σN,j) · γj,0,

ẋ∗4p+1 =
P−1∑
j=0

(ζ4)jpσ−1
N/4,j · (σN/4,j/σN,j)ζ

j · γj,1, (7.2)

ẋ∗4p+3 =
P−1∑
j=0

(ζ4)j(p+1)σ−1
N/4,j · (σN/4,j/σN,j)ζ

−j · γj,3.

(Note the cyclic shift of the vector of coefficients of the outer DFT in the last sum —
it allows to reduce multiplications by ζ3j to simpler multiplications by normalized
numbers ζ−j.)

Computations by formulas (7.2) involve N/4 multiplications by real constants,
N/2 multiplications by constants of the form ±1+ai or a± i, and three type-DFT′N/4
transforms.

To compute the remaining components ẋ∗4p+2, we apply formula (7.1) with param-
eters P = 2k−3 and Q = 8:

ẋ∗8p+2 =
P−1∑
j=0

(ζ8)jpσ−1
N/8,j · (σN/8,j/σN/2,j)(ζ

2)j · αj,

ẋ∗8p+6 =
P−1∑
j=0

(ζ8)j(p+1)σ−1
N/8,j · (σN/8,j/σN/2,j)(ζ

2)−j · βj,

where

αj = (σN/2,j/σN,j)γj,2 + i(σN/2,j+N/8/σN,j+N/8)γj+N/8,2,

βj = (σN/2,j/σN,j)γj,2 − i(σN/2,j+N/8/σN,j+N/8)γj+N/8,2.

Recall that σN/2,j = σN/2,j+N/8. These computations are performed via N/4 multipli-
cations by real or imaginary constants, N/4 multiplications by constants of the form
±1 + ai or a± i, and two type-DFT′N/8 transforms.

As a result, we obtain the relation

CAR
L
(DFT′N) 6 3CAR

L
(DFT′N/4) + 2CAR

L
(DFT′N/8) + 8.5N,
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which, in accordance with the initial conditions C(DFT′4) 6 16, C(DFT′2) = 4 and
C(DFT′1) = 0, is resolved as CAR

L
(DFT′N) 6 37

9
N log2N . It remains to take into

account 2N operations for the transition from the coordinates X to Ẋ. �

• The method of Theorem 7.3 is also explained in [137, 27]. An accurate complexity of the algorithm
is given by

34

9
N log2N −

124

27
N − 2

(
1 +

(−1)k

9

)
log2N + 8 +

16

27
· (−1)k.

Additionally applying a trick of reducing DFT to Walsh—Hadamard transforms, J. Alman and

K. Rao [10] improved the bound for the real complexity of the complex DFT to CAR
L

(DFTN [C]) 6

3.75N log2N +O(N).

Matrix multiplication. Speeding up Strassen’s method e /2

Of the theoretically fast matrix multiplication methods, Strassen’s method is of great-
est practical interest [313]. Efforts of many researchers have focused on optimizing
the algorithm’s running time. Recall that in the basic scheme of the Strassen method
in Winograd’s modification, the multiplication of matrices of size 2× 2 is performed
via 7 multiplications and 15 additive operations in a ring. Whereas the multiplica-
tive complexity of the basic algorithm determines the exponent of the complexity
of multiplication of n × n matrices, the basic additive complexity is approximately
proportional to the multiplicative constant in the complexity estimate of the general
multiplication. Thus, according to (5.10) for n = 2k we obtain CAR(MMn) 6 6nlog2 7.

M. Bodrato [38] observed that the fast 2× 2 matrix multiplication can be accom-

plished in 12 additive operations if an alternative representation X → X̂ is used (see
also [149]). For example [149], let

X̂ =

[
x̂11 x̂12

x̂21 x̂22

]
=

[
x11 x12 − x21 + x22

x22 − x21 x12 + x22

]
. (7.3)

Now the product Ẑ = X̂Ŷ can be calculated by formulas

u1 = x̂11ŷ11, u2 = x̂12ŷ12, u3 = x̂21ŷ21, u4 = x̂22ŷ22,

u5 = (x̂12 − x̂21)(ŷ22 − ŷ12), u6 = (x̂12 − x̂11)(ŷ12 − ŷ21), u7 = (x̂22 − x̂12)(ŷ12 − ŷ11),

ẑ11 = u1 + u5, ẑ12 = u2 + u5 − u6 + u7, ẑ21 = u3 + u7, ẑ22 = u4 − u6, (7.4)

which involve 7 multiplications and 12 additions-subtractions.

Theorem 7.4 ([38, 149]). Let n = 2k. Then for a ring R,

CAR(MMn) 6 5nlog2 7 +O(n2 log n).

I Let us recursively extend the alternative representation to matrices of size 2k×2k.
For k = 1, the representation X̂ is defined by formulas (7.3). If the representation
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for matrices of size n/2× n/2 is already defined, then the representation of an n× n

matrix X =

[
X11 X12

X21 X22

]
is defined as2)

X̂ =

[
X̂11 X̂12 − X̂21 + X̂22

X̂22 − X̂21 X̂12 + X̂22

]
. (7.5)

Lemma 7.1. For the complexity of conversion between the two representations of an
n× n matrix X, the following bound holds:

CA(X → X̂),CA(X̂ → X) 6
3

4
· n2 log2 n.

� A single application of formulas (7.3) or (7.5) costs 3 additive operations. The
same is true for the other direction: for n = 2,

X =

[
x11 x12

x21 x22

]
=

[
x̂11 x̂12 − x̂21

x̂22 − x̂12 x̂21 − x̂12 + x̂22

]
.

Thus, for the complexity T (n) of the transition between the representations of an
n × n matrix, we have the recurrence relation T (n) 6 4T (n/2) + 3n2/4, which is
resolved exactly as stated.

Let M̂Mn denote the matrix multiplication operator in the alternative represen-
tation. When it is implemented by the method of Theorem 2.3 or 5.3, a recursive
call of the multiplication algorithms of smaller and smaller dimensions is performed,
and each time the matrices being multiplied have a suitable form for applying for-
mulas (7.4). For the complexity of M̂Mn, one can employ estimate (5.10)3), in which
m = 2, r = 7 and s = 12. So we obtain

C(MMn) 6 C(M̂Mn) + 3T (n) 6 5nlog2 7 − 4n2 +
9

4
· n2 log2 n.

�

The bound of Theorem 7.4 is somewhat conventional, since in practice for small n
it is not the Strassen method that is called, but, say, the standard multiplication
algorithm — in this case the multiplicative constant in the complexity estimate turns
out to be even smaller (see, e.g., [55]).

• Bodrato [38] also showed that for any representation of 2× 2 matrices by minimal length codes,
the additive complexity of a Strassen-type multiplication algorithm is at least 12.

E. Karstadt and O. Schwartz [149] also found suitable matrix representations for other poten-
tially interesting algorithms, in particular for Smirnov’s algorithm [308] based on fast multiplication
of 3 × 3 and 3 × 6 matrices (see also [24]). Moreover, even more economical representations exist
for rings of characteristic 2, see [148].

2It should be noted that the matrix notation for the alternative representation is conditional: the
matrix product in the modified representation is determined by different rules than in the standard
one.

3It is important here that the new encoding preserves the size of matrices, so the complexity of
additive matrix operations does not change.
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A similar approach for accelerating Strassen’s algorithm, based on a different encoding, though

redundant, was proposed by M. Cenk and M. Hasan [55]. Their algorithm leads to the same estimate

as in Theorem 7.4, . 5nlog2 7, and under the condition of employing the standard multiplication

algorithm for small matrix sizes — to the estimate C(MMn) . 3.55nlog2 7 (for n = 2k).

Formula complexity of summation modulo 5 e U /2 ·∵

Consider the problem of computing the sum of n boolean variables modulo m over
the basis B0. Simple formulas (4.1) lead to the bound ΦB0(MODm

n ) 4 nlog2m+1 [206].
For m = 3 this bound has not yet been improved, but for larger m shorter formulas
may be constructed by the method proposed by the author in [297]. It is based on a
specially extended encoding of inputs.

Let S ⊂ Zm. We define the functions

MODm,S
n (X) =

(
n∑
i=1

xi mod m ∈ S

)
.

Clearly, the set of all functions MODm,S
n , 0 < |S| < m, defines the value of the sum

of variables modulo m.
To each set S we associate a boolean m×m matrix ISm, whose rows and columns

are labeled by digits from Zm, and whose entries are defined as ISm[i, j] = (i+ j ∈ S).
Consider a covering of the matrix ISm by rectangles (all-ones submatrices): let the
k-th rectangle be located at the intersection of rows Ak and columns Bk. Then for
X = (X1, X2), |X| = n, |X i| = ni,

MODm,S
n (X) =

∨
k

MODm,Ak
n1

(X1) ·MODm,Bk
n2

(X2). (7.6)

From (4.1) we deduce the identity

MODm,S
n (X) =

m−1∨
k=0

MODm,k
n1

(X1) ·MODm,S−k
n2

(X2), (7.7)

corresponding to the trivial covering of the matrix by separate rows (here S − k
denotes the set {r − k | r ∈ S}). The rank of this covering (the number of covering
submatrices) is m.

Nontrivial complexity bounds can be obtained from coverings of rank < m.
Though in the case m = 3 for all S 6= ∅, Zm the matrices ISm have full rank, already

for m = 5 the matrices I
Zm\{r}
m (coinciding with Im up to a permutation of rows and

columns) have rank 4, and the corresponding covering is formed by rectangles with
sides 2 and 3, see Fig. 7.4.

Theorem 7.5 ([297]). ΦB0(MOD5
n) ≺ n3.22.

I So, functions MOD5,S
n for |S| = 4 may be implemented by formulas (7.6) with

4 summands, and for |S| = 1 — by dual formulas (conjunctions of disjunctions) of



90 CHAPTER 7. SPECIAL ENCODING

0

0

0

0

0

1 1 1 1

1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

r r rrr
rrrr r

r r r
r

r rr rr r
r r
r
r

Figure 7.4: Covering of the matrix I5

the same size. For the remaining functions MOD5,S
n we choose expression (7.7), since

a matrix IS5 for 2 6 |S| 6 3 has full rank.

Applying the potential method, we estimate the complexity of the formulae that
this strategy leads to. Let pn denote the complexity of formulae for MOD5,S

n , |S| ∈
{1, 4}, and let qn denote the complexity of formulae for MOD5,S

n , |S| ∈ {2, 3}. Define
rn = max{pn, qn/a}, where the parameter a will be chosen later. From (7.6) and (7.7)
the inequality

r2n 6 max{8qn, 5(pn + qn)/a}

follows. In order to minimize the ratio r2n/rn, we choose a = 5+
√

185
16

. As a result we
obtain r2n 6 8arn. Therefore, ΦB0(MOD5

n) 4 n3+log2 a ≺ n3.22. �

• A minor refinement of the bound of Theorem 7.5 is possible with an additional selection of the
optimal ratio n1/n2. The above method also leads to the bounds [297]

ΦB0
(MOD7

n) ≺ n3.63, DB0
(MOD5

n) . 3.35 log2 n, DB0
(MOD7

n) . 3.87 log2 n.

For larger m, the general bounds on the depth and complexity of the operator Σ1,n have priority,

see (7.9).

Fast exponentiation of polynomials e

Consider the problem of fast exponentiation of a polynomial f(x)m in a quotient ring
R[x]/(p(x)), where deg f < deg p = n. When implementing finite field arithmetic,
one has to deal with such operations regularly.

A straightforward approach is to perform successive multiplications with reduction
modulo p(x). If we compute powers of f(x) following a minimal addition chain for m,
then a total of L(m) ∼ log2m steps of complexity CAR(MR

n ) + CAR(QRR
2n,n) each are

required. Even in the favorable case (Theorem 5.2), division with remainder “costs”
about two multiplications, and usually — somewhat more. P. Montgomery [220]
observed that multiplication in a quotient ring can be simplified by switching to a
special representation of elements. An adaptation of Montgomery’s integer method
for polynomials is presented below.

Let b(x) = xn−1 and q(x) = b−1(x) mod p(x) (assuming that p(x) has a nonzero
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constant term, the polynomials b and p are coprime4)). Consider the transform
f → f ∗ = fb mod p. It establishes a correspondence which is in fact a homomorphism
if the operation of addition of images is defined in a natural way and the multiplication
is defined as f ?g = fgq mod p (Montgomery multiplication). Then (f±g)∗ = f ∗±g∗
and (fg)∗ = f ∗ ? g∗.

Let us denote h(x) = −p−1(x) mod b(x). The following lemma suggests a simple
way to implement Montgomery multiplication.

Lemma 7.2. If deg f 6 2n− 2, then

f + ((f mod b)h mod b)p

b
= fq mod p. (7.8)

� The numerator of the fraction is divisible by b, since b | f(1 + hp). Therefore,
the fraction is a polynomial of degree < n, which, as we see when multiplying by bq,
belongs to the same equivalence class modulo p as the polynomial fq. Thus, the two
polynomials simply coincide.

Formula (7.8), if f is replaced by the product fg of polynomials of degree < n,
means that the complexity of Montgomery multiplication f ? g does not exceed
3CAR(MR

n ) + O(n). The transition from f to f ∗ = f ? (b2 mod p) costs three multi-
plications, and in the opposite direction — two.

Theorem 7.6. Let p(x) ∈ R[x], deg p = n, and x - p(x). Raising to a fixed
power m in the ring R[x]/(p(x)) can be performed by a circuit of complexity
(3L(m) + 3)(CAR(MR

n ) +O(n)) over the basis AR.

I Guided by the shortest addition chain a0 = 1, a1, . . . , ak = m for m, we sequentially
compute the polynomials ϕi = faiqai−1 mod p according to rule (7.8), starting with
f = fa0qa0−1 mod p. Finally, fm mod p = ϕk ? a, where ϕk = fmqm−1 mod p, and
the polynomial a = bm mod p is assumed to be precomputed. �

A more elegant scheme computing f → f ∗ → (fm)∗ → fm (modulo p) makes full
use of the auxiliary encoding, but requires two more multiplications. However, this
method is efficient in the case of a non-fixed polynomial p or when the number m
is also an input to the algorithm and is given by a binary code (which often occurs
in practice; then a binary addition chain for m is applied). Of course, Montgomery
encoding is suitable for a wide range of arithmetic problems in quotient rings, not
only for exponentiation.

• Almost without changes, the technique of modular computations may be adapted to number
rings Zp — it was originally developed for them [220]. Usually p is a prime n-digit number, and
b = 2n. Lemma 7.2 is refined as follows: for f < p2, the left-hand side (7.8) either coincides with
the right-hand side or exceeds it by p.

An alternative to Montgomery’s method is P. Barrett’s [15] method. The method is based on

substitution of the divisor: the quotient bf/pc is approximately bbf/bc·bb2/pc/bc. If we precompute

4If p(x) = p0(x)xk, where x - p0(x), then the problem becomes simpler, since the computations
can be performed separately modulo xk and modulo p0(x). In applications (for example, in finite
field arithmetic), the polynomial p is usually irreducible, in particular, x - p(x).
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bb2/pc, then multiplication modulo p may be performed via three ordinary multiplications and

several linear complexity operations.

Other applications

Formulae for symmetric boolean functions. An arbitrary symmetric boolean function of
n variables has the form h(Σ1,n(X)), and the standard method for computing it is as follows: first,
calculate the arithmetic sum of the inputs, and then implement the function h of log2 n variables. In
this case, since different digits of the arithmetic sum, generally speaking, have different complexity
and depth, in the second step, as shown in [156, 242], it is advantageous to employ the cascade
method5). Thus, in the case of standard (3, 2)-compressors, the upper bounds for the depth of the
counting operator Σ1,n and the class of symmetric functions Sn are related as [242]

DB2
(Σ1,n) . 3.71 log2 n, DB2

(Sn) . 3.81 log2 n

(see Corollary 4.1 for the proof of the former bound).
In the author’s method [296, 306] the sum Σ = Σ1,n(X) is encoded by the set

({Σq|q = 2, 3, [. . .]},Σ′), where Σq = Σ mod qkq and |Σ′ − Σ| < E for
∏
qkq > 2E. The value

of Σ2 is computed by the modification of the compressor method proposed in [242], and in the
general case Σq is computed similarly, only in the q-ary number system with the use of special q-ary
compressors. The approximate sum Σ′ may be computed by L. Valiant’s method [326], see below on
p. 106. Then, an absolute value of the sum Σ = Σ1,n(X) may be recovered from its code via a simple
arithmetic procedure in the spirit of the Chinese remainder theorem. A general symmetric function
can be computed directly as h({Σq},Σ′), without restoring Σ. The efficiency of the approach relies
on the fact that the least significant digits of sums in the compressor method are easier to compute
than the most significant ones. On this path, record estimates to date have been obtained [306]:

ΦB0
(Σ1,n),ΦB0

(Sn) 4 n3.77, ΦB2
(Σ1,n) 4 n2.82, ΦB2

(Sn) 4 n2.85, (7.9)

DB0
(Σ1,n),DB0

(Sn) . 3.96 log2 n, DB2
(Σ1,n),DB2

(Sn) . 2.98 log2 n.

Slightly better estimates were obtained for threshold symmetric functions, in particular, for the
majority function. However, the above estimates are non-constructive due to the method of com-
puting Σ′. A constructive version of the method, basing on a shortened encoding (Σ2,Σ3), was
proposed by the author earlier in [293, 294].

Almost monotone complexity of boolean functions. In monotone or mostly monotone com-
putations, preliminary sorting of input vectors often allows one to construct simpler circuits. Let
us consider a well-known example. In 1957, A. A. Markov [213] discovered a fundamental fact:
any system of boolean functions of n variables can be implemented by a circuit over the basis B0

including only b(n) = dlog2(n + 1)e negation elements6). Any circuit over B0 can be transformed
quite efficiently into a circuit with b(n) negations. First, negations are lowered to the input level
according to De Morgan’s rules, while the complexity of the circuit at most doubles. After this, it
remains to implement the operator Vn = (x1, . . . , xn), using negation elements sparingly.

The record upper bound O(n log n) for the complexity of computing Vn by a circuit with b(n)
negations was obtained by R. Beals [18] (see also [19]). The method is based on M. Fischer’s
observation [87] that on an ordered set of inputs the operator Vn can be implemented simply, with
linear complexity.

Indeed, for n = 3 and x1 > x2 > x3 a circuit with b(3) = 2 negations is constructed as follows.
First, compute x2, then x1x2 ∨ x3, then (x1x2 ∨ x3) = (x1 ∨ x2)x3. It remains to note that

x2((x1 ∨ x2)x3) = x1x2x3 = x1 and x2 ∨ ((x1 ∨ x2)x3) = x1 ∨ x2 ∨ x3 = x3.

5The method consists of successively decomposing the function in a selected variable:
f(x1, x2, . . . , xn) = x1f(1, x2, . . . , xn) ∨ x1f(0, x2, . . . , xn), see, e.g., [207].

6Moreover, he indicated a rule that allows one to determine the inversion complexity (the mini-
mum number of negations in a circuit) of a function from the table of its values. For an arbitrary
function of n variables, the inversion complexity does not exceed dlog2(n+ 1)e.
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The method is generalized to the case of an arbitrary n = 2k − 1: the described calculations are
performed with triplets xi > xk > xk+i, and in the middle an algorithm is called that computes Vk−1.

It is easy to check that the overall complexity of the circuit does not exceed 4n. The bene-
fit of ordering the input set is also demonstrated by the lower bound proved by K. Tanaka and
T. Nishino [316]: in the general case, the complexity of implementing Vn by circuits with b(n)
negations cannot be less than 5n (for n > 3).

A downside of the monotone encoding is a nonlinear complexity of the transition to it and

back7). The transition x1, . . . , xn
SORTn−→ xπ(1), . . . , xπ(n) is performed by a comparator circuit8)

with complexity 4 n log n, if we apply some AKS-like method. The key observation of Beals [18] is
that to return to the original order of variables xπ(1), . . . , xπ(n) −→ x1, . . . , xn one can reverse the
original sorting circuit. Indeed, if a comparator in the circuit implements (f, g) → (f ∨ g, f · g),
then, given f ∨ g = f · g and f · g = f ∨ g, the functions f and g may be computed by formulas

f = f · g ∨ (f ∨ g)g, g = f · g ∨ (f ∨ g)f.

As a consequence, the transition to the original order of variables is also performed with complexity
4 n log n. Thus, information about the structure of the sorting circuit complements the monotone
encoding of the input set.

Instead of sorting, one can use the median selection in the above method; the circuits are simpler,
but the order of complexity does not change9). The question of the existence of a circuit of linear
complexity for Vn remains open. H. Morizumi and G. Suzuki [223] constructed a circuit of linear

complexity with log1+o(1) n negation elements.

Interpolation and evaluation at points of arithmetic progression. Recall that the eval-
uation of a polynomial of degree < n on a set of n points, as well as the inverse problem of
reconstructing the coefficients of a polynomial from the values at these points, may be performed
with complexity 4 M(n) log n (Lemma 6.4): refined estimates in [43] have the form . 1.5M(n) log2 n
and . 2.5M(n) log2 n for n = 2k, respectively. These operations can be implemented even faster if
the set of points has a special structure. In particular, for the case of an arithmetic progression,
J. Gerhard [109] proposed a slightly more efficient algorithm. It is based on the transition from the
standard polynomial notation f(x) =

∑
fix

i to Newtonian form.
Let α0, . . . , αn−1 ∈ R denote the set of interpolation points. The Newtonian representation of

a polynomial f(x) of degree < n is characterized by a coefficient vector (g0, . . . , gn−1), where

f(x) = g0 + g1(x− α0) + g2(x− α0)(x− α1) + . . .+ gn−1(x− α0) · . . . · (x− αn−2).

Let αi = α0 + ih, where h is the difference of the arithmetic progression. By the identity

V (x) = G(x)S(x) mod xn, where V (x) =

n−1∑
i=0

f(αi)

i!hi
xi, G(x) =

n−1∑
i=0

gix
i, S(x) =

n−1∑
i=0

1

i!hi
xi,

all values f(αi) may be computed from given gi with complexity CA(MR
n ) + O(n). The inverse

problem has the same complexity, since

G(x) = V (x)S−1(x) mod xn, where S−1(x) =

n−1∑
i=0

(−1)i

i!hi
xi.

The transition between the standard and Newtonian representations of a polynomial is actually
performed by the method of Lemma 6.4 using an auxiliary tree. A careful estimate of the complexity

7We are talking, of course, about the monotone part of the code used for the input set.
8Recall that a comparator is a circuit that performs the transform (x, y)→ (x ∨ y, xy). A com-

parator circuit is actually a formula composed of comparator elements, in the sense that branching
of circuit inputs and outputs of comparators is prohibited. Such circuits implement various partial
orders on the set of variables.

9The lower bound for the complexity of comparator circuits for selecting median is Ω(n log n) [7].
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of the transition in either direction, provided by A. Bostan and É. Schost [43], is . M(n) log2 n for
n = 2k. Consequently, the same bound holds for the complexity of evaluation at the points of
arithmetic progression and the inverse interpolation problem.

Note that in the case when the points α0, . . . , αn−1 form a geometric progression, the complexity

of evaluation and interpolation if of order M(n) in both the standard and Newtonian representations

of polynomials [43].



Chapter 8

Duality principles d−

The concept of duality is an efficient tool in synthesis theory. In general, it
allows one to prove the closeness of the complexity of solving two problems
that are dual in a certain sense. Thus, having constructed a fast algorithm
for a dual problem, one can obtain an equally efficient solution (or establish
its existence) for the original one.

Complexity of universal matrices. Transposition principle d−

Consider the problem of computing a linear mapping with a boolean k×2k matrix Υk

composed of all possible different columns of height k.

Υ3 =

0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

 .

Universal matrices play an important role in synthesis theory and are also check
matrices for Hamming codes.

Theorem 8.1. L(Υk) = 2k+1 − 2k − 2.

I The result of the theorem follows from a more general fact known as the
transposition principle. It was probably first formulated by B. S. Mityagin and
B. N. Sadovskii [217] in 1965.

Lemma 8.1 ([217]). In any commutative semigroup (G,+) for any m× n matrix A
without zero rows and columns,

L+(A) +m = L+(AT ) + n. (8.1)

� It is convenient to represent a circuit that performs the transform X → AX as
a graph oriented from inputs to outputs. At each node, intermediate sums received
from the incoming edges are added. If a node has q input edges, then the sum is

95
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computed in q − 1 operations. Note that the equivalent complexity of the circuit in
terms of binary additions is equal to the difference between the number of edges and
the number of nodes, not counting the inputs.

Further, note that an entry A[i, j] of the matrix A contains the number of oriented
paths between the j-th input and the i-th output (the paths are counted in accordance
with the group operation).

Now, if in an arbitrary circuit S we reverse the orientation of edges, the resulting
circuit will compute the transposed matrix AT (by the property of preserving the
number of paths), and its equivalent complexity will be L(S) + m − n (the total
number of vertices in the circuit graph is preserved, only the outputs and inputs
interchange).

Now the theorem is proved quite simply. The transposed matrix ΥT
k contains

2k−k−1 distinct rows of weight > 2. According to Lemma 3.1, this lower complexity
estimate is also attainable from above. Hence, L(ΥT

k ) = 2k − k − 1. It remains to
apply Lemma 8.1, not forgetting to take into account the presence of a zero column
in Υk. �

The upper bound of Theorem 8.1 can also be proved by the bisection method,
but applying Lemma 8.1 simultaneously provides a proof of the optimality of the
circuit. On the other hand, although the transposition principle is constructive,
circuits obtained with its help can have an intricate structure.

• Theorem 8.1 in particular means that L⊕(Υk) = 2k+1 − 2k − 2. Moreover, A. V. Chashkin [56]
(see also [57]) showed that adding nonlinear operations to the basis does not lead to an improve-
ment: CB2

(LΥk
) = 2k+1 − 2k − 2. Most likely, this is typical for linear operators in general. On

the other hand, without linear operations things are difficult: as A. S. Kulikov, O. Melanich and
I. Mikhailin [178] proved, CU2

(LΥk
) > 5(2k − k − 1).

In an extended linear basis, an analogue of Lemma 8.1 holds, see Lemma 8.6 below.

The transposition principle allows to establish that bound (3.4) of the additive complexity of
the set of numbers n1, . . . , ns also holds for the complexity of computing the vector (n1, . . . , ns), in
other words, for the complexity of the linear transform x1, . . . , xs → n1x1 + . . .+ nsxs.

In general, Lemma 8.1 turns out to be useful if not in obtaining fundamentally new results,

then in simplifying proofs. For example, Lemma 3.3 may be proved a bit more simply via the

transposition principle, and the estimate is somewhat more accurate.

Parallel adders. Grinchuk’s method d− /2

The result of Theorem 2.6 on the complexity of computing a system of carries can-
not be improved without additional assumptions about the semiring R in which
the computations are performed. But in the most interesting case R = (B, ∨, ∧)
M. I. Grinchuk [114] obtained a stronger estimate, essentially exploiting the duality
of disjunction and conjunction.

Recall that the dual of a boolean function f is denoted by f ∗ and is defined

as f ∗(X) = f(X). A circuit for f turns into a circuit for f ∗ when all elements
are replaced by their duals (this is the duality principle). In particular, CBM (f) =
CBM (f ∗). For more details, see, e.g., [335].
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Mikhail Ivanovich
Grinchuk

Moscow University,
since 1980s to 2013

In Grinchuk’s method, the computation of a function
of one type is reduced to the computation of a function of
the dual type. The duality principle allows one to ignore
the difference between types and to apply recursive reason-
ing. A trivial illustration of this approach is the proof of
Theorem 1.1.

So, the task of constructing a parallel adder is to mini-
mize the depth of functions

Fn(X, Y ) = yn−1∨xn−1(yn−2∨ . . .∨x2(y1∨x1y0) . . .). (8.2)

Theorem 8.2 ([114]). DBM (Fn) 6 log2 n+log2 log n+O(1).

I As in the proof of Theorem 2.6, consider a wider family
of functions:

Fr,2k−1(X, Y ) = xr+k−1 · . . . · xk(yk−1 ∨ xk−1(. . . (y1 ∨ x1y0) . . .)),

Fr,2k(X, Y ) = xr+k−1 · . . . · xk(yk−1 ∨ xk−1(. . . (y1 ∨ x1(y0 ∨ x0)) . . .)).

(The second index in the function notation indicates the number of variables in the
part of alternating operations.) By construction, Fi = F0,2i−1. Denote d(r,m) =
DBM (Fr,m).

Lemma 8.2.

d(r + s,m) 6 max{dlog2 re, d(s,m)}+ 1, (8.3)

d(r, 2s+m) 6 max{d(r, 2s), d(s+ 1,m− 1)}+ 1. (8.4)

� The first bound is trivial. The second follows from a decomposition generalizing
the identity y1 ∨ x1y0 = (y1 ∨ x1)(y1 ∨ y0).

Let Xk and Y k denote (sub)sets of variables X and Y with indices counted upward
from k. Put t = dm/2e, and also P = xr+s+t−1 · . . . · xs+t and Q = ys+t−1 ∨ . . . ∨ yt.
Then we can write

Fr,2s+m(X, Y ) = P · F0,2s+m(X, Y ) = P · F0,2s(X
t, Y t) · (Q ∨ F0,m(X, Y )) =

Fr,2s(X
t, Y t) · F ∗s+1,m−1(Y (m mod 2)−1, Xm mod 2). (8.5)

By the duality principle, functions f and f ∗ have the same depth over the basis BM ,
which immediately implies (8.4).

For h > 2 and 0 6 r 6 2h − 1 define auxiliary quantities ν(h, r) by the rules

ν(2, 0) = ν(2, 1) = ν(2, 2) = 2, ν(2, 3) = 0,

and for h > 2 recursively as

ν(h+ 1, r) =

{
ν(h, r − 2h), 2h 6 r < 2h+1,

ν(h, r) + ν(h, 1 + ν(h, r)/2), 0 6 r < 2h.
(8.6)
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Division by 2 is always possible, since the function ν(h, r) takes only even values.
The quantity ν(h, r) has the meaning of a lower bound for the largest number m

such that the function Fr,m is implemented with depth h. This is formally proved by
the following lemma.

Lemma 8.3. For any h > 2 and r < 2h, we have d(r, ν(h, r)) 6 h.

� For h = 2 the statement can be verified directly. Let us prove the induction step
from h to h+ 1.

If 2h 6 r < 2h+1, then by (8.3), (8.6) and the induction hypothesis,

d(r, ν(h+ 1, r)) = d(r, ν(h, r − 2h)) 6 max{h, d(r − 2h, ν(h, r − 2h))}+ 1 = h+ 1.

Otherwise, if r < 2h, then, applying(8.6), (8.4) and the induction hypothesis, we
obtain

d(r, ν(h+ 1, r)) = d(r, ν(h, r) + ν(h, 1 + ν(h, r)/2)) 6

max{d(r, ν(h, r)), d(1 + ν(h, r)/2, ν(h, 1 + ν(h, r)/2))}+ 1 6 h+ 1.

Lemma 8.4. ν(h, r) > 2h−r−1
h

.

� For h 6 3 the inequality is verified directly. Consider the induction step from h
to h+ 1.

If r > 2h, then

ν(h+ 1, r) = ν(h, r − 2h) >
2h − (r − 2h)− 1

h
>

2h+1 − r − 1

h+ 1
.

If r < 2h, then

ν(h+ 1, r) = ν(h, r) + ν(h, 1 + ν(h, r)/2) >

2h − 2

h
+

(
1− 1

2h

)
ν(h, r) >

2h − 2

h
+

(
1− 1

2h

)
2h − r − 1

h
.

The obtained estimate l1(r) depends on r linearly with the coefficient a = −2h−1
2h2

.

Therefore, in order to verify that l1(r) is at least l2(r) = 2h+1−r−1
h+1

(a linear function

of r with the coefficient − 1
h+1

> a) on the interval [0, 2h − 1], it suffices to compare

the values of the functions at the right end of the interval, r = 2h− 1. For h > 3, we
have

l1(2h − 1) =
2h − 2

h
>

2h

h+ 1
= l2(2h − 1),

which completes the proof of the induction step.

For r = 0, Lemma 8.4 yields the estimate ν(h, 0) > (2h − 1)/h. Then, applying
Lemma 8.3, we derive d(0, n) 6 log2 n+ log2 log n+O(1). �

We emphasize that the key point of the proof is formula (8.5), which is valid due
to the duality of the basis functions.
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Corollary 8.1 ([114]). DB0(Σn) 6 log2 n+ log2 log n+O(1).

• The method of Theorem 8.2 is optimal up to an additive constant in the depth bound, since
B. Commentz-Walter had previously proved [67] the bound DBM

(Fn) > log2 n+log2 log n−O(1). It
should not be surprising that the duality principle also plays a role in the proof of the lower bound.
Together with J. Sattler [68] they also obtained a bound for the complete basis

DB0
(Fn) > log2 n+ (1− o(1)) log2 log log n,

from which, as V. M. Khrapchenko [159] noted, taking into account DB0(Fn) 6 DB0(Σn) + O(1)
there follows a similar lower bound for the depth of addition DB0

(Σn).

Using Grinchuk’s construction, A. Hermann [127] constructed an n-bit adder of linear complexity

and depth log2 n+ log2 log n+ log2 log log n+O(1).

Multiplication of rectangular and square matrices d−

One of the most important tools in the theory of fast matrix multiplication algorithms
is the trilinear identity discovered by V. Ya. Pan [236], which allows, in particular,
to reduce the multiplication of rectangular matrices to the multiplication of square
ones.

Lemma 8.5 ([236]). In a commutative ring R, for any permutation π of indices
m, p, q,

rkRMMm,p,q = rkRMMπ(m),π(p),π(q), rkRMMm,p,q = rkRMMπ(m),π(p),π(q).

Victor Yakovlevich Pan
City University of New York,

since 1988

� We will prove only the second equation. Assume
that the operator MMm,p,q admits a (d, r)-representation
of type (5.11):

udXY =
r∑
l=1

Cl(u)Xl(u)Yl(u) mod ud+1. (8.7)

Transposing it1), we obtain

udY TXT =
r∑
l=1

CT
l (u)Yl(u)Xl(u) mod ud+1.

Hence,
rkMMq,p,m 6 rkMMm,p,q. (8.8)

By scalar multiplication (8.7) by m× q matrix ZT (or,
equivalently, by tensor convolution2) with ZT ), we derive

Pan’s trilinear identity for (d, r)-representations:

ud
∑

16i6m, 16j6p, 16k6q

xijyjkzki =
r∑
l=1

Xl(u)Yl(u)Zl(u) mod ud+1, (8.9)

1Here we use the commutativity of the ring.
2With a suitable indexing, e.g., xjiy

k
j z
i
k.
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where Zl(u) are linear combinations of variables zik.
Substituting xij = 1 and xi′j′ = 0 into (8.9) for all (i′, j′) 6= (i, j), we obtain

a (d, r)-representation for an arbitrary sum
∑q

k=1 yjkzik. All such representations can
be combined in the formula

udY ZT =
r∑
l=1

C ′l(u)Yl(u)Zl(u) mod ud+1,

where C ′l(u) ∈ R[u]p×m. Thus,

rkMMm,p,q 6 rkMMp,q,m. (8.10)

Together (8.8) and (8.10) imply the assertion of the lemma.

Lemma 8.5 establishes duality between bilinear algorithms for multiplying matri-
ces that are identical up to a permutation of linear dimensions. Applying Lemma 5.4,
we immediately obtain

Corollary 8.2. For a commutative rink R,

rkRMMmpq 6 (rkRMMm,p,q)
3, rkRMMmpq 6 (rkRMMm,p,q)

3.

• Employing this technique, Italian mathematicians [33] derived from rkMM2,3,2 6 10 the inequality
rkMM12 6 1000, which, due to the observation of D. Bini [32] (Theorem 5.4), entailed CA(MMn) 4
nlog12 1000+o(1) ≺ n2.78 — at that time this was the record upper bound for the complexity of matrix
multiplication.

Of practical interest is A. V. Smirnov’s bound rkMM3,3,6 6 40 [308]. In practice, the algorithms

of Theorem 5.3 based on estimates for ranks have priority over the algorithms of Theorem 5.4 based

on estimates for border ranks. Thus, the matrix multiplication method with complexity of order

n3 log54 40 ≺ n2.775 has application prospects almost at the level of Strassen’s algorithm. In terms of

practical application, the results of V. Ya. Pan, obtained by directly constructing economical trilinear

decompositions, also deserve attention. In particular, in [237] he showed that rkMM44 6 36133,

whence CA(MMn) 4 nlog44 36133 ≺ n2.774 (this is currently a record result for the complexity of

matrix multiplication that does not employ bounds on the border ranks). For more details, see [239].

A practically significant speedup of Pan’s algorithms (roughly in the spirit of Theorem 7.4) was

obtained by T. Hadas and O. Schwartz [118].

Complexity of a rational function and its gradient d−

An important role in the complexity theory of arithmetic circuits is played by the
fact discovered by W. Baur and V. Strassen on the equivalence of the arithmetic
complexity of a rational function (in particular, a polynomial) and its gradient [17].

Recall that the gradient of a function f(x1, . . . , xn) is defined as5f =
(
∂f
∂x1
, . . . , ∂f

∂xn

)
.

An elegant way of proving the Baur—Strassen result, based on the application of the
transposition principle for linear circuits, was proposed by the brothers S. B. and
I. B. Gashkov in [102]. First, we need the following generalization of Lemma 8.1.
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Lemma 8.6 ([289]). For any m× n matrix A over a ring R with unity3),

CARL (LAT ) 6 CARL (LA) +m− 1, (8.11)

and this inequality is achieved on circuits (for LA and LAT ) with the same set of
elements of scalar multiplication, not counting multiplications by −1.

� Here we prove a slightly weaker bound CARL (LAT ) 6 CARL (LA) + m. The proof is

very similar to the proof of Lemma 8.1. Consider the (directed) graph of a circuit
computing LA and assign weights to the edges of the graph: weight 1 for the edges
entering addition elements, weights 1 and −1 for the edges entering subtraction el-
ements, and weight a for the edges entering elements of multiplication by a. The
weighted graph contains complete information about the original circuit.

As an illustration, Fig. 8.1a shows a circuit that implements the transform y1 =
x1−x2−ax3, y2 = x2−ax3. (The operation of multiplication by constant is denoted
by •, negative inputs of subtraction elements are marked with circles.) Fig. 8.1b
shows the graph of the circuit.
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Figure 8.1: Initial circuit (a), its graph (b), and the transposed circuit (c)

The weight of an oriented path in a graph is defined as the product of weights of
edges along the path. By construction, a matrix entry A[i, j] is equal to the sum of
the weights of all paths connecting the j-th input and the i-th output. In this sense,
the graph implements the matrix A.

When reversing the orientation of the graph, we obtain a graph that computes
the matrix AT in the sense specified above. It remains to transform it into a circuit
over the basis AL.

To do this, first we attach elements of scalar multiplication to all edges with
weights different from ±14) (thereby, we restore the set of scalar multiplications of
the original circuit). After this, only edges with weights ±1 remain in the circuit.
The remaining vertices of the graph should be replaced by trees of additive elements.

We will perform the procedure of “lifting” negative labels from inputs to outputs.
If not all edges entering a node have weight −1, then summation at this node is

3Recall that LA denotes the linear operator with a matrix A.
4More precisely, we replace an edge of weight a with an element of multiplication by a together

with incoming and outgoing edges of weight 1.
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implemented by a tree of binary additions and subtractions5). Otherwise, we invert
the labels of the edges entering and leaving the node, with the exception of the edges
leading to elements of scalar multiplication — in this case, inversion is applied to the
edges leaving the specified elements of multiplication. The process is terminated at
the outputs of the circuit.

If all edges connected to an output of the circuit have weights −1, then sum-
mation at this output is implemented by a tree of addition elements followed by a
multiplication element by −1. Fig. 8.1c shows the resulting circuit for the considered
example.

According to the argument from Lemma 8.1, the number of binary elements in the
resulting circuit and the original one differs by m−n (it is equal to the difference be-
tween the number of edges and the number of vertices in the graph, excluding inputs;
the set of inputs changes during transposition). The set of elements of multiplication
by nontrivial constants is the same in both circuits. In addition, at most n elements
of multiplication by −1 are included (according to the number of outputs).

In fact, as can be verified, the procedure of lifting negative labels results in at
least one output receiving an incoming edge of weight 1. Therefore, at most n − 1
additional multiplications by −1 are required.

• The bound of Lemma 8.6 is tight, witnessing by the transform

(x, y1, . . . , ym)→ (x− y1, . . . , x− ym).

Theorem 8.3 ([17]). For an arbitrary rational function f ∈ R(X), where R is a ring
with unity, CARD(f,5f) 6 4CARD(f).

Volker Strassen
Universität Zürich,

1968 to 1988

I Consider a minimal circuit S for the function
f(x1, . . . , xn). Let us introduce new formal variables
dx1, . . . , dxn — differentials of variables — and construct
a circuit S ′ for the differential of the function f ,

df =
∂f

∂x1

dx1 + . . .+
∂f

∂xn
dxn.

The circuit S ′ is constructed parallel to the circuit S in-
ductively from inputs to outputs. A variable xi corresponds
to the differential dxi (induction base). Now, if the next
element of the circuit S performs the operation u ◦ v, and
the differentials du, dv have already been computed, then
d(u ◦ v) is computed according to the rules:

d(u± v) = du± dv, d(uv) = u · dv+ v · du, d(u/v) = (du− (u/v) · dv)/v. (8.12)

5In a degenerate case, when a node has a single entering edge of weight 1, an empty tree is
inserted, i.e., the node together with the edge entering it are simply removed from the circuit.
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In the case of scalar multiplication by a, we simply have d(au) = a · du.

If we consider S ′ as a circuit on the inputs dx1, . . . , dxn over the basis AR(X)
D (i.e.,

all possible functions from R(X) are allowed as constants), then by construction its
complexity does not exceed 3C(S) due to (8.12).

Since the differential and gradient as linear operators over R(X) turn into each
other under transposition6), by Lemma 8.6 we obtain

CAR(X)
L

(5f) 6 CAR(X)
L

(df) 6 3C(S),

where the circuit for the gradient employs exactly the same “constants” as the cir-
cuit S ′. All the necessary constants are provided by the circuit S, see (8.12), therefore
after connecting circuit S to the constructed circuit we obtain the required result:
CARD(f,5f) 6 4C(S). �

Method [17] allows to establish a connection between the complexity of matrix
inversion and the computation of its determinant.

Corollary 8.3 ([17]). Let A = (aij) be a non-singular n× n matrix. Then the com-
plexities of computing the inverse matrix A−1 and the determinant detA as functions
of the coefficients aij are related as

CARD(A−1) 6 4CARD(detA) + n2.

� Let A−1 = (bij). Then, according to Cramer’s rule,

bij =
1

detA

∂ detA

∂aji
.

Thus, by Theorem 8.3

C(A−1) 6 C(detA,5 detA) + n2 6 4C(detA) + n2.

• In fact, a method for fast gradient computation was proposed earlier by S. Linnainmaa [188].
Independently, the result of Theorem 8.3 with a less precise complexity estimate was obtained
in [160].

The fact that both problems – matrix inversion and determinant computation – has complexity
at most of order of that of matrix multiplication was proved by Strassen in [313].

The author in [289] obtained (generally speaking) a stronger bound than in Theorem 8.3

CAR
D

(f,5f) 6 3CAR
D

(f) + n, (8.13)

where n is the number of arguments of the function f . The proof is based on a more symmetric
calculation of differentials of multiplicative operations:

d(uv) = (du/u+ dv/v) · (uv), d(u/v) = (du/u− dv/v) · (u/v).

In this case, unlike the method [17], in the circuits constructed by the method [289], the set of
divisor functions may differ from the similar set in the original circuit computing the function f .

6The constant 1 ∈ R is fed to the only input of the transposed circuit.
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Inequality (8.13) is also valid in the case of different weights of additive and multiplicative opera-
tions [289].

Theorem 8.3 also holds over the basis without division AR. Naturally, we are talking about the
complexity of polynomials. Bound (8.13) is not applicable in this situation.

E. Kaltofen and M. Singer [145] noted that the complexity bound of Theorem 8.3 is achieved

while preserving the order of depth of the original circuit. The same is true for bound (8.13),

see [289].



Chapter 9

Probabilistic method P

This chapter will discuss methods of synthesis based on probabilistic argu-
ments. It is usually proved that among a set of circuits of a certain type
there is one that implements the desired function.

Monotone formulae for symmetric threshold functions P

Recall that T kn denotes the symmetric threshold-k function of n variables:
T kn (x1, . . . , xn) = (x1 + . . . + xn > k). In the case k = 1, ΦBM (T 1

n) = n trivially
holds. A function with threshold 2 is easily computed by the bisection method. Let
X = (X1, X2), |Xi| = ni. The following formula is valid [172]:

T 2
n1+n2

(X) = T 1
n1

(X1) · T 1
n2

(X2) ∨ T 2
n1

(X1) ∨ T 2
n2

(X2). (9.1)

Theorem 9.1 ([177]). ΦBM (T 2
n) 6 nblog2 nc+ 2(n− 2blog2 nc) ∼ n log2 n.

I Apply (9.1) recursively, splitting the set of variables in half. �

• R. E. Krichevskii [177] proved the lower bound ΦBM
(T 2
n) < n log n along with the upper bound

of Theorem 9.1. In fact, as was later established by J. Radhakrishnan [255] and S. A. Lozhkin [194]

(modulo Krichevskii’s structural result ΦB0
(T 2
n) = ΦBM

(T 2
n) [177]), the bound of Theorem 9.1 is

tight even in the class of formulae over the basis B0.

For constant k > 3, constructive methods of synthesis are not so accurate, but
it is possible to prove the existence of comparatively simple circuits. The following
result is due to L. S. Khasin [153].

Theorem 9.2 ([153]). For constant k > 2, we have ΦBM (T kn ) 4 n log n.

I Let k | n and (X1
i , . . . , X

k
i ) be a random partition of the set of variables X into

105
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equal-sized subsets1) Xj
i , i ∈ N. Consider a random function

f(X) =
t∨
i=1

Hi, Hi = T 1
n/k(X

1
i ) · T 1

n/k(X
2
i ) · . . . · T 1

n/k(X
k
i ). (9.2)

The function does not have implicants of length < k, so2) f(X) > T kn (X). The
probability that Hi contains some implicant I = xj1 · . . . · xjk is estimated as

P(Hi > I) = k! P(xj1 ∈ X1
i , . . . , xjk ∈ Xk

i ) = k!
n/k

n
· n/k
n− 1

·. . .· n/k

n− k + 1
>
k!

kk
>

1

ek
.

Then, the probability that f does not contain an implicant I is

P(f 6> I) =
t∏
i=1

P(Hi 6> I) 6 (1− e−k)t.

For t ≈ ekk lnn due to the inequality (1− 1/x)x < 1/e valid for x > 1, we have

P(f 6= T kn ) = P(∃If 6> I) 6 Ck
n P(f 6> I) < Ck

n/n
k 6 1.

As a consequence, P(f = T kn ) > 0. Therefore, some formula of form (9.2) implements
the function T kn and has complexity tn � n log n. �

• The bound of Theorem 9.2 is tight in order, ΦBM
(T kn ) � n log n, for example, in view of the

simple lower bound ΦBM
(T kn ) > ΦBM

(T 2
n−k+2) [153].

For thresholds functions with small thresholds, an upper bound ΦBM
(T kn ) 4 n log n(k2/2)log∗ n

was proved constructively by M. Kleiman and N. Pippenger [161].

Monotone formulae for the majority function P ε

From the proof of Theorem 9.2 it is evident that with the growth of k the complexity of
the method grows exponentially, and for the implementation of threshold functions
with large thresholds, in particular, for the majority function majn = T

n/2
n , the

method does not fit. An elegant solution to the problem was found by L. Valiant [326].

Let α = 3−
√

5
2
≈ 0.38.

Theorem 9.3 ([326]). DBM (majn) . 2(1 + log4α 2) log2 n < 5.28 log2 n.

I In fact, we will prove a slightly weaker bound DBM (majn) . 2(1 + logβ 2) log2 n
for an arbitrary constant β ∈ (1, 4α).

1More formally, we consider the uniform distribution on the set of all permutations π :
{1, . . . , n} → {1, . . . , n} and choose

Xj = (xπ((j−1)n/k+1), xπ((j−1)n/k+2), . . . , xπ(jn/k)), 1 6 j 6 k.

2f(X) > g(X) means that f(α) > g(α) in every point α.
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Leslie Gabriel Valiant
Harvard University, since 1982

For simplicity, we assume that n is odd, n = 2m − 1.
We define a series of probability distributions ∆0,∆1, . . .
on special sets of monotone formulae. The distribution ∆k

covers formulae of depth 2k. The distribution ∆0 includes
literals xi and the constant 0, while for a formula G ∈ ∆0,

P(G ≡ 0) = 1− 2α, P(G ≡ xi) =
2α

n
, i = 1, . . . , n.

For k > 1, the distribution ∆k includes all possible formulae
of the form (G1 ∨G2)(G3 ∨G4), where the subformulas Gi

are chosen from ∆k−1 independently.
Consider arbitrary sets of variablesX0 ∈ maj−1

n (0), X1 ∈
maj−1

n (1) with weights ‖X0‖ = m − 1 and ‖X1‖ = m. Let
us introduce notations for the probability of formula error:

pk = P(G(X0) = 1 | G ∈ ∆k), qk = P(G(X1) = 0 | G ∈ ∆k).

By construction,

pk+1 = (1− (1− pk)2)2, qk+1 = 1− (1− q2
k)

2. (9.3)

It is easy to verify that the sequences {pk} and {qk} are monotonically decreasing on
the intervals (0, α) and (0, 1 − α), respectively (the ends of these intervals are the
roots of the equations x = (1− (1− x)2)2 and x = 1− (1− x2)2).

Lemma 9.1. For some constant γ > 0 and some t 6 logβ n,

pt < α− γ, qt < 1− α− γ.

� At t = 0 the error probabilities are equal to3)

p0 = P(G ≡ xi | x0,i = 1, G ∈ ∆0) = α− α

n
,

q0 = P(G ≡ 0 | G ∈ ∆0) + P(G ≡ xi | x1,i = 0, G ∈ ∆0) = 1− α− α

n
.

Assuming pk = α−εk, and taking into account (1−α)2 = α, from (9.3) we obtain

pk+1 = (1− (1− α + εk)
2)2 =

α− 4αεk +
(
(2(1− α) + εk)

2 − 2(1− α)
)
ε2
k 6 α− βεk (9.4)

provided that εk 6 γ1. As a consequence, for some t1 = logβ n − O(1) we have
εt1 > βt1ε0 > γ1.

Similarly, denoting qk = 1− α− δk, we obtain

qk+1 = 1− (1− (1− α− δk)2)2 =

1− α− 4αδk −
(
(2(1− α)− δk)2 − 2(1− α)

)
δ2
k 6 1− α− βδk (9.5)

3Here x0,i and x1,i denote the components of the vectors X0 and X1.
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provided that δk 6 γ2. Consequently, for some t2 = logβ n − O(1), we have δt2 >
βt2ε0 > γ2.

It remains to choose t = max{t1, t2} and γ = min{γ1, γ2}.

Lemma 9.2. Let pt < α−γ and qt < 1−α−γ for a constant γ > 0. Then for some
u = log2 n+O(1) we have pt+u, qt+u < 1/2n+1.

� I. First, we show that pt+u′ , qt+u′ 6 1/8 for a suitable u′ = O(1). We can assume
that γ is sufficiently small, say, γ 6 0.3. From (9.3) it follows

pk+1 = p2
k(2− pk)2, qk+1 = q2

k(2− q2
k). (9.6)

It is easy to check that the functions p(x) = x−x2(2−x)2 and q(x) = x−x2(2−x2)
on the intervals Ip = [1/8, α − γ] and, correspondingly, Iq = [1/8, 1 − α − γ] are
convex upwards, and therefore take minimum values at the ends (these values are
positive). Hence, there exists τ > 0 such that τ 6 minx∈Ip p(x),minx∈Iq q(x). Then
pk+1 6 pk − τ as soon as pk ∈ Ip, and qk+1 6 qk − τ as soon as qk ∈ Iq. Therefore, we
can choose u′ = (1− α− γ − 1/8)/τ .

II. From (9.6) it is clear that pk+1 6 4p2
k and qk+1 6 2q2

k. Therefore, starting from
pt+u′ , qt+u′ 6 1/8, we derive

pt+u′+i 6 2−(2i+2), qt+u′+i 6 2−(2i+1+1).

Finally, putting i = dlog2 ne we obtain the required estimates.

Combining Lemmas 9.1 and 9.2, we find that with probability < 1/2n+1 a formula
from ∆t+u incorrectly computes the function majn on the input X0, and the same for
the input X1. As a consequence, with probability > 1/2 a formula from ∆t+u (having
depth 2(t+ u)) implements the function majn. �

Corollary 9.1. ΦBM (majn) ≺ n5.28.

• To prove exactly what Theorem 9.3 states, a strengthening of Lemma 9.1 is required. For example,
it can be shown that for t 6 log4α(n/8),

pt < α− (4α)t

4n
, qt < 1− α− (4α)t

3n
. (9.7)

� Indeed, from (9.4) in view of εk 6 α we deduce

4αεk > εk+1 > 4αεk −
(
(2− α)2 − 2(1− α)

)
ε2
k > 4α(1− εk)εk.

Hence,

εt > 4α(1− εt−1)εt−1 > (4α)tε0

t−1∏
i=0

(1− εi) > (4α)tε0

t−1∏
i=0

(1− (4α)iε0). (9.8)

Employing the inequality ln(1− x) > −2x valid for 0 6 x 6 1/2, and taking into account ε0 = α/n
and (4α)t 6 n/8, the product in (9.8) can be bounded as

t−1∏
i=0

(1− (4α)iε0) > e−2ε0(1+(4α)+...+(4α)t−1) > e−2ε0(4α)t/(4α−1) > e−α/(16α−4).
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This yields the first inequality in (9.7): εt > (4α)tε0e
−α/(16α−4) > (4α)t/(4n).

Similarly, from (9.5) we obtain

δk+1 6 4αδk +
(
(2(1− α))2 − 2(1− α)

)
δ2
k < 4α(1 + δk/4)δk, (9.9)

and under the additional assumption δk 6 α/4 — also

δk+1 > 4αδk +
(
(2(1− α)− α/4)2 − 2(1− α)

)
δ2
k > 4αδk.

Thus, the second inequality in (9.7) holds: δt > (4α)tδ0 > (4α)t/(3n), if only δt−1 6 α/4.
Let us prove by induction that δk < 2(4α)kδ0 for k 6 t. As a corollary, we obtain the required

inequality δt 6 α/4. For k = 0 there is nothing to prove. Let us verify the induction step from
k − 1 to k. Indeed, according to (9.9), the induction hypothesis, the inequalities 1 + x 6 ex and
(4α)k 6 n/8,

δk 6 4α(1 + δk−1/4)δk−1 6 (4α)kδ0

k−1∏
i=0

(1 + δi/4) 6 (4α)kδ0

k−1∏
i=0

(1 + (4α)iδ0/2) 6

(4α)kδ0e
(1+4α+...+(4α)k−1)δ0/2 6 (4α)kδ0e

δ0(4α)k/(8α−2) 6 (4α)kδ0e
α/(64α−16) < 2(4α)kδ0.

R. Boppana [41] proved the bound ΦBM
(T kn ) 4 k4.28n log n for an arbitrary threshold function by

modifying Valiant’s method (this is better than in the method of Theorem 9.2). He also established
that the generating formula (G1 ∨ G2)(G3 ∨ G4) used in the proof is optimal among read-once
formulae; this statement was proved in a more rigorous form by M. Dubiner and U. Zwick [80]. For
the ternary monotone basis {maj3}, A. Gupta and S. Mahajan [116] obtained by a similar method
the bound Φ{maj3}(majn) 4 n4.3.

Valiant’s method is provably efficient in constructing approximations of threshold functions. Let
Ψk
n denote the class of monotone functions that take value 0 on inputs of weight 6 k and value 1

on inputs of weight > n− k. By the method of Theorem 9.3 for any constant α ∈ (0, 1/2) formula
of complexity O(n2) implementing some function from Ψαn

n may be constructed. Its complexity
is optimal in order due to the classical lower bound ΦBM

(f) > (k + 1)2 proved by E. Moore and
C. Shannon [222] for an arbitrary function f ∈ Ψk

n.
Note that the known lower bounds for the complexity of the majority function are

ΦBM
(majn) < n2 [222] (which also follows from ΦB0(majn) < n2 [155]) and Φ{maj3}(majn) <

nlog2 3 [263].
Several papers have attempted to derandomize the method. For example, S. A. Lozhkin

and A. A. Semenov [198] pointed out the possibility of constructing a formula of complexity
L � k6.28n log n for the function T kn in time of order L · log n.

In complete binary bases, the best known upper bounds [306]

ΦB0
(majn) ≺ n3.64, DB0

(majn) . 3.81 log2 n, ΦB2
(majn) ≺ n2.77, DB2

(majn) . 2.91 log2 n

were obtained by a method that includes the considered probabilistic procedure as an ingredient.

Parallel circuits for the logical permanent P A

The logical permanent of order n is a function of n2 boolean variables:

PERMn(X) =
∨
π

x1,π(1) · x2,π(2) · . . . xn,π(n), (9.10)

where the disjunction is taken over all permutations π : {1, . . . , n} → {1, . . . , n}. The
permanent expresses the existence of a perfect matching in a bipartite graph with
parts of n vertices each.
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In essence, the permanent is a monotone version of the determinant (of the matrix
of variables X). It is not surprising that the method for computing the permanent
presented below exploits a reduction to computing the determinant. Let us take as a
starting point a simple circuit for the determinant proposed by A. L. Chistov [64] (see
also [34]), in a modification due to N. Pippenger [250]. Let +n denote the operation
of summation of n arguments. Consider the basis An = {∗,−,+n+1}, in which the
complexity of the operation +n+1 is set equal to n.

Theorem 9.4 ([64, 34, 250]). The determinant of order n over a field F can be
computed by a circuit over the basis AFn of complexity O(n4 log n) and depth O(log n).

As a consequence, we obtain a circuit over the standard arithmetic basis AF of
complexity O(n4 log n) and depth O(log2 n).

I To compute the determinant efficiently, it is sufficient to select a suitable algebraic
expression. Let Ak be the principal k× k submatrix4) of the matrix A. According to
Cramer’s rule, if the matrix Ak is invertible, then

detAk−1/ detAk = (A−1
k )[k, k],

whence for a matrix A ∈ F n×n we obtain

1/ detA =
n∏
k=1

(A−1
k )[k, k]. (9.11)

Note that the determinant detA is, up to a factor of (−1)n, the coefficient at xn

of the determinant of the matrix polynomial5) P (x) = In− xA. From (9.11) and the
identity for formal power series (1− x)−1 =

∑∞
i=0 x

i together with its matrix version
(Ik − xAk)−1 =

∑∞
i=0(xAk)

i, we derive the formula [250]

detP (x) =

(
n∏
k=1

(P (x)−1
k )[k, k]

)−1

=
n∏
k=1

(
1 +

∞∑
i=1

(Ak)
i[k, k]xi

)−1

=

1 +
∞∑
j=1

(
1−

n∏
k=1

(
1 +

∞∑
i=1

(Ak)
i[k, k]xi

))j

. (9.12)

Since we are interested in the coefficient at xn, the sums on the right-hand side (9.12)
can be restricted to the first n terms.

The computations are performed according to (9.12). Let us first note that in
the basis An the standard multiplication of n × n matrices may be performed with
complexity O(n3) and depth 2, matrix-vector multiplication — with complexity O(n2)
and depth 2, and multiplication of polynomials modulo xn+1 — with complexityO(n2)
and depth 2.

Let vk = (0, . . . , 0, 1) be a vector of length k. The result of multiplying vk by
a k × k matrix B is the bottom row of the matrix.

4The principal is the upper left corner submatrix.
5detP (x) is the reversed characteristic polynomial of the matrix A.
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1) For any k, we compute vk(Ak)
i for all i 6 n.

To do this, we sequentially compute (Ak)
2, (Ak)

4, . . . , (Ak)
2blog2 nc . In parallel, as

the factors are ready, for i = 2h + j we calculate the rows vk(Ak)
i = (vk(Ak)

j)(Ak)
2h .

As a result, in particular, all the entries (Ak)
i[k, k] are computed.

The circuit has (in total over all k) complexity O(n4 log n) and depth O(log n).
2) The internal product of n polynomials modulo xn+1 in (9.12) may be computed

with complexity O(n3) and depth O(log n).

3) Finally, a sum of the form
∑n

j=0 p
j(x) is computed as

∏log2 n
j=0

(
1 + p2j(x)

)
modulo xn+1. These calculations reduce to 2 log2 n polynomial multiplications and
are therefore implemented by a circuit of complexity O(n2 log n) and depth O(log n).

�

The connection between the permanent PERMn(X) and the determinant may
be established by a simple observation [83]. Define the entries of an n × n matrix
T (Y ) as T [i, j] = xi,jyi,j, where yi,j are formal variables. (This matrix is called the
Tutte matrix.) Then

PERMn(X) = 1 ⇐⇒ detT (Y ) 6≡ 0. (9.13)

L. Lovázs [189] observed that this criterion allows one to establish the existence of
simple parallel circuits for the permanent, since the equality of the determinant to
zero can be verified by its values in a random set of points. A convenient tool for
justifying the correctness of the method is a lemma due to J. Schwartz [281], which
we will prove in a weakened form.

Lemma 9.3 ([281]). Any multilinear polynomial f ∈ Z[x1, . . . , xn] that is not iden-
tically zero has at most nmn−1 roots in the set [[m]]n.

� Proof by induction. The case n = 1 is trivial. Let us prove the induction step from
n−1 to n. Without loss of generality, let f essentially depend on the variable x1. Write
f(X) = x1q(x2, . . . , xn) + r(x2, . . . , xn), where q 6≡ 0. By the induction hypothesis,
the polynomial q takes zero values on at most (n− 1)mn−2 inputs from [[m]]n−1. For
any other input, there is at most one value x1 that turns the polynomial f into zero.
The total number of roots of the polynomial f in [[m]]n, therefore, does not exceed
(n− 1)mn−1 +mn−1.

Probably the first to point out the existence of parallel circuits of polynomial com-
plexity for the permanent were A. Borodin, J. von zur Gathen and J. Hopcroft [42].
We present a more elementary proof.

Theorem 9.5. The function PERMn is implemented by a boolean circuit over a fi-
nite complete basis with complexity O(n7 log2 n) and depth O(log2 n).

I For different values of inputs X, there are less than 2n
2

different Tutte matrices
T (Y ). Set m = n22n

2
. As follows from Lemma 9.3, there exists an integer matrix

Q ∈ [[m]]n×n such that detT (Q) 6= 0 if detT (Y ) 6≡ 0.
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Thus, PERMn(X) = (detT (Q) 6= 0). To reduce the complexity of the compu-
tations, we use modular arithmetic. Note that | detT (Q)| < n!mn < n3n2n

3
for any

Tutte matrix T . According to the asymptotic distribution of prime numbers (see,
e.g., [264]), the product of the first s primes p1 · . . . · ps exceeds 2n3n2n

3
for some

s � n3/ log n. Therefore, detT (Q) = 0 is equivalent to detT (Q) ≡ 0 mod pi for all
i = 1, . . . , s.

In the standard way, multiplication in the field Fp is implemented with complexity
O(log2 p) and depth O(log log p) as (ab mod p) = ab − pbabqc, where q is a suitable
approximation of the number 1/p. The sum of n terms in the field Fp may be
computed with complexity O(n log p + log2 p) and depth O(log(n log p)), say, by the
compressor method followed by reduction modulo p.

Therefore, by Theorem 9.4 the value ri = detT (Q) mod pi is determined by a
circuit of complexity O(n4 log3 n) and depth O(log2 n) for any i 6 s. The final check
of all ri being equal to zero is trivially implemented with complexity O(s log n) and
depth O(log n). �

• A careful analysis of the method of Theorem 9.4 yields a circuit of depth O(log2 n) and complexity
of order nω+1+o(1) over the basis AF , where ω < 2.38 is the exponent of matrix multiplication,
see [34]. The advantage of the method is the absence of division operations and weak requirements
on the coefficient ring (instead of a field, a commutative ring with unity can be taken). In a basis
with division, the complexity of computing the determinant of matrices over number fields (while
preserving the order of depth) can be reduced to O(n2.78) by the method of Z. Galil and V. Pan [97],
if we apply current bounds on the complexity of rectangular matrix multiplication [8]. Recall that
when depth restrictions are lifted, the determinant can be computed with complexity nω+o(1) [313].

The problem of implementing the determinant and the permanent with depth o(log2 n) is still

open. Explicit constructions of circuits for the permanent of complexity nO(1) and depth logO(1) n

are also unknown. Below (Theorem 11.4) we will show an alternative approach to computing a

permanent by circuits without depth restrictions.

Complexity of linear boolean operators with dense matrices P /2

For any boolean matrix A, L(A) 6 |A| trivially holds. In particular, an n× n matrix
with a small number of ones, |A| � n, has linear complexity L(A) � n. Less trivial
is the question of the complexity of matrices with a small number of zeros. Is it true
that L(A) 4 |A|? The method of Russian mathematicians [179] actually gives an
affirmative answer to this question.

Theorem 9.6. For any boolean n × n matrix A of weight n2 − qn, where 1 6 q 6
n log−4 n, we have L(A) 4 qn.

I The zeros split each row of the matrix into intervals — by interval we mean
a substring of ones in successive columns. By interval sum we mean the sum of
variables with successive indices xi+xi+1 + . . .+xj. We will need an auxiliary lemma
on the complexity of computing interval sums, which was proved by N. Alon and
B. Schieber [11].

Lemma 9.4 ([11]). Any interval sum on a set of n variables can be written as u+ v,
where all necessary sums u, v are computed by an additive circuit of complexity n log n.
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� Divide the set of variables in half, with lower and higher indices. With complexity
O(n) compute prefix sums of variables with higher indices and suffix sums of variables
with lower indices. Any interval sum with terms from both halves can be represented
as the sum of some suffix and prefix from what has already been computed. To
implement sums that lie entirely within each of the halves, we use recursion. The
complexity T (n) of the circuit satisfies T (n) 6 2T (n/2) + O(n), hence, T (n) 6
n log n.

With a suitable permutation of the rows, the matrix A can be represented as

A =

[
A0

A1

]
, where each row of the submatrix A0 contains 6 q log n zeros, and each row

of the submatrix A1 contains more than q log n zeros. By assumption, the matrix A1

has size O(n/ log n)× n.
The rows of the matrix AT1 split into O(qn) intervals. Therefore, by Lemma 9.4,

L(AT1 ) 4 qn, consequently, by the transposition principle (Lemma 8.1), L(A1) 4 qn.
Consider the matrix A0. The rows of the matrix A0 also split into O(qn) intervals.

We divide the matrix into vertical strips of width l = log n. The intervals that lie
entirely inside one strip are called simple, the rest are composite.

I. Let us show that any composite interval sum can be written as t+u+v+w, where
all intermediate sums t, u, v, w are computed by an additive circuit of complexity
(n/l) log(n/l) +O(n).

To do this, in each strip we compute prefix and suffix sums with a total complexity
of O(n), including the sums of all variables of the strip (group sums). We feed the
group sums (there are n/l) to the inputs of the circuit from Lemma 9.4: so we obtain
the components u, v for the interval group sums. The complexity of the circuit is
(n/l) log(n/l). It remains to note that an arbitrary composite interval sum, different
from a group sum, inevitably crosses several strips and is therefore represented as the
sum of a suffix t, a prefix w, and an interval group sum u+ v.

As a consequence, all composite interval sums for the matrix A0 may be com-
puted with complexity (n/l) log(n/l) + O(qn). If we denote by s the total num-
ber of strips with simple intervals over all rows of the matrix A0, then we have
L(A0) 6 (n/l) log(n/l) +O(qn) + sl.

II. The central point of the proof is the following observation: there is always a
permutation of the columns of the matrix A0 for which the number s is sufficiently
small. We argue by the probabilistic method.

Let a row contain r zeros. The number of permutations of the row elements for
which a certain strip contains a simple interval is roughly estimated from above as
C2
l+2C

r−2
n (the first factor estimates the number of ways to specify the ends of the

interval, the second — the number of ways to place the remaining r − 2 zeros).
Then the mathematical expectation of the number of strips with simple intervals

in one row by order does not exceed

(n/l)
C2
l+2C

r−2
n

Cr
n

4
nlr(r − 1)

(n− r)(n− r + 1)
4
q2 log3 n

n

taking into account l = log n and r 6 q log n. Consequently, E[s] 4 q2 log3 n. Thus,
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with nonzero probability s 4 q2 log3 n. Finally, we obtain

L(A) 6 L(A0) + L(A1) 4 qn+ q2 log4 n 4 qn.
�

In particular, in the most interesting case q = O(1) the following holds (this is
the main result of the paper [179]):

Corollary 9.2 ([179]). For any boolean n×n matrix A of weight n2−O(n), we have
L(A) � n.

• The cardinality lower bound shows that the result of Theorem 9.6 is tight in order for log(n/q) �
log n. The authors [179] also proposed a constructive but longer way of proving part II.

The general problem of estimating the additive complexity of a class of boolean m×n matrices

of a given weight αmn, 0 < α < 1, was posed by E. I. Nechiporuk in [226, 228]. He established

the order of complexity (more asymptotically accurate than Theorem 9.6 does) for some relations

between α, m, and n.



Chapter 10

Mass production method m

The idea of mass production works when the cost (complexity) of a single
unit of output can be reduced by producing several similar units. In this
chapter we consider, on the one hand, situations in which this is possible
in principle, and, on the other hand, situations in which mass production
brings useful results.

Group linear transforms m

Consider the problem of applying a linear transform AX to several disjoint variable
vectors X1, . . . , Xm. In the model of monotone additive circuits, L(AX1, . . . , AXm) =
m · L(AX) is obviously satisfied. However, when performing calculations in the field,
one can often obtain a better bound exploiting fast matrix multiplication. The fol-
lowing example is taken from the work of W. Paul [246]1).

Theorem 10.1. Let F be a field, A ∈ Fn×n and S be a bilinear circuit for multipli-
cation of n× n and n×m matrices over F. Then CAF

L
(AX1, . . . , AXm) 6 C(S).

I The proof is trivial. Vectors X1, . . . , Xm are organized into a matrix of variables X.
To compute the product AX, we employ the circuit S, in which, since one of the
inputs (matrix A) is constant, nonscalar multiplications turn into scalar ones (it is
important that the circuit S is bilinear). �

Applying the known complexity bound for matrix multiplication [75, 8], we obtain

Corollary 10.1. Let A ∈ Bn×n. Then L⊕(In ⊗ A) 4 n2.38.

• The corollary indicates the existence of a boolean matrix of the form A =

[
A1 0
0 A2

]
, which can

be computed easier than its constituent matrices A1 and A2: L⊕(A) < L⊕(A1) + L⊕(A2). It suffices

to consider a matrix In ⊗A satisfying the condition L⊕(A) ∼ n2/ log2 n. Employing results on fast

multiplication by narrow rectangular matrices, for example, [72], one can verify that the savings in

joint implementation of matrices can reach two times: supL(A)>0
L(A1)+L(A2)

L(A) = 2.

1In [246] it is formulated with respect to the implementation of linear transforms over {B,∨} by
circuits over a complete basis.
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Computing a boolean function on multiple inputs m c

In light of the fact that the path to the optimal implementation of a random boolean
function lies through the computation of a linear operator (Theorem 3.2), it is natural
to expect that it is also possible to speed up the computation of function values on
several inputs. A result by D. Uhlig [322] confirms this assumption (we prove it in a
weakened form).

Theorem 10.2 ([322]). Let X, Y be disjoint groups of n boolean variables. Then for
any boolean function f ,

CB2(f(X), f(Y )) . 2n/n.

I Decompose the function f(X) in the first r variables X1:

f(X1, X2) =
⊕
σ∈Br

Xσ
1 · fσ(X2), Xσ

1 =
r∏
i=1

xσi1,i.

Assume we have circuits that independently compute 2r + 1 functions

g0 = f0, g1 = f0 ⊕ f1, . . . , gi = fi−1 ⊕ fi, . . . , g2r−1 = f2r−2 ⊕ f2r−1, g2r = f2r−1

(here the indices i = σ are interpreted as binary numbers). Note that

g0 ⊕ . . .⊕ gi = fi = gi+1 ⊕ . . .⊕ g2r .

Thus, if X1 = i 6 j = Y1, then we can determine fi(X2) and fj(Y2) by feeding
the variables X to the inputs of the circuits computing g0, . . . , gi, and the variables Y
to the inputs of the circuits computing gj+1, . . . , g2r . In the case i > j, the variables
X and Y interchange. In accordance with the specified rule, we introduce indicator
functions

ηXi = (i 6 X1 6 Y1) ∨ (i > X1 > Y1), ηYi = (i > Y1 > X1) ∨ (i 6 Y1 < X1),

that choose whether to use a circuit for gi to compute f(X) or to compute f(Y ).
Finally, the true values of f(X) and f(Y ) are determined by the formulas

f(X) =
2r⊕
i=0

ηXi gi(Zi), f(Y ) =
2r⊕
i=0

ηYi gi(Zi), Zi = ηXi X2 ∨ ηYi Y2.

The complexity of each indicator function and operator Zi is linear, so

C(f(X), f(Y )) 6
2r∑
i=0

C(gi) +O(2rn) . (2r + 1)
2n−r

n− r
+O(2rn)

according to Theorem 3.2. It suffices to set r ∼ log n. �

We see that when calculating several values of a function, the function table
(specially prepared) is actually used only once, which leads to a saving in complexity.
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• The method of Theorem 10.2 leaves a huge reserve for increasing the number of values that
can be computed asymptotically without increasing complexity. Uhlig showed that (1 + o(1))2r

auxiliary functions gi are sufficient to determine the values of f on s = 2o(r/ log r) independent
inputs (this result can be obtained by recursively applying the method of Theorem 10.2, see [324]).
As a consequence [323]2) (see also [324, 208]),

CB2(f(X1), . . . , f(Xs)) . 2n/n.

The problem of computing multiple values is related to the problem of implementing multi-
plexor functions with independent address variables and common data variables. Uhlig’s method
automatically implies

CB0
(µn(X1;Y ), . . . , µn(Xs;Y )) ∼ 2n+1,

as in the case s = 1 (Theorem 3.5). In this version of the problem, J. Holmgren and R. Roth-
blum [132] increased the bound on the number of multiplexors in the system that preserves the
linear complexity O(2n) to s � 2n/n3.

G. Galbiati and M. Fischer [96] showed that the analogue of Theorem 10.2 in a monotone basis
does not hold:

CBM
(f(X), g(Y )) = CBM

(f) + CBM
(g), (10.1)

if X and Y share at most one variable.

Matrix multiplication. Direct sum method m ε

Arnold Schönhage
Universität Tübingen,

1972 to 1989

If in the previous sections it was shown that economy of
complexity in mass production is possible, then in this one
we will discuss the application of the principle of mass pro-
duction to one of the central problems of computational the-
ory — fast matrix multiplication.

A. Schönhage’s direct sum method [278] serves as a non-
trivial generalization of Corollary 8.2. It allows one to ef-
ficiently transform circuits for several independent matrix
multiplications into circuits for multiplying square matrices.

By T1 ⊕ T2 we denote the union of systems of bilinear
forms T1(X, Y ) and T2(X ′, Y ′) on disjoint sets of variables,
X ∩X ′ = Y ∩Y ′ = ∅ (the new system has the meaning of a
direct sum of tensors). Let T⊕s denote for brevity the direct
sum of s instances of T .

What benefit can direct sums bring? Obviously, rk (T1 ⊕ T2) 6 rk T1 + rk T2 and
rk (T1 ⊕ T2) 6 rk T1 + rk T2. Moreover, if there is a hypothesis (not yet refuted)
regarding the first inequality that equality actually takes place, then this is not the
case for the border ranks. An elegant example was found by Schönhage [278].

Theorem 10.3 ([278]). For a ring R,

rkR (MMm,1,p ⊕MM1,(m−1)(p−1),1) = mp+ 1.

2Cited from [331].
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I To write a representation that proves the upper bound, it is convenient to employ
trilinear identity (8.9). Let

m∑
i=1

p∑
j=1

xiyjzj,i,

m−1∑
i=1

p−1∑
j=1

xi,jyi,jz

be trilinear forms that need to be expressed. We introduce additional notation

xm,j = −
m−1∑
i=1

xi,j, ym,j = 0, xi,p = 0, yi,p = −
p−1∑
j=1

yi,j.

A suitable representation is

u2

m∑
i=1

p∑
j=1

(xiyjzj,i + xi,jyi,jz) =

m∑
i=1

p∑
j=1

(xi + uxi,j)(yj + uyi,j)(z + u2zj,i)−

(
m∑
i=1

xi

)(
p∑
j=1

yj

)
z mod u3.

The accuracy of the bound is obvious due to the fact that the system contains mp+1
linearly independent forms. �

• In this case rkMMm,1,p = mp and rkMM1,(m−1)(p−1),1 = (m− 1)(p− 1) (due to the dimensions

of the systems; in the second case, taking into account Lemma 8.5 — commutativity is not required

for the proof).

The following result is often called Schönhage’s τ -theorem.

Theorem 10.4 ([278]). Let rkR
⊕k

i=1MMmi,pi,qi = r > 2 and mipiqi > 2 hold in
a commutative ring R, and let τ be determined from

∑
i(mipiqi)

τ/3 = r. Then

CAR(MMn) 4 nτ+o(1).

I First, we note that the tensor product operation is distributive with respect to
the direct sum:

(T1 ⊕ T2)⊗ T = (T1 ⊗ T )⊕ (T2 ⊗ T ), T ⊗ (T1 ⊕ T2) = (T ⊗ T1)⊕ (T ⊗ T2).

In particular, Lemma 5.4 as applied to the product of direct sums is formulated
as follows: if a system

⊕I
i=1 Ti has a (d1, r1)-representation, and

⊕J
j=1 T

′
j has a

(d2, r2)-representation over the ring R, then the system
⊕I

i=1

⊕J
j=1(Ti ⊗ T ′j) admits

a (d1 + d2, r1r2)-representation.
Let us prove one more lemma on the border rank of tensor products.

Lemma 10.1 ([278]). Let a system T1 have a (d, r)-representation and T⊕r2 have
a (d′, r′)-representation over R. Then T1 ⊗ T2 admits a (d+ d′, r′)-representation.
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� Using the given (d, r)-representation for T1, write

ud(T1 ⊗ T2) =
r∑
l=1

Cl(u)⊗ (Xl(u)Yl(u)) mod ud+1,

where Cl(u) ∈ R[u]dimT1 , and Xl(u), Yl(u) are linear combinations of the vectors
of variables X i and Y j, respectively. Considering the r internal products XlYl to be
independent, we express them by the given (d′, r′)-representation (multiplying by ud

′
):

ud+d′(T1 ⊗ T2) =
r∑
l=1

Cl(u)⊗

(
r′∑
s=1

C ′l,s(u)X ′s(u)Y ′s (u)

)
mod ud+d′+1 =

r∑
l=1

r′∑
s=1

(Cl(u)⊗ C ′l,s(u))X ′s(u)Y ′s (u) mod ud+d′+1,

where C ′l,s(u) ∈ R[u]dimT2 , and X ′s(u), Y ′s (u) are linear combinations of the com-
ponents of the vectors Xl(u) and Yl(u), respectively, i.e., ultimately, simply linear
combinations of the variables. The required representation is constructed.

Let us proceed directly to the proof of the theorem, which we will carry out only
for the case k = 2 (the general case does not principally differ). By h-fold application
of Lemma 5.4 from a (d, r)-representation for MMm1,p1,q1 ⊕MMm2,p2,q2 we obtain an

(hd, rh)-representation for the system
⊕h

s=0MM
⊕Csh
ms1m

h−s
2 ,ps1p

h−s
2 ,qs1q

h−s
2

in view of (5.13).

From

rh = ((m1p1q1)τ/3 + (m2p2q2)τ/3)h =
h∑
s=0

Cs
h(m1p1q1)τs/3(m2p2q2)τ(h−s)/3

it follows that for some s = s(h),

Cs
h(m1p1q1)τs/3(m2p2q2)τ(h−s)/3 >

rh

h+ 1
. (10.2)

Lemma 10.2. Let g(h) = dγhαr3h/τe. Then, for a suitable choice of con-
stants 0 < γ, α < 1, there exists an (hb, r3h)-representation for MMg(h), where b =

d 3 log2 r
log2 r−1

d e.

� I. We prove the induction step, assuming that the statement holds for all values
< h of the parameter.

Let r3h0 6 C
s(h)
h < r3h0+3, i.e., h0 = b(logr C

s(h)
h )/3c. Set n = g(h0)

and s = s(h). Thus, based on the (hd, rh)-representation constructed above

for the system MM⊕r3h0
ms1m

h−s
2 ,ps1p

h−s
2 ,qs1q

h−s
2

and the assumed (h0b, r
3h0)-representation

for MMn, by Lemma 10.1 we obtain an (hd + h0b, r
h)-representation for

MMnms1m
h−s
2 ,nps1p

h−s
2 ,nqs1q

h−s
2

. Therefore, by Lemma 5.4 we have a (3hd + 3h0b, r
3h)-

representation for MMn3(m1p1q1)s(m2p2q2)h−s . By the choice of s, from (10.2) follows

n3(m1p1q1)s(m2p2q2)h−s >

(
rhnτ

(h+ 1)Cs
h

)3/τ

.
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To justify the induction step, it suffices to show that the left-hand side of the inequal-
ity is not less than g(h).

Let f(h) = γh
α
. Note that in view of h0 < (h/3) logr 2,

nτ

Cs
h

>
gτ (h0)

r3h0+3
>
f τ (h0)

r3
>
f τ ( h

3 log2 r
)

r3
.

If we ensure the inequality

f 3( h
3 log2 r

)

(r3(h+ 1))3/τ
> f(h), (10.3)

then we obtain the required relation (taking into account rounding to the nearest
integer from above)(

rhnτ

(h+ 1)Cs
h

)3/τ

>
r3h/τf 3( h

3 log2 r
)

(r3(h+ 1))3/τ
> f(h)r3h/τ .

To ensure (10.3), we choose α < 1 arbitrarily from the condition (3 log2 r)
α > 3.

Then (10.3) holds for any γ ∈ (0, 1) for sufficiently large h, say, for h > h1 for any
γ 6 γ1. Finally, note that by the choice of b, we have hb > 3hd+ 3h0b.

II. It remains to specify the induction base. Let r3 6 C
s(h)
h hold for h > h2. We

include in the induction base all h 6 max{h1, h2} (from h 6 h2 it follows that h0 > 1
in the induction step). Finally, we choose γ small enough, γ 6 γ1, so that the desired
representation for MMg(h) exists for all h 6 max{h1, h2}. For example, for this it is
sufficient to ensure that g(h) 6 rh for such h.

Let gk−1(h) < n 6 gk(h). From Lemma 10.2 and Lemma 5.3 it follows that
rkMMg(h) 6 ch2r3h, where c = O(1). Then by Theorem 5.3,

CAR(MMn) 6 CAR(MMgk(h)) 4 g2(h)(ch2r3h)k+2 4

g2(h)r9h(ch2)k+2
(
γ−h

α

g(h)
)(k−1)τ

4 rc1hc kh
α

2 · nτ

for suitable constants c1, c2. The assertion of the theorem follows, for example, when
choosing h � log1/2

r n (then k 4 h). �

Applying Theorem 10.4 to the example from Theorem 10.3 with the choice of
parameters m = p = 4, we obtain

Corollary 10.2 ([278]). If R is a commutative ring, then

CAR(MMn) ≺ n2.548.

• Probably the strongest bound directly using the method of Theorem 10.4 was obtained by

D. Coppersmith and S. Winograd in [74], CAR(MMn) ≺ n2.496. More modern theoretically fast

methods of matrix multiplication employ the direct sum method as a working tool.
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Matrix multiplication. Laser method m ε

The idea of mass production turned out to be extremely popular in the problem of
fast matrix multiplication. In the “laser” method of V. Strassen [315] several variants
of this idea are combined at once.

The further presentation follows closely the work of D. Coppersmith and S. Wino-
grad [75]. The method allows one to construct algorithms for matrix multiplication
from identities for systems of bilinear forms that are not matrix products. For exam-
ple, the system Tq = {x0yi + xiy0 | i = 1, . . . , q} can be (approximately) computed
as

u(x0yi + xiy0) = (x0 + uxi)(y0 + uyi)− x0y0 mod u2 (10.4)

(an example from [315]). Therefore rk Tq 6 q + 1. The system Tq is obtained by
summing the components of the matrix products MM1,1,q and MMq,1,1, but this sum
is not direct, so Theorem 10.4 cannot be applied immediately. Strassen’s method
explains how to go from (10.4) to an identity with a direct sum on the left-hand side.

Theorem 10.5 ([315]). If R is a commutative ring, then

CAR(MMn) ≺ n2.48.

I The first step is to reduce identity (10.4) to a more symmetric form. Consider
the tensor product Tq ⊗ T ′q ⊗ T ′′q , where the systems T ′q, T

′′
q are obtained from Tq by

a cyclic shift of the groups of variables (x, y, z) in the trilinear form
∑q

i=1(x0yi+xiy0)zi
corresponding to Tq, see (8.9). Thus,

T ′q =

{
x0y1, . . . , x0yq,

q∑
j=1

xjyj

}
, T ′′q =

{
x1y0, . . . , xqy0,

q∑
k=1

xkyk

}
.

By construction, rk Tq = rk T ′q = rk T ′′q (in fact, this is proved in Lemma 8.5 for the
special case of matrix multiplication). In particular, the system T ′q has a (1, q + 1)-
representation of the form

ux0yj = u(x0 + uxj)yj mod u2, u

q∑
j=1

xjyj =

q∑
j=1

(x0 + uxj)yj − x0

q∑
j=1

yj.

The system Tq ⊗ T ′q ⊗ T ′′q consists of bilinear forms x00kyij0 + xi0ky0j0 (q3 pieces),∑q
k=1 x00kyijk + xi0ky0jk (q2 pieces),

∑q
j=1 x0jkyij0 + xijky0j0 (q2 pieces), and∑q

j,k=1 x0jkyijk + xijky0jk (q pieces). In it one can detect a structure of the block
product of 2× 2 matrices:[

x00kyij0 + xi0ky0j0 x00kyijk + xi0ky0jk

x0jkyij0 + xijky0j0 x0jkyijk + xijky0jk

]
=

[
x00k xi0k
x0jk xijk

]
·
[
yij0 yijk
y0j0 y0jk

]
(10.5)

(summation is performed over repeated indices; symbols of summation are omitted for
brevity). The complication here is that the matrix blocks are essentially 3-dimensional
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tensors, which cannot be consistently represented by ordinary (2-dimensional) matri-
ces. However, individual block products are matrix products: for example, x00kyij0
represents the operator MMq,1,q2 , and xijky0jk represents the operator MMq,q2,1.

Strassen’s key observation is that from an ordinary product of (large enough)
matrices one can extract many individual products of components (or blocks).

Lemma 10.3. Let the system MMn have a (d, r)-representation. Then the system

Bn,s = {xijyjk | 1 6 i, j, k 6 n, i+ j + k = s}

admits a (d+ h, r)-representation, h 4 n2.

� Keeping in mind (8.9), we can assume that we are given a (d, r)-representation
for the trilinear form

∑
16i,j,k6n xijyjkzki. After the change of variables

xij := ui
2+2ij · xij, yjk := uj

2+2j(k−s) · yjk, zki := u(k−s)2+2(k−s)i · zki

taking into account i2 + 2ij+ j2 + 2j(k− s) + (k− s)2 + 2(k− s)i = (i+ j+k− s)2 we
obtain an almost (d, r)-representation for

∑
i+j+k=s xijyjkzki, which may differ from

a correct representation by occurrences of negative powers of u. Negative powers can
be eliminated by multiplying by uh with exponent h 4 n2.

It is important that any variable xij or yjk has at most one occurrence in Bn,s

(a pair of indices from i, j, k uniquely determine the third), so Bn,s is a direct sum of
individual forms. For s ∼ 3n/2, the system Bn,s contains (3/4− o(1))n2 forms.

By Lemma 5.4, the system Tq ⊗ T ′q ⊗ T ′′q has a (3, (q + 1)3)-representation. Then
the tensor power (Tq ⊗ T ′q ⊗ T ′′q )⊗m has a (3m, (q + 1)3m)-representation, also by
Lemma 5.4. As a consequence of (10.5), the system (Tq⊗T ′q⊗T ′′q )⊗m has a structure
of the product of 2m × 2m matrices composed from blocks Xij and Yjk, where the
product of two blocks XijYjk represents the multiplication of matrices MMqa,qb,qc ,
a+ b+ c = 3m. Therefore, according to Lemma 10.3, the border rank of the system
B2m,s ⊗ {XijYjk | 1 6 i, j, k 6 2m} does not exceed (q + 1)3m. But this system is the
direct sum of matrix products MMqa,qb,qc . Therefore, applying Theorem 10.4, when
choosing s ∼ (3/2)2m we deduce CAR(MMn) 4 nτ+o(1), where τ is determined from
the condition (3/4)22mqτm = (q+ 1)3m, or, after taking the root, from 4qτ = (q+ 1)3.
The statement of the theorem is obtained for q = 5. �

• The method was further developed by D. Coppersmith and S. Winograd in [75], where, using

more complex basic representations than (10.4), they obtained the bound CAR(MMn) ≺ n2.376,

which remained a record for 20 years. The current best3) bound is CAR(MMn) ≺ n2.372 [8]. For a

systematic exposition of the theory of fast methods of matrix multiplication, see also [6, 53, 340, 35].

3April 2024
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Other applications

Monotone circuits for slice-functions. An interesting application of the mass production
method was found by A. Hiltgen and M. Paterson [128]. It concerns the joint computation of similar
slice-functions. A k-slice function is a monotone function of the form T k|X|(X)f(X) ∨ T k+1

|X| (X) —

it takes value 0 on all inputs of weight < k and equal to 1 on all inputs of weight > k (here f is an
arbitrary boolean function).

Let X = (X1, . . . , Xr), |X1| = . . . = |Xr| = m, n = rm. Consider the problem of computing
a family of k-slice functions fi(X) = Xα1

i ∨ . . . ∨X
αs
i ∨ T k+1

n (X), where αj are distinct vectors of
weight k 6 m, and Xσ

i =
∏
σj=1 xi,j are monomials of the variables Xi. The presence of a common

part T k+1
n (X) takes this problem out of the scope of rule (10.1).

In the notation ẋi,j = xi,j · T km(Xi), ẋj = ẋ1,j ∨ . . . ∨ ẋr,j , Ẋ = (ẋ1, . . . , ẋm), each of the
functions fi can be computed as

fi(X) = T km(Xi)(Ẋ
α1 ∨ . . . ∨ Ẋαs) ∨ T k+1

n (X),

hence, CBM
(f1, . . . , fr) < n+ks+rCBM

(T km)+CBM
(T k+1
n ) = ks+O(n log n). For sufficiently large r,

this method of computation is more economical than independent implementation of functions fi
or sums Xα1

i ∨ . . . ∨X
αs
i .

Applying this technique in a more subtle way, the authors of [128] obtained an asymptotically

tight estimate CBM
({fa,b | 0 6 a, b < p}) ∼ 3n of the complexity of the family of Nechiporuk’s 1-slice

functions, where n = p2 and p ∈ P. Here X = (xi,j) and fa,b(X) =
∨p−1
i=0 xi,ai+b ∨ T 2

n(X) (index

operations are performed modulo p). The construction of the functions follows the incidence matrix

of points and lines of a finite affine plane over Fp. As E. I. Nechiporuk established in [229], a linear

operator over (B,∨) with such a matrix4) has monotone complexity (p− 1)n2 ∼ n3/2. Actually, the

conjecture [330] that the slice version of the operator should also have complexity of order n3/2 was

refuted in [128].

4The components of the operator are boolean sums
∨p−1
i=0 xi,ai+b — any two such sums have at

most one common variable.



Chapter 11

Combinatorial methods ·∵

In a number of problems in the theory of fast computing, it is convenient to
organize variables or intermediate data in a structure with certain combina-
torial properties.

Monotone circuits for the symmetric threshold-2 function ·∵

Leonard Max
Adleman

University of Southern
California, since 1980

For the function T 2
n , the lower complexity bound CB2(T

2
n) >

2n−O(1) was one of the first to be obtained (by B. M. Kloss
in [165]), and immediately in a complete basis. The question
of the possibility of computing the function with such com-
plexity remained open until L. Adleman in the 1970s found
an elegant way1), and immediately for a monotone basis.
In Adleman’s method, the variables correspond to nodes of
a two-dimensional lattice. It is essential that any two nodes
are either in different rows or in different columns of the
lattice.

Theorem 11.1. CBM (T 2
n) 6 2n+O(

√
n).

I Let a set of n variables be numbered by two indices xi,j,
i = 1, . . . , p, j = 1, . . . , q, where pq > n. Denote ui =

∨
j xi,j

and vj =
∨
i xi,j. Then

T 2
n(X) = T 2

p (u1, . . . , up) ∨ T 2
q (v1, . . . , vq),

therefore,
C(T 2

n) 6 2n− p− q + 1 + C(T 2
p ) + C(T 2

q ),

since all sums ui and vj may be computed with complexity 2n−p−q. Now it suffices
to choose p = q ≈

√
n. �

1Not published by the author, cited from [37, 331].
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• More precisely, the estimate extracted from Theorem 11.1 is CBM
(T 2
n) 6 2n+ (2 + o(1))

√
n. The

lower estimate proved by the author in [301] is CBM
(T 2
n) > 2n+

√
2n/3−O(1).

Adleman’s method can be generalized and allows one to obtain the bound CBM
(T kn ) 6 kn+o(n)

for any constant k, see [331], however, in this case the adapted Yao’s method has priority, see [301].

Asymptotic complexity of formulae ·∵ c

In the theory of asymptotically optimal synthesis, various coverings of the boolean
cube are applied, which have useful properties within the framework of a given com-
putational model. The method of covering the cube with spheres was proposed by
O. B. Lupanov [202] for constructing economical switching circuits and subsequently
found application in a number of other problems. We will consider an application of
the method to the synthesis of asymptotically minimal formulae over the basis B0 —
Lupanov’s result [203].

A sphere (of radius 1) in the space Br is defined as a set of boolean vectors of
length r that differ from a given vector (the center of the sphere) in exactly one
position. The most important property of a sphere is the possibility to select any
its point using one variable in the following sense. Let ϕα(X) be the characteristic
function2) of a sphere S with center α. Then for an arbitrary vector σ ∈ S, we have
Xσ = ϕα(X)xσii , where i is the number of the position that distinguishes σ from α.

Starting from the perfect Hamming code with distance 3, it is easy to check that
for r = 2k the boolean cube Br decomposes into 2r/r spheres, see, e.g., [207].

• For r = 2k, the Hamming code generates a partition of the cube Br−1 into s = 2r−1/r disjoint

balls of radius 1 with centers α1, . . . , αs. As a consequence, the set of spheres with centers {(αi, β) |
1 6 i 6 s, β ∈ B} forms a partition of the cube Br. In the general case r 6= 2k the cube Br can be

covered by (1 + o(1))2r/r spheres [143].

Before proceeding to the proof of the main result, we obtain an auxiliary bound.

Lemma 11.1 ([203]). Let |X| = p, |Y | = r, and

f(X, Y ) = y1f1(X) ∨ y2f2(X) ∨ . . . ∨ yrfr(X). (11.1)

Then ΦB0(f) 6 2p
(
r
s

+ p2s
)

for any s ∈ N.

� Let us divide the boolean vectors of length p into groups I1, . . . , Iq of s in each (for
simplicity, we assume 2p = qs). Let χj,τ (X) be the characteristic function of a subset
of the group Ij, defined by the vector3) τ ∈ Bs. Then

f(X, Y ) =

q∨
k=1

∨
τ∈Bs

χk,τ (X)Dk,τ (Y ), Dk,τ (Y ) =
∨

fi(Ik)=χk,τ (Ik)

yi. (11.2)

2The characteristic function of a set S takes the value 1 at points of S, and the value 0 — outside
the set.

3The i-th vector belongs to the set if τi = 1.
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Since
∑

τ Φ(Dk,τ ) = r for any k, and Φ(χj,τ ) 6 ps (e.g., consider a perfect DNF),
formula (11.2) has complexity

Φ(f) 6 qr + q2sps = 2p
(r
s

+ p2s
)
.

Theorem 11.2 ([203]). For an arbitrary boolean function f of n variables,

ΦB0(f) 6

(
1 +O

(
log log n

log n

))
2n

log2 n
.

I Let X = (X1, X2, X3), |X1| = p, |X2| = r = 2k, |X3| = n − p − r. Employing
a partition of the cube Br into spheres with characteristic functions ϕi(X2), we write

f(X) =
∨

σ∈Bn−p−r
fσ(X1, X2) ·Xσ

3 =

2r/r∨
i=1

ϕi(X2)
∨

σ∈Bn−p−r
fi,σ(X1, X2) ·Xσ

3 , (11.3)

where each of the functions fi,σ(X1, X2) has the form (11.1) (the variables X2 or their
negations act as the variables Y ).

Estimating roughly Φ(ϕi) 6 r2 and applying Lemma 11.1, for the complexity of
computing the function by formula (11.3) we derive

Φ(f) 6
2r

r

(
r2 + 2n−p−r

(
n− p− r + 2p

(r
s

+ p2s
)))

< 2rr+2n−p · n
r

+
2n

s
+2n+s · p

r
.

The required bound is obtained by choosing parameters n/4 6 r 6 n/2, p ≈
2 log2 log n, s ≈ log2 n − 2 log2 log n. Note that the dominant complexity comes
from the variables that select the points of the spheres. �

That the result of the theorem is asymptotically tight was shown by J. Riordan
and C. Shannon in [262] (this was the first application of the cardinality argument
to obtaining lower complexity bounds in synthesis theory).

• In [193] S. A. Lozhkin improved the accuracy of the formula complexity bound to

ΦB0(Pn) =

(
1±O

(
1

log n

))
2n

log2 n
. (11.4)

The asymptotic estimate of the complexity of formulae automatically implies a bound on the
depth DB0(Pn) > n − log2 log2 n − o(1). Using a modification of the representation (11.3), also
based on a partition of the boolean cube into spheres, S. B. Gashkov [99] obtained an upper bound
DB0

(Pn) 6 dn− log2 log2 n+ o(1)e+ 2. Essentially ultimate result

DB0
(Pn) 6 dn− log2 log2 n+ o(1)e (11.5)

was established by Lozhkin [192] via a partition of the cube into special sphere-like sets. A simple
way to derive a slightly weaker bound is given below, see Corollary 12.1. Lozhkin also showed [195]
that the complexity bound (11.4) and the depth bound (11.5) up to an additive term O(1) are
achieved on a single formula.

Gashkov [100] adapted Lupanov’s method to the computation of polynomials with coefficients

0 and 1 by formulae in the arithmetic basis {∗,±, 1}. The complexity of the class of polynomials

with individual constraints di − 1 on the exponents of each variable xi is asymptotically equal to

d1 · . . . · dn/ log2 n. The proof employs coverings of parallelepipeds in Nn by hemispheres instead of

coverings by spheres.
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Multiplicative complexity of polynomials ·∵

Recall that a degree-d polynomial of one variable can be computed by an arithmetic
circuit with �

√
d nonscalar multiplications, and this bound is best possible [244] (see

p. 33). Consider a more general problem of implementing polynomials of n variables.

It is known that in the case d > 2 about
√
Cd
n+d (up to an order) multiplications are

necessary [59]4). S. Lovett [190] showed that this bound is almost achievable. The
method is based on the idea of covering the set of vector exponents of monomials by
the sum of two sets of approximately half the dimension.

Theorem 11.3 ([190]). Any polynomial f ∈ R[x1, . . . , xn] of degree d can be computed

by a circuit over AR with nonscalar multiplicative complexity (dn)O(1)
√
Cd
n+d.

I The proof is based on the observation that any monomial5) Xe of degree 6 d can
be represented as XaXb, where a ∈ A, b ∈ B, given a suitable choice of sets A and B

whose cardinality is close to
√
Cd
n+d.

It suffices to consider the case where n is odd and d is even. Let A = B ⊂ Nn
0 be

the set of all vectors of weight6) 6 d/2 with zero components in some m = (n− 1)/2
cyclically adjacent7) positions i+ 1, i+ 2, . . . , i+m ⊂ Zn.

Lemma 11.2 ([190]). Any vector e = (e1, . . . , en) ∈ Nn
0 of weight d belongs to the

Minkowski sum8) A+ A.

� Let w−i and w+
i denote the sums of the components of the vector e in cyclically

adjacent positions i− 1, i− 2, . . . , i−m and, respectively, i+ 1, i+ 2, . . . , i+m. Note
that w−i + w+

i + ei = d.
First, we show that for some i we have w−i , w

+
i 6 d/2. Suppose that w+

j > d/2
for some j. Therefore, w−j = w+

j+m 6 d/2. As a consequence, for some i we have
w+
i−1 > d/2 and w+

i 6 d/2. But then w−i 6 d− w+
i−1 6 d/2.

Now e = a+ b, where

ai+1 = ei+1, . . . , ai+m = ei+m, ai−1 = . . . = ai−m = 0, ai = d/2− w+
i ,

bi−1 = ei−1, . . . , bi−m = ei−m, bi+1 = . . . = bi+m = 0, bi = d/2− w−i .

Hence, a, b ∈ A.

As follows from the lemma, a polynomial f =
∑
feX

e can be represented as

f(X) =
∑
a∈A

Xa ·
∑
b∈A

ca,bX
b, ca,b ∈ {0, fa+b}. (11.6)

4At least, if we consider polynomials over a field.
5As usual, by Xe we understand

∏
i x

ei
i .

6Here the weight of a vector is defined as the sum of its components.
7That is, consecutive in the numbering . . . , n, 1, 2, . . . , n, 1, 2, . . .
8The Minkowski sum A+B is defined as {a+ b | a ∈ A, b ∈ B}.



128 CHAPTER 11. COMBINATORIAL METHODS

All monomials Xa are computed sequentially with the use of |A| multiplications,
another |A| multiplications are performed by the inner sums in formula (11.6). It

remains to note9) that |A| 6 nC
d/2−1
(n+d−1)/2 6 n

√
Cd−2
n+d−1 6 d

√
Cd
n+d due to the simple

inequality C2k
2n >

(
Ck
n

)2
.

The cases of even n and odd d may be reduced to the one considered (at the cost
of an additional factor in the complexity estimate). �

• The method of Theorem 11.3 obviously allows one to compute monotone polynomials in the

monotone basis A+. The question of whether one can approach closer to the lower bound
√
Cdn+d

is still open. As can be seen from the proof of the theorem, this bound is achievable (up to an order)

in some special cases, for example, for even constant d (which is also easily verified directly). The

author [304] showed that for constant odd d the order of complexity is ndd/2e �
√
nCdn+d for fields

of characteristic 0. The question of the complexity of the considered classes of polynomials over

finite fields is open.

Circuit complexity of the logical permanent ·∵ s

Above, a probabilistic construction of parallel circuits for the logical permanent func-
tion PERMn of polynomial complexity was presented (Theorem 9.5). It was based
on the algebraic properties of the permanent. Further, we will see that algorithms
for finding a maximal matching in a graph help explicitly build simpler, although no
longer parallel, circuits.

Let G = (U, V,E) be a bipartite undirected graph with parts U = {u1, . . . , un},
V = {v1, . . . , vn} and an edge set E. As usual, we introduce boolean variables
xi,j = [(ui, vj) ∈ E]. Recall that PERMn(X) = 1 iff the graph G defined by X has
a perfect matching10).

Consider some matching M ⊂ E. A path in G is called M-alternating if it
alternates edges from M and from E \M . A vertex of G is called M-free if it is not
adjacent to edges from M . An alternating path is called M-augmenting if both its
end vertices are free.

It is easy to check that a matching M is maximal in a graph G if there are no
M -augmenting paths in G. Moreover, we have

Claim 11.1 ([134]). If a bipartite graph G has a matching N of n edges, then for
an arbitrary matching M ⊂ G of m < n edges there exists an M-augmenting path of
length 6 2m/(n−m) + 1.

� Consider the union of matchings M and N . In each connected component of the
graph M ∪ N , any vertex is adjacent to at most one edge from M and at most one
edge from N . Therefore: (a) the difference between the number of edges from M and

9Fixing an extreme nonzero position of the vector a ∈ A and estimating the number of ways to
partition d/2− 1 into m+ 2 summands.

10A matching is a set of edges that don’t have common adjacent vertices. A perfect matching
covers all vertices of the graph.
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from N in a connected component does not exceed 1 in absolute value; (b) all edges
of a connected component form an M -alternating path.

As a consequence, there are > n−m connected components with a predominance
of edges from N , and hence, the same number of non-adjacent M -augmenting paths.
Thus, there exists a path with at most m/(n−m) edges from M .

It remains to note that the symmetric difference11) of a matching M and an M -
augmenting path is a matching of size |M |+ 1.

Thus, the problem of finding a maximal matching can be solved in n successive
steps of searching for augmenting paths. At each step, we construct a partition of
the graph vertices into layers: on the zero layer — free vertices U0 of the part U ,
and then on any d-th layer — vertices at distance d from U0 along alternating paths.
And so on until a free vertex from V is covered. Then we restore an alternating path
between this vertex and a vertex from U0.

This is a simple algorithm with the running time12) of order n3, which can be
found, e.g., in [2]. Representing the algorithm as a circuit requires additional elabo-
ration (approximately as in the case of GCD algorithms, see Theorem 1.4).

Theorem 11.4. C(PERMn) 4 n4 log3 n.

I The circuit computes a sequence of matchings M1,M2, . . . ,Mn+1. Transformations
Mk →Mk+1 are performed by similar subcircuits Sk:

∅ = M1
S1−→M2

S2−→ . . .
Sn−→Mn+1.

The circuit Sk searches for an Mk-augmenting path and, if successful, increases the
cardinality of the current matching with its help. By construction, |Mk| 6 k − 1.

A matching M is characterized by a set of attributes pi,j = [(ui, vj) ∈ M ], which
are recomputed when M changes during the calculations. Along the way, we update
the auxiliary attributes pui =

∨
j pi,j and pvj =

∨
i pi,j expressing non-freedom of ver-

tices ui and vj, as well as the attributes t[u, v] of legality13) of edges in M -alternating
paths:

t[ui, vj] = xi,j · pi,j, t[vj, ui] = pi,j.

This means that from the part U to the part V the paths should pass along edges
from E \M , and in the opposite direction — along edges from M .

1) Let us describe the circuit Sk. By Claim 11.1, if a graph G has a perfect match-
ing, then it contains an Mk-augmenting path of length at most lk = 2bk/(n− k)c+ 1.

Following the dynamic programming technique, we construct the shortest Mk-
alternating paths of length 6 lk connecting every pair of vertices from G. The
corresponding circuit consists of s = dlog2 lke layers-subcircuits L1, . . . , Ls. The next
i-th layer adds information about alternating paths of length 6 2i.

11The symmetric difference of sets A and B is defined as (A \B) ∪ (B \A).
12The running time of an algorithm is usually understood to be the number of instructions exe-

cuted by a program implementing it on a general-purpose computer.
13The concept of legality introduces the orientation of edges in a graph so that all oriented paths

are M -alternating. In doing so, the set of alternating paths does not change.
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In what follows, code(π) denotes the code (i.e., a boolean vector) of an alternating
path π. We choose a natural way of encoding a path by a sequence of its vertex
numbers. Say, the path

ui0 → vi1 → ui2 → . . .→ vir

is encoded by the string (i0, i1, i2, . . . , ir, 0, . . . , 0). Circuits Li operate on paths
encoded by a string of 2i−1 + 1 numbers, and the codes of the paths they compute
contain 2i + 1 numbers. The numbers are written in b = dlog2(n+ 1)e digits.

Let πu,v denote the found alternating path between u and v. Denote by δu,v the
indicator that some path πu,v has been found, and let λu,v be its length.

1.0) The specified quantities are initialized as λu,v = δu,v = t[u, v]. Initialization
of paths of length 1 is performed with complexity O(n2 log n):

code(πui,vj) = t[ui, vj] · (i, j), code(πvj ,ui) = t[vj, ui] · (j, i).

1.1) On a layer Li, for each ordered pair of nodes (u, v), the following calculations
are performed.

If δu,v = 0, then for all other nodes w ∈ G, we compute the indicators of the
presence and the length of a path from u to v through w:

δu,w,v = δu,wδw,v, λu,w,v = λu,w + λw,v.

Some paths πu,w ∪ πw,v among those considered may contain cycles and, thus, not be
the shortest. Therefore, among all the paths found, i.e., when δu,w,v = 1, one should
select a path of the minimum length λu,w,v — it does not contain cycles.

The circuit first computes λu,v = minδu,w,v=1 λu,w,v, setting λu,v = 0 if no paths
are found. Next, it computes the indicators Iw of the first position w for which
λu,v = λu,w,v 6= 0. The complexity of these computations for one pair of nodes u, v is
trivially O(n log n). Finally, the desired path may be determined as

code(πu,v) =
∨
w

Iw · code(πu,w ∪ πw,v). (11.7)

The code of the combined path in (11.7) is computed as

code(πu,w ∪ πw,v) = code(πu,w) ∨ (code(πw,v)� qλu,w),

where x� k is the operation of shifting a string x by k positions to the right. Shifting
a string of length L by a variable value from 0 to L − 1 positions is performed by
a simple circuit of complexity O(L logL) (Lemma 1.1). The multiplications and
disjunction in formula (11.7) have complexity 4 n2ib. Therefore,

C(Li) 4 n3 log n+ n3b2ii 4 2in3 log2 n. (11.8)

1.2) At the output of the last subcircuit Ls we obtain descriptions of the shortest
alternating paths πu,v, characterized by attributes δu,v, λu,v, code(πu,v).

We distinguish paths connecting free vertices from U and V by indicators Ii,j =
δui,vj · pui · pvj . Next, we mark by indicators Ji,j the position of just one augmenting
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path π, if such a path is found. These calculations are trivially performed14 with
complexity O(n2). The path itself is computed as

code(π) =
∨
i,j

Ji,j · code(πui,vj)

with complexity 4 n3 log n.

1.3) Finally, the current matching should be updated: Mk → Mk+1. The at-
tributes qi,j of the presence of (undirected) edges (ui, vj) in the path π are trivially
computed from its code15) with complexity 4 n3. Now we set pi,j := pi,j ⊕ qi,j. The
recomputation of the remaining attributes pui , p

v
j , t[u, v] is then performed with a

total complexity of O(n2). By (11.8), we obtain

C(Sk) =
s∑
i=1

C(Li) +O(n3 log n) 4 lkn
3 log2 n. (11.9)

2) In the case where G has a perfect matching, Mn+1 is such. Therefore,
PERMn =

∧
i p

u
i . Finally, in view of

∑n
k=1 lk � n

(
1 + 1

2
+ 1

3
+ . . .+ 1

n

)
∼ n lnn,

(11.9) implies

C(PERMn) 6 C(S1) + . . .+ C(Sn) +O(n) 4 n4 log3 n.

�

• In Theorem 11.4 we deliberately sacrificed complexity for the sake of simplicity of the circuit
design. The best known upper bounds on the circuit complexity of the permanent were obtained by
transferring algorithms for finding maximum matchings in graphs to deterministic Turing machines
and then to circuits. The best known running time O(n2.5/ log n) among deterministic algorithms
(also in the model of Turing machines) provides the algorithm of T. Feder and R. Motwani [85]16). It
is known that a program with execution time T on a Turing machine can be simulated by a boolean
circuit of complexity O(T log T ), see, e.g., [331]. From this we can conclude that C(PERMn) 4 n2.5.
The corresponding circuit, however, may have a very intricate structure.

It is noteworthy that as A. A. Razborov [256] showed, CBM
(PERMn) = nΩ(logn), i.e., the

permanent is an example of a (monotone) boolean function of polynomial complexity in a com-

plete basis and superpolynomial — in the monotone basis. However, É. Tardos [317] proposed an

analogous example of a function with almost exponential monotone complexity 2n
Θ(1)

.

Monotone complexity of the cyclic walk polynomial ·∵ s

Like the previous section, this section demonstrates the connection (this time, not too
trivial) between combinatorial properties of graphs and methods for fast computing
graph-related polynomials.

14Prefix circuits can be employed here.
15We can start by computing the indicators χi,j of the equality of the i-th component of code(π)

to the number j.
16The result [85] slightly improves the complexity estimate O(n2.5), which is provided by the

well-known Dinitz—Karzanov [79, 150] and Hopcroft—Karp [134] algorithms.
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Let us associate with an arbitrary edge e = (i, j) of the complete undirected
graph Kn on n vertices a variable, for which we will use the notation xe = xi, j = xj, i.
Consider the polynomial

CWk,n(X) =
∑

i1 6=i2 6= ... 6=ik 6=i1

xi1, i2 · xi2, i3 · . . . · xik−1, ik · xik, i1 ,

whose monomials correspond to all possible cyclic walks of length k in the graph Kn

(the definition allows multiple traversals along the same edges).
The complexity of computing polynomials of this type by monotone arithmetic

circuits turns out to be related to the treewidth of graphs.
A tree decomposition of a graph G on k vertices numbered from 0 to k − 1 is

a tree T , each vertex u of which is associated with a certain set Vu ⊂ [[k]] so that the
following conditions are met:

0)
⋃
u∈T Vu = [[k]];

1) for any edge (i, j) ∈ G there is a vertex u ∈ T , satisfying the property i, j ∈ Vu;
2) for any i ∈ [[k]] the set of vertices {u ∈ T | i ∈ Vu} is a connected subtree.
The number maxu∈T |Vu| − 1 is called the width of a decomposition T . The

treewidth tw(G) of a graph G is the minimum width of its decomposition.
Let us consider a more general problem of computing a polynomial whose mono-

mials correspond to images of a k-vertex graph G in the complete graph K∗n on n ver-
tices [[n]] with allowed loops under the action of all possible mappings ϕ : [[k]]→ [[n]].
The image of a vertex i is the vertex ϕ(i). The image of an edge e = (i, j) is the edge
ϕ(e) = (ϕ(i), ϕ(j)), which can be a loop for ϕ(i) = ϕ(j). The images of vertices and
edges define the image ϕ(G) of the graph G.

Let χG =
∏

e∈G xe denote the characteristic function of a graph — the product
of variables corresponding to its edges. As usual, we set χG = 1 if the graph has no
edges.

For an arbitrary graph G on vertices [[k]] its homomorphism polynomial is defined
as

HomG,n(X) =
∑

ϕ:[[k]]→[[n]]

χϕ(G).

The cyclic walk polynomial defined above is a special case of the homomor-
phism polynomial when G is a cycle of length k (denoted by Ck), i.e., CWk,n =
HomCk,n|x0,0= ...=xn−1,n−1=0 (loops are not allowed in walks).

When computing a polynomial, it is more convenient to use a special type of tree
decomposition.

A nice tree decomposition of a graph G is a tree decomposition that is a binary
tree oriented towards the root and contains vertices of only the following types:

a) a leaf u with no incoming edges, satisfying |Vu| = 1;
b) an attaching node u with one input (from a vertex z), for which Vz ⊂ Vu and

|Vu| = |Vz|+ 1.
c) an excluding node u with one input (from a vertex z), for which Vu ⊂ Vz and

|Vu| = |Vz| − 1.
d) a uniting node u with two inputs (from vertices z1, z2), where Vu = Vz1 = Vz2 .
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The root r of a nice decomposition is assumed to be an excluding node and has
label Vr = ∅.

It can be verified that any tree decomposition can be transformed into a nice tree
decomposition of the same width and with O(1) times more nodes, see also [164].
The following result is actually contained in [78].

Theorem 11.5. Let a graph G on k vertices have a nice tree decomposition T of
width tw(G) with t vertices. Then CAR+(HomG,n) 4 tk2ntw(G)+1.

I Distribute the edges of the graph G between suitable vertices of the tree T without
repetitions, which means: an edge (i, j) must be assigned to some vertex u ∈ T for
which i, j ∈ Vu. By Eu we denote the set of edges assigned to a vertex u ∈ T .

Let Tu be a subtree of the tree T rooted at u. Set Wu =
⋃
z∈Tu Vz. By Gu we

denote the subgraph of the graph G formed by the vertices Wu and edges assigned
to the vertices of the subtree Tu.

Further, by {ϕ, ψ} we denote the union of mappings ϕ, ψ with disjoint domains.
Sequentially scanning the tree T from the leaves to the root, at each vertex u ∈ T

we compute the family of polynomials

Pu,ψ(X) =
∑

ϕ:Wu\Vu→[[n]]

χ{ϕ,ψ}(Gu) (11.10)

for all ψ : Vu → [[n]], essentially via the dynamic programming method.
a) If u is a leaf of the tree, and Vu = {i}, then Pu, i→j = 1 for all j ∈ [[n]].
b) If u is an attaching vertex with z being its preceding vertex, and Vu = {i}∪Vz,

then for each ψ : Wz → [[n]] and ψj = {i→ j, ψ} : Wu → [[n]] we set

Pu,ψj = Pz,ψ ·
∏
e∈Eu

xψj(e).

It is easy to see that definition (11.10) is satisfied in this case: it suffices to note that
the set of mappings ϕ over which the summation is performed coincides for Pu,ψj and
Pz,ψ. Moreover, i /∈ Wz by property 2) of tree decomposition, hence, the mapping
{ϕ, ψj} is well defined.

c) If u is an excluding vertex with z being its preceding vertex, and Vz = {i}∪Vu,
then for each ψ : Wu → [[n]] we set

Pu,ψ =
n−1∑
j=0

Pz,{i→j, ψ} ·
∏
e∈Eu

xψ(e).

In this case (11.10) is satisfied directly.
d) Let u be a uniting vertex, and z1, z2 be its preceding nodes. Recall that

Vu = Vz1 = Vz2 and Wz1 ,Wz2 ⊂ Wu. Then for each ψ : Vu → [[n]] we set

Pu,ψ = Pz1,ψ · Pz2,ψ ·
∏
e∈Eu

xψ(e).
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To justify this formula we again apply the connectivity property 2) of tree decompo-
sition, which yields (Wz1 \ Vz1) ∩ (Wz2 \ Vz2) = ∅. Denote Qi = Wzi \ Vzi . Then

Pz1,ψ · Pz2,ψ =
∑

ϕ1:Q1→[[n]]

χ{ϕ1,ψ}(Gz1 ) ·
∑

ϕ2:Q2→[[n]]

χ{ϕ2,ψ}(Gz2 ) =

=
∑
ϕ1,ϕ2

χ{ϕ1,ϕ2,ψ}(Gz1∪Gz2 ) =
∑

ϕ:Wu\Vu→[[n]]

χ{ϕ,ψ}(Gz1∪Gz2 ).

e) At the root of the tree, the polynomial Pr,∅→[[n]] = HomG,n is computed.
By construction, no more than O(k2ntw(G)+1) operations are performed in the

computations at each node. �
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Figure 11.1: Graph Ck (a), its tree decomposition (b) and its nice tree decomposi-
tion (c)

The treewidth of the cycle Ck for k > 3 is17) 2. A minimal treewidth decomposition
and a nice decomposition of Ck are shown in Fig. 11.1. They contain O(k) vertices.
Setting xi, i = 0 for all i ∈ [[n]], i.e., excluding loops, we obtain

Corollary 11.1. If k > 3, then CAR+(CWk,n) 4 (kn)3.

• In the definition of the homomorphism polynomial, loops are generally prohibited. To eliminate
them, it is sufficient to set the variables associated with loops to zero.

In [171] it is shown that the bound of Theorem 11.5 is best possible in order for constant k.

Tropical (min,+)-analogs of homomorphism polynomials are degenerate for many G, in particular,

for bipartite graphs, which include cycles of even length. For odd k, the tropical version of the

polynomial CWn,k is informative. For k = 3, it coincides with the polynomial of finding the

minimum weight triangle and has complexity Θ(n3), for instance, due to C. Schnorr’s lower bound

from [275]. Following the method of M. Jerrum and M. Snir [135] the lower complexity bound Ω(n3)

may be proved for any constant odd k. Thus, the result of Corollary 11.1 in this case is tight up to

an order.

17It is easy to verify that among connected graphs only trees have width 1.
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Miscellaneous

Orthogonal systems method. Multiplicative complexity of boolean func-
tions /2

The method of decomposition in orthogonal systems of functions (in boolean algebra)
was proposed by E. I. Nechiporuk in [225] and successfully applied to several problems
(minimization of the number of switches in swithing-rectifier circuits, minimization of
the number of negations in circuits over the basis {∨, }). To illustrate the idea, we
consider the problem of minimizing the number of multiplications when computing
boolean functions of n variables by circuits over the Zhegalkin basis B1 = {⊕,∧, 1}.
We denote the corresponding complexity functional by Cµ.

Theorem 12.1 ([225]). Cµ(Pn) . (2 + o(1))2n/2.

I If n is even, we divide the set of variables X into two groups X1, X2 equally.
Represent a function f ∈ Pn as a Zhegalkin polynomial in the first group of variables:

f(X) =
⊕
σ∈Bn/2

Xσ
1 · fσ(X2), Xσ

1 =
∏
σi=1

xi.

First, compute all subfunctions fσ as all possible linear combinations of monomials
of the variables X2. The multiplicative complexity of computing all monomials in
n/2 variables is at most1) 2n/2 by Lemma 3.1. Then, following Horner’s scheme with
respect to variables X1, compute f as

f(X) = x1f1 ⊕ f0 = x1(x2f11 ⊕ f10)⊕ (x2f01 ⊕ f00) = . . . (12.1)

using another 2n/2 − 1 multiplications.
In the case of odd n, the above method requires approximately 2dn/2e + 2bn/2c ≈

2.12 · 2n/2 multiplications. However, the method of decomposition in orthogonal
systems allows us to obtain the same form of asymptotics as for even n.

Divide the set of variables X into three groups X1, X2, Y , where |X1| = |X2| = m.
On the set of monomials of variables Y , we introduce a numbering with two indices,
Y i,j, 0 6 i, j < 2|Y |/2 + 1.

1In fact, it is simply 2n/2 − n/2− 1.
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Set hi(Y ) =
∨
j Y

i,j and gj(Y ) =
∨
i Y

i,j. The introduced set of functions allows

us to express any monomial as Y i,j = hi(Y )gj(Y ) and satisfies the orthogonality
conditions hi(Y )hi′(Y ) = 0 for i 6= i′, and gj(Y )gj′(Y ) = 0 for j 6= j′. Then

f(X) =
⊕

σ,τ∈Bm
Xσ

1 ·Xτ
2 · fσ,τ (Y ) =

⊕
i

hi(Y ) ·

⊕
σ

Xσ
1 ·

⊕
τ,j: Y i,j∈fσ,τ (Y )

Xτ
2 · gj(Y )

 ,
(12.2)

where Y i,j ∈ fσ,τ (Y ) means that the monomial Y i,j appears in the Zhegalkin poly-
nomial of the function fσ,τ (Y ).

Let us estimate the complexity of computations by formula (12.2). To compute
all monomials of the variables X2 and Y and, as a consequence, the functions hi
and gj, 2m + 2|Y | multiplications are sufficient. Another 2m(2|Y |/2 + 1) multiplications
are required to compute all possible products Xτ

2 gj(Y ). Further, the computation of
each of the sums in square brackets (12.2) is performed in the spirit of (12.1) in 2m−1
multiplications, i.e., using (2|Y |/2 +1)(2m−1) multiplications for all sums. It remains
to perform 2|Y |/2 + 1 multiplications by hi(Y ). The required bound is achieved, say,
for m ∼ |Y | ∼ n/3. �

Applying a much more complicated synthesis method — a combination of multi-
level and triangular representations of boolean functions, as well as a number of other
ideas, — Nechiporuk [225] established an asymptotically tight result2) Cµ(Pn) ∼ 2n/2

(a detailed proof is published in [227]).

• In view of the extreme hardness of the asymptotically optimal Nechiporuk method, it is of interest
to search for elementary and at the same time sufficiently economical methods of synthesis. One of
them is presented in Theorem 12.1. A faster method was proposed by S. N. Selezneva in [285]. It
is based on the representation

f(X1, X2, X3, x) =
⊕
σ∈Bm

Xσ
1 ·
⊕
τ∈Bp

Xτ
2 (x · fσ,τ,1(X3) ∨ x · fσ,τ,0(X3)) =

=
⊕
σ∈Bm

Xσ
1 ·
⊕
τ∈Bp

( (xXτ
2 ⊕ fσ,τ,0(X3))(xXτ

2 ⊕ fσ,τ,1(X3))⊕ gσ,τ (X3) ) ,

where |X1| = m, |X2| = p, and gσ,τ = fσ,τ,0 · fσ,τ,1. For a suitable choice of parameters m, p and

odd n, the method has complexity ∼
√

2 · 2n/2. In the case of even n, the estimate from [285] is

∼ (3/2) · 2n/2, but an additional decomposition in orthogonal systems allows us to obtain the same

asymptotic complexity as for odd n.

Tree balancing method. Depth of boolean functions U

Recall that formulae over finite bases, as a rule, admit parallel reconstruction: the
existence of a formula of complexity L implies the existence of a formula of depth
� logL for the same function (see Theorems 4.4 and 4.5). But it turns out that
a wide class of formulae admits almost ideal parallelization: say, with depth close to
log2 L, in the case of binary bases. This property is possessed by formulae in which
operations rarely alternate when moving from inputs to outputs.

2The lower bound is proved elementarily by the cardinality argument.
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Sergey Andreevich
Lozhkin

Moscow University, since 1978

The alternation depth of a path in a circuit or formula is
the number of chains of identical multi-input (two- or more)
operations into which it is decomposed3). The alternation
depth of a circuit or formula is the maximum alternation
depth of a path from input to output.

S. A. Lozhkin [191] observed that formulae of small al-
ternation depth are parallelized almost perfectly.

Theorem 12.2 ([191]). If a function f is implemented by
a formula over the basis B0 of complexity L and alternation
depth h, then DB0(f) 6 dlog2 Le+ h− 1.

I Taking into account the possibility of lowering negations
to the level of inputs, the alternation depth of a formula
over B0 is the maximum number of series of conjunctions or

disjunctions in an input-output path.
We will argue by induction on h. For h = 1 the statement is obvious. Consider

the induction step from h− 1 to h.
Let a formula F have complexity L and alternation depth h. We select in it

the maximal external subformula G consisting of identical operations (gates); let
F1, . . . , Fs be subformulas attached to the inputs of G. Thus, F = F1 ◦ F2 ◦ . . . ◦ Fs
up to the placement of brackets, where ◦ ∈ {∨, ∧} is an operation defining the sub-
formula G. By construction,

∑
Φ(Fi) = L, and the alternation depth of formulae Fi

does not exceed h− 1.
The induction hypothesis allows us to replace each formula Fi by an equivalent

formula F ′i of depth di 6 dlog2 Φ(Fi)e + h − 2. It remains to note (this is the key
point of the proof) that the ◦-sum F ′1 ◦ F ′2 ◦ . . . ◦ F ′s can be computed by a balanced
tree with root vertex depth

d =

⌈
log2

s∑
i=1

2di

⌉
6

⌈
log2

s∑
i=1

2h−1Φ(Fi)

⌉
6 dlog2 Le+ h− 1.

�

A similar statement is true in any basis in which binary operations are associative
and commutative, for example, in B1 or A+.

Corollary 12.1 ([191]). DB0(Pn) 6 n− log2 log n+O(1).

� By analyzing the construction of the formula from Theorem 11.2, it is easy to
verify (taking into account lowering of negations) that the formula has a constant
alternation depth.

• Based on O. B. Lupanov’s construction [204] of formulae of asymptotically optimal complexity
and alternation depth 3, Lozhkin in [191] obtained a bound of Corollary 12.1 in the form DB0(Pn) 6
dn− log2 log2 n+ o(1)e+ 3. This is only slightly weaker than his own record bound (11.5).

3Chains of unary operations are not counted.
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Independently of Lozhkin, H. Hoover, M. Klawe and N. Pippenger [133] proposed a method

for minimizing the depth of formulae when restricting the fan-out of elements. This method turns

out to be dual to Lozhkin’s method (essentially, the same transformation is applied to a reversed

formula), which is explained in detail by S. B. Gashkov in [101].

Gradient method. Depth of circuits for multiple addition 5 U

The exposition would be incomplete without mentioning the gradient method, which
plays a significant role in discrete optimization problems. Unfortunately, the chosen
model (circuits and formulae of unbounded depth) does not allow us to adequately
illustrate the diversity of variations and applications of the method. So, we restrict
ourselves to a single example, another example will be considered below for the model
of bounded-depth circuits, see p. 143.

Let us return to the problem of minimizing the depth of a circuit of compressors
in the multiple addition problem. The method of Theorem 4.3 is optimal in the
asymptotic sense, but the additional constant O(1) hidden in the depth estimate
is very large (the circuit includes several times more compressors than minimally
required).

But what if we simply construct a circuit, sequentially connecting compressors
each time to the minimum possible depth (this is the gradient method)? Will the
constructed circuit be efficient? At least in the case of the most popular compressor
FA3 the answer is affirmative, as shown by the author in [287]. Recall that the
compressor FA3 is characterized by input depths (0, 0, 1) and output depths (2, 3),
and its characteristic polynomial (4.10) has a root λ ≈ 1.2056. An example of
a gradient circuit for summing eight numbers is shown in Fig. 12.1 (compare with
the circuit in Fig. 4.1).

Theorem 12.3. DFA3(n) 6 logλ n+ 4.6.

I Consider a gradient compressor circuit S on n inputs, denote its depth by D. We
consider a compressor to be located at level d if its outputs have depths d+2 and d+3.
For an arbitrary set with repetitions T ⊂ N0, we denote σ(T ) =

∑
t∈T λ

t (the sum
of potentials). Let Sr denote the circuit constituted by compressors of the circuit S
located at levels less than r. By T (Sr) we denote the set (with repetitions) of depths
of outputs of a circuit Sr, in which numbers less than r are replaced by r (the set
contains only numbers r, r + 1, and r + 2). For brevity, we set σ(Sr) = σ(T (Sr)).
Due to the choice of λ,

n = σ(S0) 6 σ(S1) 6 . . . 6 σ(SD−2) = λD + λD−1. (12.3)

If all compressors could be connected without gaps, then the chain (12.3) would
consist entirely of equalities, but this is, of course, impossible. Already at the first
step, a third of the inputs have to be “lowered” to the depth 1. The more such gaps
occur at subsequent depths, the greater the magnitude of differences σ(Sr+1)− σ(Sr),
and the further the sum of the potentials of the intermediate sums deviates from n.
Fortunately, it turns out that level 0 of the circuit S is special: at each of the
subsequent levels, no more than two intermediate sums are lowered.
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Figure 12.1: Gradient circuit of (3, 2)-compressors

Lemma 12.1 ([287]). Let r > 0, and m0(r), m1(r), m2(r) be the number of oc-
curences of r, r + 1, r + 2 in the set T (Sr), respectively. Then

m0(r) 6 2m1(r) + 2, m1(r) 6 3m0(r)/2 + 2m2(r), m2(r) 6 m1(r). (12.4)

� We argue by induction on r. The circuit contains k = bn/3c compressors of level 0,
so

m0(1) = n mod 3, m1(1) = m2(1) = k,

and the inequalities (12.4) hold for r = 1. To prove the induction step from r to
r + 1, consider the two cases. Further, mi denotes mi(r).

In the case m0 6 2m1, k = bm0/2c compressors are placed at level r, so

m0(r + 1) = m1 − k + (m0 mod 2), m1(r + 1) = m2 + k, m2(r + 1) = k.

In the case m0 > 2m1, at level r there are k = b(m0 +m1)/3c compressors, hence,

m0(r + 1) = (m0 +m1) mod 3, m1(r + 1) = m2 + k, m2(r + 1) = k.

It is easy to check that in both cases the validity of inequalities (12.4) for mi(r+1)
automatically follows from the validity of these inequalities for mi.

To estimate the depth of the circuit S, only the first inequality of Lemma 12.1 is
essential. It means that at any level r > 1 the circuit contains min{bm0(r)/2c, m1(r)}
compressors, hence, σ(Sr+1)− σ(Sr) 6 2(λr+1 − λr). Therefore,

λD + λD−1 = σ(SD−2) =
D−3∑
r=1

(σ(Sr+1)− σ(Sr)) + (σ(S1)− σ(S0)) + σ(S0) 6

2(λD−2 − λ) + (λ− 1)(n/3 + 2) + n < 2λD−2 + (λ+ 2)n/3.
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Finally, we obtain λD−2 6 λ+2
3(λ2+λ−2)

n, whence D 6 logλ n+ 4.6. �

It is informative to compare the indicated upper bound with the lower bound
DFA3(n) > logλ n − 3.8, which follows from Lemma 4.1. Note that the complexity
of the gradient circuit is approximately 5mn + O(n) matching the complexity of a
trivial circuit composed of standard adders. The term O(n) here corresponds to the
growth of the length of intermediate sums as the depth increases. The smallness of
this term follows from the fact that the number of compressors decreases from level
to level in geometric progression, while the length increases linearly.

• Reasoning a little more carefully, the author in [287] obtained an upper bound for the depth of the

gradient circuit DFA3 < logλ n−0.8. Together with the refined lower bound DFA3(n) > logλ n−2.7

this means that the gradient method is obviously inferior in depth to a hypothetically optimal

method by no more than one, and for many n it is already provably optimal. The question of the

efficiency of gradient circuits for other types of compressors has apparently not been studied.
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Bounded-depth circuits

Introduction

Bounded-depth circuits are circuits over an infinite basis that include functions with an
unbounded number of arguments1). Such circuits have been intensively studied since
about the 1980s, primarily in the direction of obtaining high lower complexity bounds.
Already from the pioneering works [319, 3, 94] it became clear that the model allows
one to obtain superpolynomial lower bounds for the complexity of specific functions
over complete boolean bases2).

The most popular models of bounded-depth circuits are AC-circuits — circuits
over the basis {

∨
,
∧
, } (unbounded fan-in disjunctions and conjunctions)3). They

generalize circuits over the standard basis B0. It can be assumed that all nega-
tions in an AC-circuit are applied only to the inputs of variables and are not taken
into account in counting the depth. AC[⊕]-circuits are circuits in a wider basis
{
∨
,
∧
,
⊕
, , 1} — a generalization of circuits over the basis B2. There are also stud-

ied circuits that additionally include elements of modular summation, symmetric, and
threshold functions. The complexity of a boolean operator F when implemented by
AC-circuits and, respectively, AC[⊕]-circuits of depth d will be denoted by CACd (F )

and C
AC[⊕]
d (F ). For the complexity of circuits with alternating layers of operations,

for example,
∨∧∨

-circuits4), we use a natural notation like C∨∧∨(F ).

An unbounded fan-in analogue of arithmetic circuits are circuits over the basis
{Σ,Π}, where Σ are linear combinations over a ring R, and Π are products of an
unbounded number of variables. We introduce a notation for the complexity of com-
puting an operator F by such circuits in the form CRΣΠΣ(F ) (an example for depth-3
circuits).

1Sometimes, bounded-depth circuits also mean circuits over finite bases that have a bounded
alternation depth (the number of alternations of an operation in an input-output computation
path).

2Soon, similar results were obtained for the complexity of bounded-depth arithmetic circuits over
finite fields, and more recently in [187] — for circuits over infinite fields.

3The name refers to the fact that such circuits appear in defining complexity classes ACk.
4These are monotone circuits of depth 3 with disjunctors on the first and third layers and con-

junctors on the middle layer.
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The simplest and historically the first5) type of circuits of unbounded fan-in el-
ements are linear (rectifier) circuits. In such circuits, a single addition operation is
used (in some commutative semigroup). Since the number of gates as a measure of
complexity of linear circuits does not make sense, the number of edges in the graph
of a circuit is counted. The complexity of a linear operator with matrix A when
implemented by depth-d linear circuits over the basis {+} is denoted by W+

d (A). The
notation Wd(A) is used for the complexity of universal circuits that correctly compute
a matrix6) A regardless of the choice of semigroup.

The linear circuit model is equivalent to the additive circuit model: an additive
circuit may be transformed into a linear one while maintaining the order of complex-
ity: for an arbitrary m × n matrix A, we have W(A) � L(A) + m + n, where the
notation W(A) refers to the complexity of circuits with unrestricted depth. It is the
depth restriction that distinguishes the linear circuit model.

In more general boolean and arithmetic models, depth-2 circuits represent a de-
generate case corresponding to normal forms (DNF, CNF) or standard notation of
a polynomial. But for linear circuits, nontrivial problems start already at depth 2. In
the boolean case, computing a matrix by a depth-2 circuit is interpreted as construct-
ing a covering of the matrix by rectangles (i.e. all-1 submatrices). The weight of a
rectangle is the sum of the number of rows and columns, the weight of a covering is
the sum of the weights of its rectangles. Then the complexity of computing a boolean
matrix with depth 2 corresponds to the minimal weight of a covering. Coverings as
is correspond to

∨
-circuits, and universal circuits correspond to partitions, i.e., cov-

erings consisting of disjoint rectangles. For more details on the complexity of linear
circuits, see [142].

Below we present several results illustrating general synthesis methods and reflect-
ing the features of the model of bounded-depth circuits, and also consider another
general method, the cut method.

Depth-2 linear circuits for the Sierpiński matrix. Gradient method /2 5

Let us begin with two results on the complexity of computing Sierpiński matrices by
depth-2 linear circuits. The first exploits the idea of halving to construct efficient
universal circuits, and the second involves a fairly general combinatorial version of
the gradient method and produces nearly optimal linear

∨
-circuits.

The sequence of Sierpiński (disjointness) matrices is recursively defined as

S1 = [1], S2 =

[
1 0
1 1

]
, S2n =

[
Sn 0
Sn Sn

]
. (13.1)

Sierpiński matrices are a popular object in combinatorics and complexity theory, for
some of their properties see, e.g., in [142].

The minimal linear circuit is constructed directly by definition (13.1): W(Sn) =
W∨(Sn) = n log2(n/2). The validity of this estimate was proved by S. N. Se-

5Introduced by O. B. Lupanov [200] in 1956.
6As in the case of additive circuits, it is convenient to assume that a linear circuit computes the

matrix itself.
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lezneva [283] and independently by J. Boyar and M. Find [44]. A simple method
for constructing depth-2 circuits is proposed in the work of S. Jukna and the au-
thor [142].

Theorem 13.1 ([142]). W2(Sn) 4 nlog2(
√

2+1) ≺ n1.28.

I The purpose is to present a matrix decomposition into rectangles of small total
weight. Following (13.1), we construct a covering of the matrix S2n from (three
identical) coverings of submatrices Sn. The covering will consist of rectangles with
the ratio of side lengths 1 : 1 (squares) and 1 : 2 (bricks). In each triple of such
rectangles, we merge two along the long side, see Fig. 13.17).

Figure 13.1: Constructing coverings for Sierpiński matrices

Thus, an u× u square of a covering of Sn generates the same-size square and an
u× 2u brick in the covering of S2n. A v × 2v brick of a covering of Sn generates the
same-size brick and a 2v×2v square in the covering of S2n. Let un and vn denote the
sum of the lengths of the sides of the squares and the sum of the lengths of the short
sides of the bricks from the covering of Sn. Starting from u2 = v2 = 1, for n = 2r we
obtain[

u2n

v2n

]
=

[
1 2
1 1

]
·
[
un
vn

]
=

[
1 2
1 1

]r
·
[
1
1

]
= P ·

[
1 +
√

2 0

0 1−
√

2

]r
· P−1 ·

[
1
1

]
,

where P is some invertible 2 × 2 matrix, since the matrix

[
1 2
1 1

]
has eigenvalues

1±
√

2. As a consequence, un + vn � nlog2(
√

2+1). �

• In [9], a very nontrivial generalization of the method of Theorem 13.1 was proposed, which

allowed to reduce the complexity bound to W2(Sn) ≺ n1.26; see also [303], where a somewhat more

accurate estimate was obtained.

The authors of [63] observed that in the model of depth-2 linear
∨

-circuits, the
upper bound of Theorem 13.1 can be improved via the gradient method.

Consider a family F of subsets of a finite set X. By definition, a family F
contains a covering of size t if X =

⋃t
i=1 Fi for some Fi ∈ F (i.e., all elements of X

7Of course, the rectangles do not necessarily consist of adjacent rows and columns.
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are covered by some t sets from F). The following result was principally proved by
A. A. Sapozhenko in [270], but is better known as the Lovász—Stein lemma. It is
more convenient for us to use the version of S. Stein [311], see also [138].

Lemma 13.1 ([311]). If |F | 6 s for any F ∈ F , and any element x ∈ X belongs to
at least r sets in F , then the family F contains a covering of size t 6 (1 + ln s)|F|/r.

� Consider the gradient method of constructing a covering. At each successive step,
we add to the covering a set F ∈ F that covers the maximum number of elements
that have not yet been covered.

First, set C0 = ∅ and X0 = X. If at i-th step a set Fi is chosen, then we set
Ci = Ci−1 ∪{Fi} and Xi = Xi−1 \Fi. The process ends at step t under the condition
Xt = ∅. Then Ct is the desired covering.

Note that Xj =
⋃t
i=j+1(Fi ∩Xi−1). By assumption, the number of new elements

covered at each step does not increase:

s > |F1 ∩X0| > . . . > |Fi ∩Xi−1| > . . .

Denote by tk the number of sets Fi ∩Xi−1 of cardinality k. Then t =
∑s

k=1 tk. We
introduce the notation wk = |Xjk |, where jk = ts + ts−1 + . . . + tk and formally
js+1 = 0. Since none of the sets F ∈ F contains more than k − 1 elements from Xjk ,

rwk 6 (k − 1)|F|. (13.2)

Since tk = (wk+1 − wk)/k, applying (13.2), we finally obtain

t =
s∑

k=1

tk =
s∑

k=1

wk+1 − wk
k

=
ws+1

s
+

s∑
k=2

wk
(k − 1)k

− w1 6

|F|
r

(
1 +

1

2
+ . . .+

1

s

)
6
|F|
r

(1 + ln s).

The last transition relies on the well-known relation between harmonic numbers and
natural logarithms8).

The lemma shows that the gradient method guarantees a result not too much
weaker than an optimistic estimate |F|/r.

Further, we prefer to use the definition of the Sierpiński matrix as a disjointness
matrix. The rows and columns of the n × n matrix Sn, n = 2k, are indexed by all
possible subsets of the set X of k elements. Set Sn[A,B] = (A ∩ B = ∅). It is easy
to verify that this definition is equivalent to (13.1).

Theorem 13.2 ([63]). W∨2 (Sn) 4 nlog2(9/4) log7/2 n ≺ n1.17.

I Split the matrix Sn into (k+1)2 submatrices Sa,bn , 0 6 a, b 6 k, where Sa,bn is formed
by rows labeled by sets of cardinality a, and columns labeled by sets of cardinality b.

8Namely, 1 + 1
2 + . . .+ 1

s 6 ln s+ γ + 1
2s , where γ = 0.577 . . . is Euler’s constant.
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We construct coverings of matrices Sa,bn independently. Next, we assume a + b 6 k,
since in other cases the submatrices are entirely zero.

Consider the family F = {FR} of rectangles in Sa,bn formed by rows A ⊂ R and
columns B ⊂ R, where |R| = (a− b+ k)/2 and R = X \R.

Any rectangle FR has size C a
(a−b+k)/2 × C b

(b−a+k)/2, and each element of the ma-

trix Sa,bn is covered by r = C
(k−a−b)/2
k−a−b rectangles from F . Moreover, |F| = C

(a−b+k)/2
k .

Then, according to Lemma 13.1,

t 4 ln
(
C a

(a−b+k)/2 · C b
(b−a+k)/2

)
· |F|/r 4 k3/2 · C(a−b+k)/2

k · 2a+b−k

rectangles form a covering of the matrix Sa,bn . Thus, for a > b,

W∨2 (Sa,bn ) 4 k3/2 · C(a−b+k)/2
k · 2a+b−k · C a

(a−b+k)/2 = k3/2 · 2−2u · Cu
k · C a

k−u, (13.3)

where u = (k − a− b)/2.
Let us remind a well-known relation Cm

n 6 2nH(m/n), where H(x) = −x log2 x −
(1−x) log2(1−x) is the binary entropy function, defined on the segment x ∈ [0, 1]9).
After introducing the notation α = u/k, estimate (13.3) continues as

W∨2 (Sa,bn ) 4 k3/2 · 2(H(α)−2α)k · C(k−u)/2
k−u 4 k3/2 · 2(1+H(α)−3α)k.

It is easy to check that the function H(x) − 3x takes the maximum value log2(9/8)
at x = 1/9. �

• The upper bound of Theorem 13.2 is extremely close to the lower bound W∨2 (Sn) � n1.16

from [142]. Moreover, the methods of proof of both bounds allow to establish the complexity as

W∨2 (Sn) ≈ nα up to a factor of (log n)O(1), where the exponent α is defined as the solution to the

problem of finding the extremum of a certain function [63].

⊕∧⊕
-circuits for boolean functions ·∵ c

The path to fast computation often lies through constructing economical coverings
(for example, of a boolean cube). But in the model of bounded-depth circuits, due to
its inherent parallelism, this happens much more often. As an example, consider the
problem of synthesizing

⊕∧⊕
-circuits solved by S. N. Selezneva [286] in the sense of

determining the order of complexity of the class of boolean functions of n variables.
The lower bound Ω(2n/n2) is established by a simple cardinality argument [284]. The
proof of the upper bound involves the construction of a covering of a boolean cube
by fragments of radius-2 spheres.

Recall that a unit sphere centered at α in a boolean cube is the set of vectors
that differ from α exactly at one position. Those of the vectors that are obtained by
replacing 0 with 1 form a positive hemisphere, the rest form a negative. As usual, a
family T of subsets Q ⊂ Bn is called a covering of a (sub)set S ⊂ Bn if S ⊂

⋃
Q∈T Q.

J. Cooper, R. Ellis, and A. Kahng [71] constructed coverings of a boolean cube
by hemispheres of order-optimal cardinality. Let Bn+ (respectively Bn−) denote the
boolean cube Bn excluding all-0 (all-1) vector.

9At the ends of the segment, by continuity, H(0) = H(1) = 0.
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Lemma 13.2 ([71]). There exists a covering Tn of the boolean cube Bn+ by positive
hemispheres of cardinality |Tn| � 2n/n.

� First, we establish the existence of a partial covering T ⊂ Bn of the boolean cube
with slightly worse characteristics. Denote by T the set of points not covered by
a partial covering T . It is convenient to introduce a special measure, the δ-size of
a partial covering: |T |δ = |T |+ δ|T | for an arbitrary δ > 1/n.

I. Let us prove the existence of a partial covering T for which

|T |δ 6 (2 ln(δn) + 1)2n/n. (13.4)

We define a random set of points T0 by the condition: the probability that a point
of the j-th layer of the cube belongs to T0 is pj = min{ln(δn)/(j + 1), 1}. Consider
a covering T consisting of hemispheres with centers in T0.

By construction, all points of the ln(δn) lower layers of the cube, except for zero
point, are covered by the covering T . For j+ 1 > ln(δn), the probability that a point
of the j-th layer of the cube does not belong to any of the hemispheres is estimated
as (1− pj−1)j 6 1/(δn) due to the inequality (1− x)1/x 6 1/e valid for x < 1. Then
for the mathematical expectation of the δ-size of the covering, we have

E[|T |δ] = E[|T |] + δE[|T |] 6
n∑
j=0

pjC
j
n + δ 2n

1

δn
6

ln(δn)

n+ 1
·

n∑
j=0

Cj+1
n+1 +

2n

n
6 (2 ln(δn) + 1)

2n

n
.

II. Note that if T1 is a covering of the cube Bn1
+ , and T2 is a partial covering of

the cube Bn2
+ , then the set T14T2 := (Bn1 × T2) ∪ (T1 × T2) is a covering of the cube

Bn1+n2
+ .

Guided by this rule, we construct inductively a covering of the cube Bn+ of car-
dinality 6 b2n/n, where b > 1 is a suitable constant. The induction base n = 1 is
trivially satisfied. We prove the induction step from n− 1 to n.

Let n1 = bn/2c and n2 = dn/2e. Consider the covering T14T2, where T1 is
a covering of the cube Bn1

+ that exists by the induction hypothesis, and T2 is a partial
covering of the cube Bn2

+ that satisfies (13.4) for δ = b/n1. Then

|T14T2| = 2n1|T2|+ |T1||T2| 6 2n1|T2|δ 6 (2 ln(δn2) + 1)
2n

n2

6 2(2 ln(2b) + 1)
2n

n
.

When choosing b = 16, we obtain 2(2 ln(2b) + 1) < b, hence, the induction step is
proved.

Let S+(α) and S−(α) denote the positive and negative hemispheres of radius 1
centered at α, respectively.
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Let t = bn/2c. Represent a boolean cube as Bn = Bt ×
Bn−t. For any vector α ∈ Bn, write α = (α0, α1), where
α0 ∈ Bt and α1 ∈ Bn−t. Denote Q(α) = S−(α0)× S+(α1);
call this set the quadrant centered at α ∈ Bn (essentially,
it is a quarter of a radius-2 sphere). From Lemma 13.2 it
follows

Corollary 13.1. There exists a covering Tn of the boolean
cube Bn± = Bt− × Bn−t+ by quadrants of cardinality |Tn| �
2n/n2.

� The desired covering is obtained as the direct product
of a covering of the cube Bt− by negative hemispheres and
a covering of the cube Bn−t+ by positive hemispheres.

Theorem 13.3 ([286]). C⊕∧⊕(Pn) 4 2n/n2.

I Represent an arbitrary boolean function f(X, Y ), |X| = t, |Y | = n− t, basing on
its Zhegalkin polynomial as

f(X, Y ) =
⊕
σ∈Bt

⊕
τ∈Bn−t

fσ,τX
σY τ , Xσ =

∏
σi=1

xi, Y τ =
∏
τi=1

yi.

Let f ∗ be the part of the function f consisting of monomials whose vector exponents
belong to Bn±: f ∗(X, Y ) =

⊕
σ∈Bt−,τ∈B

n−t
+

fσ,τX
σY τ .

Consider a covering T of the boolean cube Bn± by quadrants guaranteed by Corol-
lary 13.1. Let {α1, . . . , α|T |} be the set of quadrant centers numbered in order of
decreasing weight, and, if weights are equal, in order of decreasing weight of the first
part α0

i .
Next, we perform |T | steps of transforming the representation of the function f ∗.

After each j-th step, we have f ∗ = Pj ⊕ Rj, where Pj is the sum of 2j multi-affine
functions10), and the “remainder” Rj has the form

Rj =
⊕

γ=(γ0,γ1)∈Bn±\
⋃j
i=1Q(αj)

cj,γX
γ0Y γ1 . (13.5)

(Note that for all sets γ over which the summation is performed, |γ| 6 |αj| holds.)
Initially set P0 = 0 and R0 = f ∗.

The next j-th step is as follows. Starting from the representation f ∗ = Pj−1⊕Rj−1,
we select from the polynomial Rj−1 monomials whose vector exponents belong to
Q(αj), and set

R′j =
⊕

γ∈Q(αj)

cj−1,γX
γ0Y γ1 .

10Multi-affine functions are products of affine boolean functions, i.e. exactly those functions that
admit a

∧⊕
-representation.
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For any σ ∈ S−(α0
j ) define a linear function

gσ(Y ) =
⊕

τ∈S+(α1
j )

cj−1,(σ,τ)Y
τ⊕α1

j .

Then we obtain

R′j = Y α1
j

⊕
σ∈S−(α0

j )

Xσgσ(Y ).

Set

Aj = Xα0
jY α1

j ⊕ Y α1
j ·

∏
σ∈S−(α0

j )

(Xσ⊕α0
j ⊕ gσ(Y )),

Pj = Pj−1 ⊕ Aj
Rj = Rj−1 ⊕ Aj

. (13.6)

By construction, Aj = R′j ⊕
⊕

γ X
γ0Y γ1 for some set of vectors γ satisfying the con-

ditions |γ| 6 |αj| and |γ0| 6 |α0
j | − 2. As a consequence, γ /∈

⋃j
i=1Q(αj). Therefore,

Pj is a sum of 2j multi-affine functions, and Rj has form (13.5).

After step |T | we obtain f ∗ = P|T |. By adding to a
⊕∧⊕

-representation of f ∗ the
monomials of f ⊕ f ∗ (there are at most 2t + 2n−t of them), we obtain a

⊕∧⊕
-circuit

for f containing 6 2|T |+ 2t + 2n−t � 2n/n2 multiplication gates on the second layer
and 6 t2n−t summation gates on the first layer by (13.6). �

• The order of layers in bounder-depth circuits matters. In particular, the complexity of
∧⊕∧

-
circuits for n-variable functions cannot be estimated better than 2n (example: disjunction of n
variables).

Starting from depth 4, the complexity of circuits over the basis {
∧
,
⊕
, 1} is of order 2n/2 (as

is easy to verify). In the model of AC-circuits, due to the duality of the operations ∧ and ∨, the

effect of the exceptionality of depth 3 does not take place: the asymptotics 2 ·2n/2 of the complexity

of the class of n-variable functions is achieved immediately on circuits of depth 3, as shown by the

author in [299].

Depth-4 AC[⊕]-circuits for the majority function P ε

It is known that minimal AC-circuits of depth d for the majority function of n vari-
ables have complexity 2n

1/(d−1)±o(1)
: the lower bound is proved by J. H̊astad [122], and

the upper bound is achieved on simple monotone circuits constructed by R. Bop-
pana [40]. Recently, I. Oliveira, R. Santhanam, and S. Srinivasan [232] discovered
that the AC[⊕]-circuit model, although not improving the result in depth 3, already
demonstrates (somewhat unexpectedly) higher computational power on circuits of
depth 4. Before we proceed to the presentation of the method [232], which combines
two probabilistic arguments with the idea of approximate computations, let us recall
for comparison the construction of optimal depth-3 circuits.

Theorem 13.4 ([40]). C∨∧∨(majn) 4
√
n · 2

√
n logn.
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I Divide the set of variables into r groups X1, . . . , Xr of the same size |Xi| = m =
dn/re. We can write

majn(X) =
∨

k1+ ...+ kr=n/2

T k1m (X1) · . . . · T krm (Xr). (13.7)

The circuit is constructed by formula (13.7), in which the threshold functions T km are
expressed via CNF. At the first layer of the

∨∧∨
-circuit, all possible disjunctions

of variables in each of the groups Xi are computed: a total of 6 r2m pieces. At
the second layer, internal products in (13.7) are computed — there are at most
Cr−1
n/2+r−1 < nr of them. The required estimate is obtained for r ≈

√
n/ log n and

m ≈
√
n log n. �

Theorem 13.5 ([232]). C
AC[⊕]
4 (majn) 6 2n

1/4+o(1)
.

Srikanth Srinivasan
Indian Institute of Technology,

Mumbai, 2012 to 2020

I The synthesis method combines ideas familiar from the
formula implementation of the majority function: calculat-
ing arithmetic sums of variables (for this, ⊕ operations are
used) and constructing monotone approximations. Only in
contrast to Valiant’s method [326] the increase in the ac-
curacy of the approximation is achieved not by sequential,
but by parallel steps.

Due to

majn =
∨

k>n/2

Ek
n, Ek

n = T kn · T k+1
n , (13.8)

the computation of the function majn is reduced to the com-
putation of elementary symmetric functions Ek

n by depth-4
circuits with an output disjunction element. It is sufficient to describe a circuit for11)

E
n/2
n .

I. First, we construct a monotone
∧∨∧

-circuit that approximately computes the
function majm. For convenience, we assume that m is even. The following result is
essentially due to K. Amano [12].

Lemma 13.3 ([232]). Let 0 < δ 6 1/(4 lnm) and m be sufficiently large. For some
probability distribution ∆ on the set of

∧∨∧
-formulae of m variables of complexity

2
√

logm/δ, a random formula G(X) ∈ ∆ satisfies the following conditions:
(i) For any input σ ∈ Bm of weight 6 (1/2− δ)m, we have G(σ) = 0;
(ii) For any input σ ∈ Bm of weight m/2, we have P(G(σ) = 1) > 1/2.

� We define a sequence of distributions ∆k of depth-k formulae, parameterized by
numbers lk ∈ N. On the set of variables we introduce a uniform distribution ∆0: for
G ∈ ∆0 we set P(G ≡ xi) = 1/m. The distribution ∆k contains formulae G1◦. . .◦Glk ,
where Gi are randomly chosen from ∆k−1, and ◦ = ∧ for odd k and ◦ = ∨ for even k.

11Any function Ekn is a subfunction of the function En2n.
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Let |σ| = m/2. Then, since 1− x 6 e−x for x ∈ R,

p1 = P(G(σ) = 1 | G ∈ ∆1) = 2−l1 ,

p2 = P(G(σ) = 0 | G ∈ ∆2) = (1− p1)l2 6 e−l2p1 ,

p3 = P(G(σ) = 0 | G ∈ ∆3) 6 l3p2.

Now let |σ| 6 (1/2− δ)m. Under the assumption δl1 6 1/2,

q1 = P(G(σ) = 1 | G ∈ ∆1) 6 ((1− 2δ)/2)l1 6 (1− δl1)p1,

q2 = P(G(σ) = 0 | G ∈ ∆2) = (1− q1)l2 > e−l2(q1+q21),

q3 = P(G(σ) = 1 | G ∈ ∆3) = (1− q2)l3 6 e−q2l3 .

When estimating q1, we used the inequality (1−x)a 6 1−ax/2 valid as far as ax 6 1,
and when estimating q2, we used the inequality 1−x > e−x−x

2
valid for 0 6 x 6 1/2.

Let12) l1 =
√

lnm/δ, l2 = cl12l1 , l3 = ecl1−2, where c ∈ R. In this case, δl1 =√
δ lnm 6 1/2.

Then p2 6 e−cl1 and p3 6 e−2 < 1/4. Further,

q2 > e−l2(q1+q21) > e−l2p1(1−δl1+(1−δl1)2p1) > e−cl1(1+p1/4)+cδl21 > mce−cl1(1+p1/4),

q3 6 e−q2l3 6 e−m
ce−cl1p1/4−2

< e−m
ce−c/4−2

,

since x2−x < 1 when x > 1. If we choose c = 2, then q3 6 e−m
2/13.

Now the probability that G(σ) = 1 for some vector σ of weight 6 (1/2− δ)m can
be estimated as q4 < 2mq3 6 2me−m

2/13. This value does not exceed 1/4 for m > 11.
We define the distribution ∆ as the restriction of ∆3 to the set of formulae for

which condition (i) is satisfied. Then for any vector σ ∈ Bm of weight m/2 we obtain
P(G(σ) = 1 | G ∈ ∆) > 1− p3 − q4 > 1/2.

II. Now the function E
m/2
m (X) can be calculated approximately as

Ẽ = Ψm(X) ·Ψ′m(X) ·MODs,r
m (X),

where r = m/2 mod s, Ψm,Ψ
′
m are random functions implemented by circuits from

Lemma 13.3, and X is the vector of negations of variables. Under the condition
s > δm, the approximating (random) function Ẽ(X) is 0 outside the middle layer of
the boolean cube Bm, and at any point of the middle layer it is 1 with probability
> 1/4. In the case s = 2k, the function MODs,r

m has a simple representation as
a Zhegalkin polynomial.

Lemma 13.4. For n > 2k and any r, we have C⊕∧(MOD2k,r
n ) 6 n2k .

� Let XS =
∏

i∈S xi. Note that C2k−1
n is odd only for n ≡ −1 mod 2k. As a conse-

quence, MOD2k,−1
n (X) =

⊕
|S|=2k−1X

S. Then an arbitrary function MOD2k,r
n (X) can

be represented as MOD2k,−1
n+t (X, 1t), where 1t is the all-1 vector of length t = 2k−r−1.

12We ignore rounding in the following (rather rough) calculations.
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A polynomial of degree 2k − 1 expressing the function definitely contains no more
than C2k−1

n + C2k−2
n + . . .+ C0

n < n2k monomials.

(If we stop right here and implement the function Em
2m as a disjunction of a suitable

number of independent random functions Ẽ, then with an appropriate choice of
parameters δ and s we end with a circuit of complexity 2m

1/3+o(1)
. But such a result

can be obtained much more simply by generalizing the method of Theorem 13.4 even
without using ⊕-operations [40].)

III. Perhaps the key idea of the method [232] is based on the observation that if
a set consisting of an equal number of elements of two types is randomly divided into
subsets of even size, then each of the subsets will also contain an equal number of
elements of both types with a fairly high probability.

Let X̃1, . . . , X̃r be a random partition of a set of n variables into groups of m vari-
ables13). Consider a random function Φ =

∏r
i=1 Ẽi(X̃i), in which the partition and

all inner functions Ẽi are chosen independently; the functions Ẽi have the form Ẽ.
By construction, Φ 6 E

n/2
n . In this case

p = P(Φ(σ) = 1 | |σ| = n/2) >
1

22r
· (C

m/2
m )r

C
n/2
n

>
1

4r
· (2m/m)r

2n
=

1

(4m)r
.

Then the disjunction
∨n/p
i=1 Φi of independent random functions of type Φ takes value 0

at least on one set of weight n/2 with probability 6 C
n/2
n (1 − p)n/p < 2ne−n< 1.

Therefore, some depth-4 formula of the form
∨n/p
i=1 Φi computes the function E

n/2
n .

After choosing parameters r, s � 4
√
n/ log n, δ = s/m, the complexity of the

constructed circuit is estimated as (n/p)r
(
ms + 2

√
logm/δ

)
� 2

4
√
n log3 n. �

• For AC[⊕]-circuits of arbitrary depth d, the authors [232] obtained bounds

2n
1/(2d−4)−o(1) 6 C

AC[⊕]
d (majn) 6 2n

2/(3d−12)+o(1).

As noted above, for d = 3, 4 the lower bound is tight; from the proof [232] follows a slightly better

upper bound, which strengthens the standard estimate for the complexity of AC-circuits [40] for

the remaining d > 5.

Cut method. Linear circuits for Sylvester matrices //

The cut method is used in parallel computation models, which include bounded-depth
circuits. The idea is to make a cut (one or more) in an original, generally speaking,
non-parallel circuit, guided by an appropriate rule, and then perform parallel recon-
struction of the subcircuits before and after the cut independently.

Next, we will consider two examples of the application of this method, a simple
and a more complex one.

The boolean version of the Sylvester matrix is defined as

H1 = [0], H2 =

[
0 0
0 1

]
, H2n =

[
Hn Hn

Hn Hn

]
. (13.9)

13For simplicity, we assume that n is divisible by 2r.
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This matrix is the binary analogue of the DFT matrix and has many remarkable
properties (see, e.g., [142]).

The recursive definition of the Sylvester matrix is consistent with the modified
definition of the Kronecker product of boolean matricesA⊗B, in which the matricesB
are substituted into the positions of zeros of the matrix A, and the matrices B are
substituted into the positions of ones. Then

Hn1n2 = Hn1⊗Hn2 , Hn1n2 = Hn1⊗Hn2 . (13.10)

The standard linear circuit for the matrix Hn has complexity � n log n and is
constructed directly by definition (13.9). The circuit consists of log2 n layers: at the
next layer, pairs of matrices H2m, H2m for groups of 2m variables are assembled from
matrices of size m×m for the subgroups of m variables.

Theorem 13.6 ([142]). For d > 2 and n = 2k, we have Wd(Hn) 4 dn1+1/d.

I In fact, we will construct a circuit for the pair of matrices Hn, Hn. To do this,
take the standard circuit and split its layers into d groups of approximately equal
size. Then glue the layers inside each group, i.e., replace them with a trivial depth-1
circuit. For d = 1 we have W1(Hn, Hn) = |Hn|+ |Hn| = n2.

In view of (13.10),

Wd+1(Hn1n2 , Hn1n2) 6 2n2
1n2 + n1Wd(Hn2 , Hn2).

Hence, for n = n1 · . . . · nd, where ni ∈ {2bk/dc, 2dk/de}, we obtain

Wd(Hn, Hn) 6 2n(n1 + . . .+ nd) = 2n[(1 + x)2−x]d2k/d, x =
k

d
−
⌊
k

d

⌋
. (13.11)

The function in square brackets on the interval [0, 1] takes its maximum value
2/(e ln 2) ≈ 1.06 at x = log2(e/2). �

• The result of the theorem is order-tight, since the lower bound proved in [142] is Wd(Hn) >

W∨d (Hn) & dn(n/2)1/d. If we note that no additional matrix needs to be computed at the last layer,

the bound of the theorem can be established in a more accurate form Wd(Hn) 6 2(d − 1)n1+1/d,

using the relation Wd(Hn) 6 n(n1 + 2n2 + . . .+ 2nd−1 + nd) instead of (13.11).

Reconstruction of arithmetic circuits into ΣΠΣΠ-circuits //

In [1] M. Agrawal and V. Vinay obtained in some way an unexpected and resonant
result: it turns out that arithmetic circuits over sufficiently general rings can be
modeled by arithmetic circuits of depth 4 and of slightly greater complexity. The
complexity bound was subsequently refined and took its final form after the work of
S. Tavenas [318].
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The idea of the method is very simple: a circuit of
depth 4 is constructed by cutting the original circuit ap-
proximately in half, and each half is reduced to depth 2. As
a result, a polynomial is written as a composition of poly-
nomials. Essentially, the task is only to select a suitable cut
and carefully estimate the complexity of the new circuit.

The following statements are formulated for rings of
characteristic 0: actually, it is required that the basic ring R
satisfy the condition deg(fg) = deg f + deg g for any poly-
nomials f, g ∈ R[x]. An arithmetic circuit is called homo-
geneous if only homogeneous polynomials are computed at
the outputs of its elements.

Lemma 13.5 ([314]). Let R be a ring of characteristic 0.
If a polynomial f ∈ R[X] of degree d is computed by an

arithmetic circuit with s nonscalar multiplication elements, then all its homogeneous
components can be computed by a homogeneous arithmetic circuit with sd 2 nonscalar
multiplication elements.

� Split any polynomial obtained in the process of computations into homogeneous
components of degree 6 d (components of higher degrees are not required). Replace
the multiplications of the initial circuit with multiplications of homogeneous compo-
nents of degree from 1 to d−1. So we obtain a circuit that computes all homogeneous
components of the polynomial f .

The following lemma describes the transition from a usual (homogeneous) arith-
metic circuit to a ΣΠΣΠ-circuit. The proof is carried out by cutting the original
circuit in half: the cut line passes through the elements in which the degrees of the
intermediate polynomials overcome a given threshold h. The reasoning scheme is
close to [327]. By mon f we denote the set of monomials of a polynomial f .

Lemma 13.6. Let a (homogeneous) polynomial f ∈ R[x1, . . . , xn] of degree d be
computed by a homogeneous arithmetic circuit S with s multiplication elements, where
R is a ring of characteristic 0. Then for any h 6 d it can be represented as

f(x1, . . . , xn) = p(q1, . . . , qr), p ∈ R[y1, . . . , yr], qj ∈ R[x1, . . . , xn], (13.12)

where deg qj 6 h, deg p < 6d/h, |mon p| 6 sdeg p, and r 6 s2 + n.

� We classify the edges of the circuit S that are inputs to the multiplication ele-
ments. An incoming edge that delivers a factor of higher degree to the element of
multiplication is called strong, another edge is called weak. In the case of equality
of the degrees of the polynomials being multiplied, we appoint the strong and weak
edges in a pair arbitrarily. A directed path connecting two vertices in a circuit is
called legal if it does not contain weak edges.

Denote by g(v) the polynomial evaluated at a vertex v ∈ S. For a multiplication
element v, let g(v) = g1(v) · g2(v), where g1(v) is the factor coming along the strong
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edge, g2(v) — along the weak edge. For an addition element v, let g1(v) = g(v) and
g2(v) = 1. For a legal path ρ = (v1, . . . , vl), let g(ρ) = g2(v2) · . . . · g2(vl). In the case
l = 1, we formally set g(ρ) = 1. Finally, we define

g(v, w) =
∑

ρ=(v,...,w)

g(ρ),

where the summation is over all legal paths from v to w; if there are no such paths,
we set g(v, w) = 0.

Let Vt = {v ∈ S | deg g(v) > t > deg g1(v)} be the set of multiplication elements
in which the degree of polynomials being computed first overcomes a threshold t.
Obviously, the set Vt is an antichain. Due to the homogeneity of the circuit, any its
input-output path passes through an element from Vt (of course, if t 6 d).

Claim 13.1.
(i) Let deg g(w) > t. Then g(w) =

∑
v∈Vt g(v) · g(v, w).

(ii) Let deg g(u,w) > t− deg g(u) > 0. Then g(u,w) =
∑

v∈Vt g(u, v) · g(v, w).

� The proof of (i) is carried out by induction. We will sequentially examine the
vertices of the circuit, starting from the layer Vt, according to the order of calcula-
tions14).

Base of induction: if w ∈ Vt, then there are no other vertices in Vt preceding w,
so the equality being verified is the identity g(w) = g(w) · g(w,w).

Otherwise, if w is a multiplication element, then for the vertex w1 preceding w
along a strong edge, deg g(w1) > t holds. Therefore, by the induction hypothesis,
g(w1) =

∑
v∈Vt g(v) · g(v, w1). Since all legal paths to w pass through w1, we have

g(v, w) = g(v, w1) · g2(w). So, we obtain

g(w) = g(w1) · g2(w) =
∑
v∈Vt

g(v) · g(v, w1) · g2(w) =
∑
v∈Vt

g(v) · g(v, w).

If w is an addition element, and it is preceded by elements w1, w2, then trivially

g(w) = g(w1) + g(w2) =
∑
v∈Vt

g(v) · (g(v, w1) + g(v, w2)) =
∑
v∈Vt

g(v) · g(v, w).

The proof of (ii) is completely analogous. Essentially, it suffices to formally put
g(v) := g(u, v).

To represent polynomials g(v) and g(u,w), we employ the formulas provided by
Claim 13.1:

g(w) =
∑
v∈Vt

g1(v) · g2(v) · g(v, w), (13.13)

g(u,w) =
∑
v∈Vt

g(u, v′) · g2(v) · g(v, w), (13.14)

14We mean an easily verifiable fact that on the set of vertices of a directed acyclic graph, one
can introduce a natural numbering by consecutive natural numbers, in which any edge goes from
a vertex with a lower number to a vertex with a higher number.
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where v′ precedes v along a strong edge. In formula (13.13) we choose t =
(deg g(w))/2, then the degrees of all factors in it do not exceed t. In formula (13.14) we
choose t = deg g(u) + (deg g(u,w))/2 (hence, u /∈ Vt), then deg g(u, v′), deg g(v, w) 6
(deg g(u,w))/2.

Now we describe the transformation of the circuit to form (13.12). Sequentially,
in descending order of degrees, we express all polynomials g(v) and g(u,w) according
to rules (13.13), (13.14) up to polynomials of degree 6 h, which we consider as formal
variables y1, . . . , yr. By construction, r 6 s + C2

s + n 6 s2 + n. Denote by deg∗ the
degree of a polynomial g(v) or g(u,w) as a polynomial of variables yi.

Claim 13.2.
(i) If d′ = deg g(v) > h, then deg∗ g(v) 6 6bd′/hc − 3.
(ii) If d′ = deg g(u,w) > h, then deg∗ g(u,w) 6 6bd′/hc − 1.

� Inequalities (i), (ii) are proved jointly by induction on d′, relying
on (13.13), (13.14). The induction base d′ 6 4h is verified directly.

In view of the simple inequality ba + bc > bac + bbc, it is only necessary to deal
with situations when factors of degree 6 h occur in formulas (13.13), (13.14).

Note that for d′ > 4h at most one factor in formula (13.13) and at most two
factors (if two, then the leftmost and the rightmost ones) in formula (13.14) have
degrees 6 h. The induction step immediately follows from this.

Claim 13.3. For g(y1, . . . , yr) ∈ {g(v), g(u, v)}, we have |mon g| 6 sdeg∗ g−1.

� Trivial proof by induction. For deg∗ g = 1 the statement is obvious. The induction
step is provided by rules (13.13), (13.14), since by the choice of the threshold t at
least two factors in each internal product differ from 1.

Claims 13.2 and 13.3 provide the required bounds on deg p and |mon p|. The
lemma is proved.

• The number of monomials in Claim 13.3 can be estimated more accurately as s3bd′/hc−1, where

d′ = deg g(x1, . . . , xn) > h (the proof is similar to that of Claim 13.2). Then the conclusion of

Lemma 13.6 can be refined to |mon p| 6 s3d/h.

Theorem 13.7 ([318]). Let R be a ring of characteristic 0. If a polynomial
f ∈ R[x1, . . . , xn] of degree d has multiplicative complexity s, then CRΣΠΣΠ(f) =

2
O
(√

d log(sd) logn
)
.

I In the proof we use the simple inequality Ck
n+k 6 (k + 1)nk.

Consider the case of a homogeneous polynomial f . We apply Lemma 13.6 to the

circuit transformed via Lemma 13.5 with the choice h ≈
√

d log(sd)
log(3n)

. Note that this

ensures that h 6 d, since it is known that sd 6 dCd
n+d 6 d(d+ 1)nd 6 (3n)d.

The circuit constructed according to formula (13.12) has at most Ch
n+h 6

(h+ 1)nh = 2
O
(√

d log(sd) logn
)

elements on the first layer (all possible monomials of
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degree 6 h of variables xi), at most s2d4 + n = 2O(log(sd)) elements on the second

layer, and at most (sd2)6d/h = 2
O
(√

d log(sd) logn
)

elements on the third layer.
When implementing an arbitrary polynomial, just combine the circuits that cal-

culate its homogeneous components (by the final addition element). �

Note that the transformation to depth-4 circuits is performed by rebuilding the
circuit topology, so the result of Theorem 13.7 is valid for computations in rings R
of a fairly general form, even, for example, for circuits over the tropical semiring
(R,min,+).

Theorem 13.7 shows that if the complexity s of a polynomial is not very large,
then its complexity in the model of depth-4 circuits is not too large either. For
example, if s = 2o(d logn), then the depth-4 complexity will also be 2o(d logn). Various
consequences of this result are provided in [1, 115, 318]. One of the most interesting is
record-breaking simple circuits for the determinant of an n×n matrix. Recall that the
ordinary complexity of computing the determinant is polynomial, see Theorem 9.4.

Corollary 13.2 ([318]). The determinant of an n× n matrix over a ring of charac-
teristic 0 can be computed by a ΣΠΣΠ-circuit of complexity 2O(

√
n·logn).

It was not possible to construct such circuits in any other way. Before the works [1,
115] appeared, even circuits of bounded depth and complexity 2o(n) were not known
for the determinant.

Reconstruction of arithmetic circuits into ΣΠΣ-circuits

The results of the previous section received a further development, and this time
it was truly unexpected. A group of Indian mathematicians [115] have managed
to reconstruct depth-4 circuits into depth-3 circuits with virtually no change in the
complexity estimate if the calculations are performed over the fields Q,R,C. The
transformation into a depth-3 circuit exploits two algebraic (and partly number-
theoretic) techniques: at an intermediate step, a circuit of depth 5 is obtained, in
which all multiplications are exponentiations.

Neeraj Kayal
Microsoft Research Lab,
Bengaluru, since 2008

The algebraic tools narrow the set of admissible rings, so
the subsequent presentation is limited to the case of complex
polynomials.

Lemma 13.7. In a field of characteristic 0,

2n−1n!x1·. . .·xn =
∑

ε2,...,εn=±1

ε2·. . .·εn (x1+ε2x2+. . .+εnxn)n.

� The proof is carried out by “expansion the brackets” on
the right-hand side and reducing similar terms. It is easy to
verify that the monomial x1 · . . . · xn appears in any term
under the summation sign with coefficient n!. In any other
monomial of degree n, some variable xi occurs in an even
power (possibly in zero). Then this monomial appears in any
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pair of terms of the sum that differ only in the value of εi, with opposite coefficients.
As a consequence, its coefficient in the total sum is 0.

• The formula of the lemma has been known for a long time. According to [106], its various
versions were proposed at school and student olympiads in the USSR in the 1980s. The formula
was published by I. Fischer in [86], and S. B. Gashkov and E. T. Shavgulidze [106] proved its
optimality: it is impossible to get by with fewer number of linear forms on the right-hand side
than 2n−1. R. Saptharishi [272] observed that an alternative representation in the form of a sum
of 2n powers of linear forms is also provided by the well-known formula of H. Ryser [269] for the
algebraic permanent:

n!x1 · . . . · xn = per


x1 x2 · · · xn
x1 x2 · · · xn
...

...
. . .

...
x1 x2 · · · xn

 =
∑
T⊂[[n]]

(−1)n−|T |

(∑
i∈T

xi

)n
.

The following lemma allows to pass from a ΣΠΣΠ-representation of a polyno-
mial f (13.12) to a ΣEΣEΣ-representation, where E denotes a layer of exponentiation
elements.

Lemma 13.8 ([115, 318]). Under the conditions of Lemma 13.6, a polynomial f ∈
C[x1, . . . , xn] of degree d for any h 6 d can be represented as

f(X) =

s1∑
i=1

(
s2∑
j=1

(li,j(X))hi,j

)di

, di 6 6d/h, hi,j 6 h, deg li,j 6 1, (13.15)

where s1 6 (2s)6d/h and s2 6 h · (2n)h.

� In formula (13.12), we express each monomial of the polynomial p by Lemma 13.7

as
∑2k−1

i=1 λki (y1, . . . , yr), where k is the degree of the monomial, deg λi = 1.
In each polynomial λi, we replace the variables Y with the corresponding poly-

nomials of the variables X (i.e., make a substitution yj = qj(X)), and then,
applying Lemma 13.7 again, we rewrite each monomial of the variables X as∑2k−1

i=1 lki,j(x1, . . . , xn), where k is the degree of the monomial.
By construction, s1 6 2deg p · |mon p| 6 (2s)deg p and s2 6 2h−1Ch

h+n 6 h(2n)h.

The key to the synthesis of depth-3 circuits is an elegant result of N. Saxena [273],
which allows one to express a power of a linear form as a sum of a relatively small
number of products of polynomials of one variable.

Lemma 13.9 ([273]). For any d, n > 0 and distinct numbers a1, . . . , adn+1 ∈ C,

(x1 + . . .+ xn)d =
dn+1∑
i=1

bi

n∏
j=1

Ed(aixj), Ed(x) = 1 + x+
x2

2
+ . . .+

xd

d!
,

with some bi ∈ C.
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� Let u = x1 + . . .+ xn. Since

euz = 1 + uz + . . .+ (uz)d/d! + . . . ,

ud/d! is the coefficient at zd of the power series euz ∈ C[[z]]. Due to

euz = ex1z · . . . · exnz ≡ F (z) = Ed(x1z) · . . . · Ed(xnz) mod zd+1,

the desired value ud is the coefficient of the polynomial F (z) at zd up to a constant
factor.

According to the (Lagrange) interpolation formula, the coefficients of a polynomial
of degree m can be expressed as linear combinations of the values of the polynomial
at m+ 1 points, in this case, F (a1), . . . , F (adn+1).

Theorem 13.8 ([115, 318]). If a polynomial f ∈ C[x1, . . . , xn] of degree d has mul-

tiplicative complexity s, then CC
ΣΠΣ(f) = 2

O
(√

d log(sd) logn
)
.

Nitin Saxena
Indian Institute of Technology,

Kanpur, since 2013

I By Lemma 13.9, any term of the outer sum in (13.15)
can be rewritten as(

s2∑
j=1

(li,j(X))hi,j

)di

=

s2di+1∑
k=1

bk

s2∏
j=1

Edi(ak(li,j(X))hi,j).

Over the field C, a polynomial Em(axq) can be represented
as a product of linear factors

∏qm
i=1 λa,m,q,i(x). Finally, we

obtain

f(X) =

s1∑
i=1

s2di+1∑
k=1

bk

s2∏
j=1

dihi,j∏
u=1

λak,di,hi,j ,u(li,j(X)).

The formula contains (according to the bounds of
Lemma 13.8 and taking into account Lemma 13.5) of order

s1s
2
2d

2/h 6 (2sd2)6d/h(2n)2hd2h

linear factors. By choosing h ≈
√

d log(sd)
log(3n)

(recall that in this case h 6 d) we obtain

the required bound. �

Now Corollary 13.2 can be strengthened.

Corollary 13.3 ([318]). The determinant of a complex n× n matrix can be computed
by a ΣΠΣ-circuit of complexity 2O(

√
n·logn).

• The authors [115] proved that the result of Theorem 13.8 is also valid over the field Q. It follows
from the paper [187] that the bound of Theorem 13.8 is close to optimal: an example is given

of a degree-d polynomial f of n variables, for which CΣΠΣ(f) = 2Ω(
√
d·logn), although under the

constraint d ≺ log n.



159

An analogue of Theorem 13.8 for finite fields does not hold. Indeed, D. Grigoriev and
A. A. Razborov [113] obtained, in essence, an extremely possible lower bound 2Ω(n) for the com-
plexity of computing symmetric functions MODn

q over Fp by depth-3 circuits under the condition
p, q ∈ P, and q 6= p, as well as the majority function majn over F2. As is known [45], the multiplica-
tive complexity of any nonlinear symmetric function of n variables over F2 is Θ(n). It is rather easy
to verify that for p = O(1) we have CAFp (MODn

2 ) = nO(1).

Theorem 13.8 cannot be extended to tropical circuits either. In particular, in [210] it is shown

that the tropical version of the polynomial CONNn of degree n in C2
n variables (corresponding to

the problem of finding the shortest path in a graph) has complexity 2Θ(n logn) when implemented

by depth-3 circuits over the semiring (R,min,+).
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1994. 2, 110, 112
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