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Theme 1

Minimizing the number of

comparisons in the sorting problem

1.1 Introduction

Consider a classical and traditional (especially for programming) sorting problem.

Usually it is required to sort a numeric array, but in general the elements of the array

can belong to an arbitrary set on which an order relation is defined.

Partial order on a set M is a binary relation “6” satisfying the properties: 1) re-

flexivity: a 6 a; 2) transitivity: from b 6 a and c 6 b it follows c 6 a; 3) antisymmetry:

from b 6 a and a 6 b it follows a = b for any a, b, c ∈M. Instead of b 6 a we will also

use the notation a > b.

A set with a partial order defined on it, (M, 6), is called a partially ordered set,

abbreviated as poset. Elements a, b ∈ M for which either a 6 b or b 6 a are called

comparable. A partial order in which any two elements of the set are comparable is

called linear. It is easy to verify that any partial order can be complemented to a

linear order.

The sorting problem is well defined for a set of elements from a linearly ordered

ground set. This linear order is assumed to be unknown in advance, and can be

determined using pairwise comparisons. The result of a comparison operation of two

elements e1, e2 is an ordered pair (a, b) such that {a, b} = {e1, e2} and a 6 b.

Algorithms consisting of comparisons can be divided into two classes: those in

which the choice of two subsequent elements for comparison depends on the results

of previous comparisons, and those in which the sequence of comparisons is predeter-

mined. There are other classifications, but we will not consider them.

An algorithm from the first class can be conveniently represented as a comparison

tree. Recall that a tree is a connected graph without cycles. A rooted binary tree

(oriented toward the root) is a directed tree with a single vertex adjacent only to

outgoing edges (the root), and with any internal vertex having exactly two outgoing
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4 THEME 1: MINIMIZING THE NUMBER OF COMPARISONS

edges, directed away from the root. A comparison tree is a rooted binary tree in which

each internal vertex is assigned a pair of elements from the input set, and the two

edges outgoing from an internal vertex are labeled by the symbols “>” and “6”.

An algorithm is constructed according to a comparison tree as follows: a compari-

son is performed between a pair of elements corresponding to the root; depending on

the result of the comparison, a transition is made to the next vertex along one of the

edges coming out of the root; the same procedure is performed for this vertex, and so

on until we reach a leaf of the tree.

An example of a comparison tree for sorting a 3-element set is shown in Fig. 1.1.

The leaves of the tree are assigned ordered permutations of the elements of the input

set.
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Figure 1.1: Example of a comparison tree

It is clear that the representation of an algorithm by a comparison tree is difficult

from the point of view of clarity. Even the description of the algorithm for sorting five

elements will require the depiction of about a hundred vertices. Therefore, the compar-

ison tree can be kept in mind — it will be useful later when deriving lower bounds —

but for the construction and analysis of specific algorithms it is more convenient to

use other tools, for example, Hasse diagrams.

Hasse diagrams are used to graphically represent partially ordered sets. A diagram

(or the Hasse diagram) of a poset is a directed graph in which the vertices correspond

to elements of the poset, and an edge connects vertices vx and vy corresponding to

elements x and y, and is directed toward vy iff x 6 y and there is no other element z

such that x 6 z 6 y (i.e. x immediately precedes y in the poset). When drawing a

poset diagram, the orientation of the edges is often omitted, and it is assumed that of

two elements connected by an edge, the one that is higher is greater.

In Fig. 1.2 Hasse diagrams are used to describe a 4-element sorting algorithm. At

each step, we depict a diagram of a set with a partial order, which is determined by
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the comparisons performed. Pairs of elements that are compared at the next step are

marked.
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Figure 1.2: Hasse diagrams for a sorting procedure

1.2 Sorting. Lower bound on the number of com-

parisons

Let (P ,6) be a finite poset1 consisting of unequal elements. Denote by e(P) the

number of possible extensions of the partial order 6 to a linear order on the set P . In

other words, e(P) is the number of permutations of elements of P that are consistent

with the partial order (i.e., permutations in which the elements are listed in “non-

decreasing” order).

Let us state a sorting problem in the following general form. We are given a poset P
of unequal elements subject to a linear order 6, which is unknown. It is required to

order the elements of P according to the order 6, using pairwise comparisons of the

elements.

Without loss of generality, we may assume that the set to be sorted is a subset of

the set of real numbers R, on which the usual linear order 6 is defined.

The complexity of a sorting algorithm is the maximum number of comparisons

performed by the algorithm over all possible orderings of the elements of the input

set. The complexity coincides with the depth of the comparison tree representing the

algorithm, i.e. the number of edges in the longest directed chain from the root to

a leaf of the tree. By S(P) we denote the minimum complexity of algorithms sorting

a poset P , and by S(n) — the complexity of sorting n elements that are entirely not

ordered (i.e., a poset with an empty partial order).

Theorem 1.1. S(P) > log2 e(P).

I To prove this, we need a trivial fact: a rooted binary tree of depth h can have at

most 2h leaves. Therefore, the depth of a tree with N leaves is at least log2N .

1Further, we will omit the symbol of relation in the notation of posets.
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A leaf of a comparison tree in a sorting algorithm corresponds to some permutation

of the elements of the input set; conversely, each possible permutation corresponds to

some leaf (possibly more than one). Therefore, the tree has at least e(P) leaves, which

implies the stated lower bound. �

Corollary 1.1. S(n) > log2(n!).

Recall that according to the well-known Stirling formula

log2(n!) = n log2 n− n/ ln 2 + 0.5 log2 n+O(1).

We will see further that the lower bounds of Theorem 1.1 and Corollary 1.1, based

on the most general considerations, turn out to be tight not just in an asymptotic

sense, but principally they differ very little from the exact values of complexity.

1.3 Merging sorted sets. Merge sort

Consider another frequently encountered problem: merging two ordered arrays. Let

the first set have m elements, and the second set have n. The task is to sort the given

poset Lm,n of n + m elements. It is easy to see that e(Lm,n) = Cm
n+m, since there are

Cm
n+m ways to merge these two ordered sets into one.

Theorem 1.1 immediately implies S(Lm,n) > log2C
m
n+m. In the case m = 1 we

obtain the bound S(Ln,1) > log2(n+ 1), which is in fact tight.

Lemma 1.2. S(Ln,1) = dlog2(n+ 1)e.

� It remains to prove the upper bound. The proof is by induction. In the case n = 1

the statement is obviously true. Consider the induction step from n to n + 1. Let us

compare the only element of one of the arrays with the middle element of the other

array (with any of the two middle elements if n is even). Depending on the result of

the comparison, we then insert the specified element into one of the two halves of the

latter array. So we obtain

S(Ln,1) 6 S(Ld(n−1)/2e,1) + 1 6 log2d(n+ 1)/2e+ 1 = dlog2(n+ 1)e.

The procedure described in the proof of the lemma is called binary insertions.

Also interesting is the case of similar-size sets m = n+O(1), for which, according

to Stirling’s formula, S(Lm,n) > m+ n−O(log n) holds. In fact, we have

Lemma 1.3. S(Ln,n) = 2n− 1, S(Ln+1,n) = 2n.
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� By induction we prove a more general upper bound S(Lm,n) 6 m + n − 1. It

is straightforward for m + n 6 2. In the case m + n > 2 we compare the maximal

elements of the two arrays — the larger of them is the maximal element of the entire

set. After removing it, it remains to merge the two new arrays with a total of m+n−1

elements. Apply the inductive hypothesis and obtain the required bound.

Let us prove the lower bound for the case m = n. Denote the elements of the

first array by ai in ascending order, and the elements of the second set — by bi. In a

comparison tree, consider the path corresponding to the ordering

b1 6 a1 6 b2 6 a2 6 . . . 6 bn 6 an.

On this path, comparisons of any adjacent elements in a given permutation must

be performed, since information about the relationship between adjacent elements is

initially unavailable and cannot be obtained even if all other pairwise comparisons are

done. Thus, at least 2n − 1 comparisons must be performed. The case m = n + 1 is

considered similarly.

Based on the merge algorithm, it is possible to construct a simple and at the same

time asymptotically optimal sorting algorithm in terms of complexity.

Theorem 1.2. S(n) 6 log2(n!) +O(n).

I The method essentially exploits the popular idea of “dividing in half”. The sorted

set is divided into two parts, these parts are ordered separately, and the two ordered

sets are merged. Using the proven lemma, for the complexity s(n) of the algorithm,

we can write out the recurrence relations:

s(2n) = 2s(n) + 2n− 1, s(2n+ 1) = s(n) + s(n+ 1) + 2n (1.1)

with the initial condition s(1) = 0.

Claim 1.4.

s(n) = ndlog2 ne − 2dlog2 ne + 1. (1.2)

� Introduce the function q(n) = s(n)− s(n− 1). It is handy to rewrite (1.1) as

q(2n) = q(2n− 1) = q(n) + 1

setting q(1) = 0. The new relations are easily resolved as q(n) = dlog2 ne. It remains

to employ the formula s(n) =
∑n

i=1 q(n) =
∑n

i=1dlog2 ne.
Now it is easy to verify the validity of (1.2) by induction. If (1.2) is valid for

s(n), and q(n + 1) = q(n), then (1.2) is obviously valid for s(n + 1). Otherwise, if

q(n+ 1) = q(n) + 1, i.e. n = 2k, then

s(n) + q(n+ 1) = nk − n+ 1 + (k + 1) = (n+ 1)(k + 1)− 2n+ 1,
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which is what was required.

Therefore, S(n) 6 s(n) = n log2 n−O(n). �

The complexity of the method is closest to the lower bound for the complexity of

sorting at n = 2k, when s(n) = n log2 n− n+ 1.

1.4 Fast sorting of a partially ordered set

Let us move on to a more general problem of sorting an arbitrary poset P . The proof

of the following theorem is based on the binary insertion method.

Theorem 1.3 (M. L. Fredman). S(P) 6 log2 e(P) + 2|P|.

I In fact, we will prove a slightly more general statement, from which the theorem

immediately follows.

Lemma 1.5. Let M be a finite subset of Zn. Then a given unknown vector b =

(b1, . . . , bn) ∈M can be determined in no more than log2 |M |+ 2n queries of the form

bi
?

6 x, executed sequentially in the order of increasing i.

� We will determine the coordinates of b sequentially. Denote Mk =

{c ∈M | c1 = k} — the set of vectors from M with the first coordinate k. Let

k1 < k2 < . . . < kt be the indices of all nonempty sets Mk. Without loss of generality,

we can assume ki = i for all i = 1, . . . , t. Denote mk = |Mk|/|M |. By construction,

m1 + . . .+mt = 1.

Divide the segment [0, 1] successively into intervals of length m1, . . . ,mt. Let f(x)

denote the number of interval centers to the left of a point x.

Via the binary search method, we can determine the number s of the interval for

which b ∈ Ms by sequentially executing the queries: b1

?

6 f(1/2), then, depending on

the result, b1

?

6 f(1/4) or b1

?

6 f(3/4), etc. Since it is obvious that b1 > f(0) = 0 and

b1 6 f(1) = t, after executing j queries we have the relation

λj = f(rj/2
j) < b1 6 f((rj + 1)/2j) = ρj

for some rj ∈ Z. The search ends under the condition λj = ρj − 1. In this case the

desired interval is found: b1 = ρj.

Let j = 1 − blog2msc, hence, ms > 21−j. Then both points rj/2
j and (rj + 1)/2j

belong to the s-th subsegment, so the search termination condition is certainly satisfied

after j comparisons.

The search continues inside the set Ms with n − 1 unknown coordinates. The

estimate of the lemma follows by induction.
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For n = 1, due to the above argument, in view of ms = 1/|M |, it is sufficient

to implement 1 + dlog2 |M |e queries. In the general case (step from n − 1 to n), the

number of queries does not exceed

log2 |Ms|+ 2(n− 1) + 1 + dlog2 |M |/|Ms|e 6 log2 |M |+ 2n.

The theorem is proved by a procedure of successive insertions of n = |P| elements

X1, . . . , Xn ∈ P into an ordered array. Initially, the array consists of a single ele-

ment X1, then the second element X2 is added to it, then the third one is inserted,

and so on. Such a procedure is equivalent to determining the vector b = (b1, . . . , bn),

where bi is the number of position for inserting the i-th element. The query bi
?

6 k

corresponds to the comparison Xi?Yk, where Yk is an element of rank k in the already

constructed array. It is easy to see that any linear extension of the poset P is uniquely

characterized by the vector b ∈ Zn. Finally, we apply Lemma 1.5. �

The bound of Theorem 1.3 is good for “sparse” posets, with a large number of

extensions. But for small e(P) it is not quite efficient. We will show below that

O(log e(P)) comparisons are always sufficient to sort a poset.

First, we note that the proof of Theorem 1.3 implies

Corollary 1.6. Let a poset P contain a linearly ordered subset of cardinality l. Then

S(P) 6 log2 e(P) + 2(n− l).

� The insertion procedure starts from an ordered array of length l. We can assume

that the coordinates b1, . . . , bl in the condition of Lemma 1.5 are fixed.

The following lemma shows that the number of linear extensions of a poset P
is small exactly in the case when P contains a large linearly ordered subset (this is

precisely the situation when the bound of Theorem 1.3 is inefficient).

Lemma 1.7. Let the maximal linearly ordered subset of a poset P have cardinality l.

Then e(P) > 2|P |−l.

� The elements of the poset P can be divided into l layers: V1, . . . , Vl. The set Vi
contains elements for which the length of the maximal ascending chain in P ending

with this element is equal to i.

By construction, the elements of any layer are pairwise incomparable and can be

ordered arbitrarily. Therefore, due to the simple inequality k! > 2k−1,

e(P) >
l∏

i=1

|Vi|! >
l∏

i=1

2|Vi|−1 = 2|P|−l.
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Theorem 1.4 (J. Kahn, M. Saks). S(P) = O(log e(P)).

I Let |P| = n. In the graph (Hasse diagram) of the poset P , select a maximal

chain Z; we denote its length by l. For each element v outside Z, we define the

minimal interval (av, bv) in Z that v can fall into. Here av is the maximal element of

Z such that av 6 v, and bv is the minimal element of Z such that v 6 bv, provided

that such elements exist. The interval may be unbounded on one or both sides.

Consider the set P ′ consisting of elements outside Z and of those elements in Z

that are ends of minimal intervals. Clearly, |P ′| 6 3(n − l). The first step of the

algorithm consists of sorting P ′ by the method of Theorem 1.3 and involves at most

log2 e(P ′) + 6(n − l) comparisons. Since P ′ ⊂ P and all relations between elements

of P ′ are exactly the same as in P , we have e(P ′) 6 e(P). In other words, any linear

extension of P ′ is contained in some extension of P .

After sorting P ′ the obtained poset consists of two ordered and, generally speaking,

intersecting chains, as shown in Fig. 1.3 (the chains of elements are painted in bold

lines). Sorting the poset reduces to independent merging of pairs of fragments of the

chains. In this case, the second fragments in the pairs contain only elements outside Z,

and their total size does not exceed n− l.

r r rZ

P \ Z

r r
A
A
A

A
A
A

�
�
�

�
�
�

�
�
�

p p p p p p�� �� �� �� �� ��
Figure 1.3: Form of a poset after the first stage

Denote by Ti the number of possible outcomes of merging in an i-th pair. Then∏
i Ti 6 e(P), since any combination of merge results in different fragments is a legal

extension of P (this follows from the minimality of intervals for vertices outside Z —

there are no additional relations between vertices in Z and outside Z in P besides

those shown in Fig. 1.3).

Applying Corollary 1.6, we find that
∑

i log2 Ti+2(n− l) comparisons are sufficient

to perform merges. Combining the complexity estimates of both stages, we obtain that

the method for sorting the poset P utilizes

log2 e(P ′) + 6(n− l) +
∑
i

log2 Ti + 2(n− l) 6 10 log2 e(P)

comparisons, taking into account Lemma 1.7. �
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Exercises

Ex. 1.1. Show that the binary insertion sort method also has complexity log2(n!) + O(n).

The method consists of partitioning the set of elements into pairs, performing com-

parisons in the pairs, then sorting the higher elements of the pairs, and then inserting

the lower elements of the pairs into the sorted array.

Ex. 1.2. Determine the value of S(L2,n) (the solution is in [6]). The result shows that

it is often more efficient to insert two elements into an ordered array together than

separately. [R. Graham, F. Hwang, S. Lin]

Ex. 1.3. Show that even 1.44 log2 e(P) comparisons may not be enough to sort a poset P
in the general case. To do this, consider a set x1, . . . , xn with the given partial order:

xi 6 xi+2, i = 1, . . . , n− 2, xi 6 xi+3, i = 1, . . . , n− 3.

(See the proof of Lemma 1.3.) [N. Linial]

Comments. The material in sections 1.1–1.3 is standard and is discussed in great detail

in [6]. Theorem 1.3 was proved by M. Fredman in [2]. The proof of Theorem 1.4 basically

follows the scheme proposed in [3].

Several other sorting methods besides merge sort achieve an asymptotically tight log2(n!)

complexity bound with an excess of O(n). The closest to it is the Ford—Johnson version

of binary insertion sort, see [6]. The author proved [7] that actually S(n) = log2(n!) + o(n)

(the group insertion method).

The result of Theorem 1.4 on the complexity of sorting an arbitrary poset was first

obtained in [5] as a consequence of the presence in any not completely ordered poset P of

a balanced pair of elements x, y, i.e. such that ordering this pair reduces the number of

extensions by a factor of c 6 e(P, x6y)
e(P) 6 1 − c, where c is a universal constant. According

to a well-known conjecture, c = 1/3 should hold, but so far it has only been proven that

c > 5−
√

5
10 ≈ 0.28 [1]. Methods for proving bounds on the balance constant [5, 1] use a rather

nontrivial apparatus of convex geometry. Another approach [4] to constructing a sorting

algorithm is related to the entropy analysis of poset graphs and is also quiet sophisticated.

The method proposed in [3] is elementary, although it leads to a larger multiplicative constant

in the complexity bound.
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Theme 2

Complexity of the selection

problem

2.1 Introduction

The problem of selection of elements of rank r1, . . . , rk in a set of cardinality n, where

ri 6 n, with an unknown linear order 6 is posed similarly to the sorting problem.

This problem is a special case of the poset generation problem, in which it is required

to obtain a given poset or its extension by a series of comparisons. We denote by C(P)

the complexity of generating a poset P . Theorem 1.1 implies

Corollary 2.1. C(P) > log2(|P|!/e(P)).

Selection of elements of rank r1, . . . , rk in an n-element set consists of constructing

a poset with the structure

V1 6 x1 6 V2 6 x2 6 . . . 6 Vk 6 xk 6 Vk+1, (2.1)

where xi is an element of rank ri, and Vi is a set of ri− ri−1− 1 elements (here we set

r0 = 0 and rk+1 = n+ 1). Let us verify that this is indeed the case.

Lemma 2.2. If an element of rank m is known in a poset, then the set of m − 1

elements greater than it is also known.

� Assume the contrary. Let e be the element in question. Denote by MG, ML,

and MN the set of elements greater than e, less than e, and the set of elements not

comparable to e, respectively. By assumption, MN 6= ∅.

By construction, an element of MN cannot be greater than any element of MG and

cannot be less than any element of ML. Therefore, there exists a linear extension of

the poset in which the set MN ∪ {e} lies strictly between the sets MG and ML. An

element e can occupy any position in the set MN ∪ {e}, and therefore its order in the

entire set is not uniquely determined.

13
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The complexity of the selection problem in the general formulation is denoted by

Cr1,...,rk(n).

2.2 Selection of extreme elements

It is easy to show that the complexity of selecting the maximum (minimum) element

of a set is n− 1.

Theorem 2.1. C1(n) = n− 1.

I The upper bound C1(n) 6 n − 1 follows from an obvious algorithm, in which at

each step the current maximum (in the set of already considered elements) is compared

with a new element, the maximum is selected, etc.

The lower bound follows from the trivial observation: each element, except for the

maximum, must lose in at least one comparison. �

Less trivial is the question of how many comparisons are required to determine the

maximum and minimum elements of a set. An elegant solution to this problem was

found by Pohl in 1972.

Theorem 2.2 (I. Pohl). C1,n(n) = d3n/2e − 2.

I The upper bound is proved by the following simple algorithm. Divide all elements

into pairs, perform comparisons in pairs. Then, in the set of maximal elements of pairs,

including in the odd case an unpaired element, determine the maximum. Similarly,

determine the minimum among the minimal elements of pairs and, if necessary, an

unpaired element. A total of

bn/2c+ 2(dn/2e − 1) = d3n/2e − 2

comparisons will be performed.

Let us prove the lower bound. At each step of an algorithm, we will denote by the

quadruple (a, b, c, d) the number of elements that did not participate in the compar-

isons, the number of elements that only won, the number of elements that only lost,

the number of elements that both won and lost, respectively.

Before the start of the algorithm (a, b, c, d) = (n, 0, 0, 0), at the end of the algo-

rithm (a, b, c, d) = (0, 1, 1, n − 2). In the comparison tree, we consider a chain in

which at each vertex a branch is chosen such that if both elements in a pair are from

the same subset (of the four mentioned above), then the outcome of the comparison is

chosen arbitrarily; otherwise, the element that has only won before (if any) wins, and

the element that has only lost (if any) loses; otherwise, any outcome is allowed.

Then, during the algorithm, no comparison changes both a and d. Thus, to

“empty” the first subset, at least dn/2e comparisons are required, and at least n − 2

comparisons are required to “fill” the fourth subset. �
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The question of the complexity of selecting the rank-2 element is not so obvious:

incorrect proofs (of the lower bound) were published twice, until in 1962 Kislitsyn pro-

posed a correct, although rather sophisticated, proof. It was subsequently significantly

simplified.

Theorem 2.3 (S. S. Kislitsyn). C2(n) = n+ dlog2 ne − 2.

I To prove the upper bound, we construct a knockout tournament using the cup

system to determine the largest element. In such a tournament, the winner participates

in no more than dlog2 ne comparisons. Any element that was not compared with the

largest element during the algorithm lost to some other element, and therefore cannot

be second. It remains to determine the largest element among those dropped out in

direct comparisons with the winner. Thus, to select the second element, it is sufficient

to perform no more than (n− 1) + (dlog2 ne − 1) comparisons.

In particular, it follows from Lemma 2.2 that any algorithm for selecting the second

element also finds the first element. Now we show that there exists an ordering of the

input set elements such that the maximal element participates in at least dlog2 ne
comparisons.

At any moment of the algorithm, an element that has never lost will be called

a “leader”. We introduce a “subordination” relationship, according to which each

element at any moment is subordinate to some leader, and only one; a leader is subor-

dinate to itself. Before the algorithm starts, every element is a leader subordinate to

itself, and at the end there remains only one leader (the maximal element), to which

all elements are subordinate.

Now let us consider a path in the comparison tree such that in any comparison

(not counting comparisons with a predetermined outcome) involving a leader and a

non-leader, the leader is recognized as the winner. Among two leaders, the leader

who has participated in more comparisons wins; otherwise, the outcome is arbitrary.

If a leader loses the next comparison, then it and its subordinate elements become

subordinate to the winner of the comparison.

By induction we check that a leader who participated in r comparisons has at most

2r subordinate elements (including itself). For r = 0 this is obvious. Otherwise, if a

leader wins its r-th comparison, then in addition to at most 2r−1 subordinate elements

(by the induction hypothesis) it also receives at most 2r−1, because its opponent could

not be a leader who won more than r − 1 comparisons.

Thus, the largest of n elements will participate in at least dlog2 ne comparisons.

Any element in the set of elements directly compared to the winner, except that of

the second rank in the entire set, must lose in at least one more comparison. Hence,

n− 1 elements lose in at least one comparison and at least dlog2 ne − 1 elements lose

once more. �
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2.3 Median selection

Let us introduce the standard notation H(x) = −x log2 x− (1− x) log2(1− x) for the

binary entropy function defined on the interval [0, 1]. At the ends of the interval we

set H(0) = H(1) = 0 by continuity.

Theorem 2.4 (S. W. Bent, J. W. John). Let t = αn. Then

Ct(n) > (1 +H(α))n−O(
√
n).

I Consider an arbitrary algorithm that solves the problem of selection of the rank-t

element in a set M of size n. Fix some subset T ⊂ M of size t. Let it contain t − 1

maximal elements of M . Denote U = M \T and set U0 = U , T0 = T . Further, T0∪U0

plays the role of the set of candidates for the position of the element of rank t. Let

r > 1 and q > r be parameters that will be defined later.

a) In the comparison tree corresponding to the algorithm, we will proceed along

the following path. While |T0| > r, the outcome of the comparison of elements x and y

is defined as x 6 y if x ∈ U and y ∈ T and arbitrarily if x, y ∈ T or x, y ∈ U . By the

way, in the penultimate case, the larger element is removed from T0, and in the latter

case, the smaller element is removed from U0.

We will stop this process at the moment when |T0| = r. This will definitely happen,

because based on the comparisons performed, none of the elements of the set T0 can

be excluded from the list of candidates. At the end of the algorithm, if it were not

stopped, |T0| = 1 would be.

b) For y ∈ T0, denote by Wy the set of elements from U that have been directly

compared with y. Let y∗ ∈ T0 be an element such that |Wy∗| is minimal. Set Q =

(U0 \Wy∗) ∪ {y∗}.
We assume that in the linear ordering the set Q is located strictly between the sets

(U \U0)∪Wy∗ (of small elements) and T \ {y∗} (of large elements). Then the element

of rank t in M is maximal in Q. Note also that no two elements of Q have yet been

compared with each other.

c) If |Wy∗| > q − r, then the algorithm already performed:

– at least (r − 1)(q − r + 1) comparisons of elements from T0 and U ;

– |T \ T0|+ |U \ U0| = n− |U0| − r comparisons within the sets T and U ;

– |Wy∗| comparisons of the element y∗ with elements from U .

In addition, at least |U0| − |Wy∗| comparisons will need to be performed to determine

the maximum element in Q. Therefore, the overall complexity of the algorithm is no

less than

(r − 1)(q − r + 1) + (n− |U0| − r) + |Wy∗|+ (|U0| − |Wy∗|) = n− 1 + (r − 1)(q − r).

d) In the case |Wy∗ | 6 q−r, we prove that any choice of the set T in the comparison

tree corresponds to at least 2n−q leaves. To do this, we show that in total at least n−q
comparisons are performed within the sets T , U , and then Q.
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Indeed, at least n − |U0| − r comparisons are performed within the sets T and U

and at least |U0| − |Wy∗ | > |U0|+ r − q comparisons within the set Q.

e) The set T can be selected in Ct
n ways. Any outcome of the algorithm (a leaf in

the comparison tree) corresponds to n + 1 − t sets T (t − 1 maximal elements of the

set T are determined, the t-th element can be chosen arbitrarily).

f) Thus, the depth of the comparison tree and the complexity of the algorithm can

be estimated as n− 1 + (r − 1)(q − r) (case of item c) or the binary logarithm of the

number of leaves (case of item d), of which there are no fewer than 2n−qCt
n/(n+ 1− t)

in the tree. Hence,

Ct(n) > min

{
n− 1 + (r − 1)(q − r), n− q + log2

Ct
n

n+ 1− t

}
.

When choosing parameters r ∼
√
n and q ∼ 2

√
n and taking into account

log2C
t
n = log2C

αn
n = nH(α)−O(log n)

(a consequence of Stirling’s formula), we arrive at the statement of the theorem. �

Note that for α = 1/2, i.e. for the problem of selecting the median, the bound of

the theorem takes its maximum which is asymptotically 2n.

The most impressive upper bound for the complexity of the selection problem,

which has only been slightly improved to date, appeared in 1976. For simplicity

of presentation, we restrict ourselves to selecting the middle element (median); the

general case is not principally different from the one under consideration.

Theorem 2.5 (A. Schönhage, M. Paterson, N. Pippenger). Cbn/2c(n) 6 3.5n+ o(n).

I The method is based on the idea of mass production (of partially ordered sets).

A large number of posets Xk of size 2k + 1 with a central element (median) is con-

structed. In the course of the algorithm, the central elements of the sets are ordered.

The general form of the obtained poset is shown in Fig. 2.1.

Note that if the number of sets Xk in the chain Z is large enough — so that the

total number of elements in them is close to n —, then the larger half of the set with

the maximum central element mH and the smaller half of the set with the minimum

central element mL (they are highlighted in Fig. 2.1) can be excluded from further

consideration as obviously not containing the median.

Indeed, let s denote the number of sets Xk in the chain Z, and r be the number of

elements not included in the poset of Fig. 2.1. It is clear that s = (n − r)/(2k + 1).

According to the diagram in Fig. 2.1, the elementmH is greater than another s(k+1)−1

elements.

Solving the inequality s(k + 1)− 1 > n/2 + 1, we obtain the condition

r 6
n+ 4

2k + 2
− 4, (2.2)
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Figure 2.1: General form of the poset in the process of computations

under which mH and the elements above it do not pretend to be the median. The

same goes with mL and the elements below it. Then, we seek the median among the

remaining n− 2k − 2 elements.

Those elements that do not belong to the prepared posets Xk and are not excluded

from consideration are considered to be in the factory (producing new posets Xk; is

not shown in Fig. 2.1).

The factory is characterized by the following parameters: Jk — the minimum

number of elements sufficient for producing a poset, Ik — the number of comparisons

necessary to start mass production, Ck — the number of comparisons sufficient to

produce one poset Xk.
Let Sn denote the total number of posets produced at the factory, and Rn — the

number of remaining median candidates at the end of the algorithm. By (2.2), the

latter can be found from the inequality Rn+4
2k+2

− 4 < Jk, and the former can be easily

determined as Sn = (n−Rn)/(k + 1).

The complexity T (n) of the algorithm can now be estimated as

T (n) = Ik + Ck · Sn + Sn log2 n+O(Rn logRn), (2.3)

where the third term corresponds to the complexity of the insertion of the center of

a poset Xk into an ordered list, and the last term corresponds to selecting the median

of the residual set of Rn elements, which can be accomplished by ordinary sorting.

The parameters are chosen as k � 4
√
n and Rn � n3/4. To complete the proof of the

theorem, it remains to construct a factory with parameters Ik = O(k2), Jk = O(k2)

and Ck ∼ 3.5k.

We define inductively a poset Hp(v) — a hyperpair of order p with center v. A

hyperpair H0(v) consists of a single element v. A hyperpair Hp(v) is obtained from

two hyperpairs Hp−1(v1) and Hp−1(v2) by comparing their centers v1 and v2. As v we

choose the winner of the comparison if p = 2 or p > 3 is odd, and the loser if p = 1 or

p > 4 is even. Younger representatives of the family Hp are shown in Fig. 2.2.
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The following properties of hyperpairs can be easily verified by induction.

Lemma 2.3. (i) A hyperpair Hp(v) consists of 2p elements.

(ii) For p > 2, a hyperpair Hp(v) contains 2bp/2c − 1 elements greater than v and

2dp/2e − 1 elements smaller than v.

Thus, from a hyperpair of order 2p one can extract a poset X2p−1.
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Figure 2.2: Family of hyperpairs

Note that there is a one-to-one correspondence between the edges in the hyperpair

diagram and the comparisons performed when constructing a hyperpair. Also note

that when the center v of a hyperpair Hp(v) is removed, it splits into a family of

isolated hyperpairs H0 ∪ {H2i+1 | 1 6 i < (p− 1)/2} whose centers are higher than v,

and a family of hyperpairs H1 ∪ {H2i | 1 6 i < p/2} whose centers are lower than v.

Further, it is easy to see that the set of elements greater (smaller) than v in the

hyperpair Hp(v) is the union of sets of elements greater (smaller) than the center in

the first (second) family of hyperpairs.

What is important in this case is that the removal of the center of a hyperpair

leads to the formation of hyperpairs of lower order, which can be used to “reconstruct”

a hyperpair. Moreover, the procedure for extracting a poset consisting of the center

of a hyperpair and a number of elements smaller and larger than the center can be

viewed as a sequence of removals of the centers of certain hyperpairs, so that the result

will also be a set of hyperpairs of lower orders.

In view of the mentioned correspondence between comparisons and edges of the

hyperpair diagram, the number of comparisons needed to restore a hyperpair after

extracting the poset is equal to the number of edges removed from the diagram.

Let V (p) and N(p) denote the number of edges eliminated when removing the cen-

ter of a hyperpair of order p and all elements greater than the center and, correspond-
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ingly, smaller than the center. It can be verified directly that V (0) = N(0) = 0, V (1) =

N(1) = 1, V (2) = 2, N(2) = 3.

Lemma 2.4. For p > 2,

N(2p) = N(2p− 1) + 1 = 5 · 2p−1 − 2, V (2p) = V (2p+ 1)− 1 = 5 · 2p−1 − 3.

� The center of a hyperpairHp in the diagram has degree p, so we obtain the following

recurrence relations:

N(2p) = 2p+N(1) +N(2) + . . .+N(2p− 2),

V (2p+ 1) = 2p+ 1 + V (0) + V (3) + . . .+ V (2p− 1),

N(2p− 1) = N(2p)− 1, V (2p) = V (2p+ 1)− 1.

By substituting the initial values of N(1), N(2), V (0), the first two (main) relations

are solved by induction as N(2p) = V (2p+ 1) = 5 · 2p−1 − 2.

As a consequence, we can extract from a hyperpair H2p a poset X2p−1 with the

recovery complexity no greater than 5 · 2p, which allows us to construct a factory with

the characteristic Ck ∼ 5k, and this, due to (2.3) and the choice of parameters, leads

to an algorithm complexity estimate of 5n+ o(n).

In order to obtain a stronger bound, we note (this follows from the above reasoning)

that from a hyperpair H2p we can also extract a poset consisting of the center and

l 6 2p−1 elements smaller (larger) than it, by removing no more than 2p+2.5l edges.

Now, before extracting a poset from a hyperpair, we will perform comparisons of

the center with elements that do not belong to the hyperpair until we have k = 2p− 1

such elements, larger or smaller than the center.

Into the poset Xk obtained from a hyperpair, we include all elements added in

the last way, the rest we select directly from the hyperpair. Then the cost of the

production of a single poset (in the number of comparisons) may be estimated as k+ l

(the number of elements added in the second way) plus 2p+ 2.5(k− l) (the number of

comparisons required to restore a hyperpair), i.e. no more than 3.5k + o(k) in total.

(Formally, the latter summand relate to the production of the next poset, but when

summed up, this is insignificant.)

Taking into account Ik = (k + 1)2 − 1, Jk = (k + 1)2 + 2k and Ck ∼ 3.5k, we

establish the validity of the theorem. �

2.4 Fast multiselection algorithm

Let us return to the general problem of selecting elements of rank r1, . . . , rk in an n-

element set, formulated in the introduction (that is, the multiselection problem). We

assume 1 6 r1 < r2 < . . . < rk 6 n.
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Denote ∆i = ri − ri−1 − 1. The number of linear extensions of the poset P corre-

sponding to the multiselection problem is e(P) =
∏k+1

i=1 ∆i!, see (2.1). Therefore,

Cr1,...,rk(n) > Br1,...,rk(n) = log2(n!)−
k+1∑
i=1

log2(∆i!) = n log2 n−
k+1∑
i=1

∆i log2 ∆i −O(n)

(2.4)

by Corollary 2.1.

Obviously, Cr1,...,rk(n) = Cn+1−r1,...,n+1−rk(n), because any comparison tree that

selects elements of rank ri can be associated with a dual tree that selects elements

of rank n + 1 − ri (it selects elements of rank ri from the point of view of the order

relation >).

The example of selecting median shows that the information-theoretic lower bound,

in this case equal to Bn/2(n) ∼ n, does not necessarily provide the correct asymptotics

for the complexity of the (multi)selection problem. However, for large values of B, the

bound (2.4) is achievable in the asymptotic sense. The following holds:

Theorem 2.6 (K. Kaligosi, K. Mehlhorn, J. I. Munro, P. Sanders).

Cr1,...,rk(n) 6 (1 + o(1))Br1,...,rk(n) +O(n).

A weakened version of the bound of the theorem, O(B + n), is proposed to be

proved in Exercise 2.3.

I Set l = max{2, dB/ne}. Consider the following recursive procedure.

Input: a family C of ordered chains of length < 2l each and a set of ranks R =

{r1, . . . , rk}.
Output: elements of rank r1, . . . , rk.

Algorithm.

(i) If the total number of elements in C does not exceed 8l2, then a complete sorting

is performed, hence, all the desired elements are found.

(ii) Call an ordered chain short if its length is less than l. If there are two short

chains of the same length in C, then merge them. Perform such merges until the

lengths of all short chains become different. Denote the obtained family by D.

(iii) Find the median (middle element) of the medians of chains from D. Denote

it by m.

(iv) Split each chain from D into two by the “point” m. Into one part (the younger

one) we assign elements not exceeding m, and in the other (the older one) — the

remaining elements. Denote by r the rank of m — it becomes known after performing

the partitions.

(v) Recursively call the procedure for the family C ′ of younger chains and the set

of ranks R′ = R∩ [1, r] (if R′ is not empty), and also for the family C ′′ of older chains

and the set of ranks1 R′′ = (R \R′)− r (if R′′ is not empty).

1For brevity, S − r = {s− r | s ∈ S}.
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When solving a general problem, the initial call to the algorithm is made with a set

of n singletons (individual elements). The correctness of the algorithm is obvious: with

each recursive call, the number of elements is reduced.

By I(C) =
∑

c∈C |c| log2 |c| we define the information capacity of the family C,

where |c| denotes the length of a chain c. Let T be the recursion tree of the algorithm,

and v be its arbitrary node. Let us introduce additional notations associated with

a node v:

Iv = I(C) — information capacity of the input family;

pv = |C| — number of input chains;

nv — total number of elements in C;

Jv = I(D) — information capacity after merges;

qv = |D| — number of chains in family D;

I ′v = I(C ′), I ′′v = I(C ′′) — information capacity of output families;

p′v = |C ′|, p′′v = |C ′′| — number of output chains;

αvnv — total number of elements in family C ′.

Let us estimate the complexity of the algorithm by steps. Step (i) is performed at

the end nodes (leaves) of the tree for disjoint sets of elements, so its overall complexity

for all calls is O(n log l).

Claim 2.5. The number of comparisons performed during the merge stage at node v

does not exceed Jv − Iv + qv − pv.

� One merging of length-s chains requires at most

2s− 1 = 2s log2(2s)− 2s log2 s+ 1− 2

comparisons according to Lemma 1.3.

Recall that H(x) = −x log2 x − (1 − x) log2(1 − x) is the binary entropy function

defined on the interval [0, 1]. It is easy to see that the function H(x) is symmetric

with respect to the point x = 1/2, where it takes the maximum value 1. In addition,

the function is convex (upward): H ′′(x) < 0.

Claim 2.6. Jv 6 I ′v + I ′′v + nvH(αv).

� Let a chain di of a family D = {d1, . . . , dq} split into chains d′i ∈ C ′ and d′′i ∈ C ′′.
Denote αi = |d′i|/|di|. Then we obtain2

Jv − I ′v − I ′′v =

q∑
i=1

(|di| log2 |di| − |d′i| log2 |d′i| − |d′′i | log2 |d′′i |)

=
∑
|di| (log2 |di| − αi log2(αi|di|)− (1− αi) log2((1− αi)|di|))

=
∑
|di|H(αi) 6 nvH

(∑
αi|di|/nv

)
= nvH(αv).

2As usual, assuming 0 log 0 = 0.
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The latter inequality is valid due to the convexity of the entropy function.

Let’s check that the recursive partitioning into two subproblems is sufficiently bal-

anced.

Claim 2.7. For nv > 8l2, we have 1
16
6 αv 6 15

16
.

� Let us estimate from below the number of elements that are certainly higher than

the median m. By construction, qv > nv/(2l) > 4l. In the worst case, the medians

of the shortest chains are higher than m. Among those chains may be (at most) one

chain of every length 1, . . . , l − 1. The remaining chains contain at least

(qv/2− l) · l/2 > (nv − 4l2)/8 > nv/16

elements greater than m. The number of elements smaller than m is estimated simi-

larly.

Claim 2.8. For a nonempty set of ranks R = {r1, . . . , rk},

τ(n,R) =
∑

v∈T ; deg v>1

nvH(αv) 6 n log2 n−
k+1∑
i=1

∆i log2 ∆i + rk − r1 + 16n

(summation on the left side is performed over the internal nodes of the recursion

tree T ).

� The proof of the inequality in by induction on the tree depth. For n < 8l2 we have

τ(n,R) = 0 6 16n, hence, there is nothing to prove.

Now we prove the induction step. Let a problem with parameters n, k,R be split

into subproblems with parameters n′, k′, R′ and n′′, k′′, R′′ according to the algorithm

under consideration, where

n′ = αn, n′′ = (1− α)n, k = k′ + k′′, R′ = R ∩ [1, n′], R′′ = (R \R′)− n′.

Since we always have k > 0, without loss of generality assume that k′ > 0.

1. Consider the case k′′ > 0. Denote ∆′ = n′ − rk′ and ∆′′ = rk′+1 − n′ − 1 —

these are the lengths of the parts into which the interval (rk′ , rk′+1) is divided. By the

induction hypothesis, we obtain

τ(n,R) = nH(α) + τ(n′, R′) + τ(n′′, R′′)

6 nH(α) + n′ log2 n
′ + n′′ log2 n

′′ −
k+1∑
i=1

∆i log2 ∆i

+ ∆k′+1 log2 ∆k′+1 −∆′ log2 ∆′ −∆′′ log2 ∆′′ + rk − rk′+1 + rk′ − r1 + 16n

6 n log2 n−
k+1∑
i=1

∆i log2 ∆i + rk − r1 + 16n,



24 THEME 2: COMPLEXITY OF THE SELECTION PROBLEM

since

H(α) + α log2(αn) + (1− α) log2((1− α)n) = log2 n, (2.5)

and due to the inequality (a consequence of the downward convexity of the function

x log2 x)

(x+ y) log2(x+ y)− x log2 x− y log2 y 6 x+ y, (2.6)

applied with x = ∆′, y = ∆′′, x+ y = ∆k′+1.

2. In the case k′′ = 0, keeping the notation ∆′ = n′ − rk, we have

τ(n,R) = nH(α) + τ(n′, R′)

6 nH(α) + n′ log2 n
′ + n′′ log2 n

′′ −
k+1∑
i=1

∆i log2 ∆i

+ ∆k+1 log2 ∆k+1 −∆′ log2 ∆′ − n′′ log2 n
′′ + rk − r1 + 16n′

6 n log2 n−
k+1∑
i=1

∆i log2 ∆i + rk − r1 + 16n′ + ∆k+1

again in view of (2.5) and inequality (2.6) for x = ∆′, y = n′′, x+y = ∆k+1. It remains

to note that ∆k+1 < n 6 16n′′ by Lemma 2.7.

Claim 2.9. ∑
v∈T

(I ′v + I ′′v − Iv + qv − pv) 6 n log2(2l). (2.7)

� Given qv 6 p′v + p′′v, the sum on the left-hand side (2.7) is bounded from above as

−Iu − pu +
∑

v∈T ; deg(v)=1

(Iv + pv).

Here, the summation is performed over the leaves of the tree T , and u is the root node.

By assumption, Iu = 0 and pu = n. Families associated with different leaves of the

tree are pairwise disjoint, so
∑
pv = n. Finally, since all chains have length less than

2l, we obtain
∑
Iv 6 n log2(2l).

Together, Claims 2.8 and 2.9 yield an estimate for the complexity of merges —

step (ii) of the algorithm. Let us proceed to steps (iii) and (iv).

After the merge stage, at node v there are at most l short and nv/l long chains. Let

the selection of the median of k elements be performed in βk comparisons. Insertion

of an element (median) into a chain requires at most log2 l comparisons, since the

half-length of any chain is less than l. Therefore, given nv > 8l2, the complexity of

steps (iii), (iv) over all internal vertices of the tree is estimated as∑
v∈T ; deg v>1

(nv/l + l)(log2 l + β) � log l

l

∑
v∈T ; deg v>1

nv.
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The sum on the right-hand side can be estimated using Claim 2.8, since nv 6 3nvH(αv)

due to H(αv) > H(1/16) > 1/3 according to Claim 2.7.

Summing up the complexity of all steps, we finally obtain

Cr1,...,rk(n) 6

(
1 +O

(
log l

l

))
Br1,...,rk(n) +O(n log l).

It remains to note that n log l = O(n+ (B/l) log l). �

Exercises

Ex. 2.1. For selecting an element of rank n/4 from an n-element set, construct an algorithm

that has complexity asymptotically less than 3n. [D. Dor, U. Zwick]

Ex. 2.2. Show that if Yao’s conjecture is true that the complexity of selecting a subset

with a partial order Xk,l (k elements are greater than, and l elements are less than

some element) in an m-element set is the same for any m > k + l+ 1, then Cn/2(n) 6
2.5n+ o(n). [A. Schönhage, M. Paterson, N. Pippenger]

Ex. 2.3. Prove a weakened version of Theorem 2.6. Estimate the complexity of an algorithm

constructed recursively by selecting the median and splitting the problem in half.

[D. Dobkin, J. Munro]

Comments. The material of sections 2.1–2.2 is presented in [6], partly in the form of

exercises (including a simpler proof of Kislitsyn’s Theorem 2.3 than in the original paper [5]).

Theorem 2.2 is proved in [7]. Theorem 2.4 is proved in [1]. Theorem 2.5 is proved in [8] with

a better estimate of 3n+ o(n). The result of Theorem 2.6 is obtained in [4].

To improve the bound of Theorem 2.5 to 3n + o(n), at the second stage of the con-

struction of a poset Xk, instead of comparing the center with singletons, one should perform

comparisons with elements of ordered pairs, and also take into account comparisons between

elements of poset fragments that are returned to the factory. Developing a very sophisti-

cated modification of the method, D. Dor and U. Zwick [3] improved the bound further to

2.95n + o(n). In [2] they slightly improved the lower bound of Theorem 2.4 asymptotically

to (2 + ε)n, where ε ≈ 2−70.
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Theme 3

Comparator circuits

3.1 Introduction

This chapter discusses a popular model of comparator circuits. A comparator is a

circuit with two inputs x, y and two outputs, at which the functions min(x, y) and

max(x, y) are computed. A comparator circuit is a special case of a circuit of func-

tional elements. Its elements are comparators, and branching of the circuit inputs and

comparator outputs is prohibited (each circuit input or comparator output is used

only once). Due to this restriction, the number of circuit outputs coincides with the

number of inputs. As a result of the computation, some reordering of the input set is

implemented at the circuit output. The most important property of comparator cir-

cuits: the choice of elements for the next comparison does not depend on the results

of previous comparisons. A comparator circuit corresponds to a special case of a com-

parison tree, but unlike a general comparison tree, it is suitable for implementation in

electronic circuits. Fig. 3.1a shows a standard representation of a 4-element sorting

circuit “a la” a circuit of functional elements (bold lines denote the outputs of the

comparator maximums).

However, an alternative way of representing a comparator circuit is often more

convenient, see Fig. 3.1b. In it, a circuit is depicted as horizontal lines, with inputs

coming in from the left and output values appearing on the right. Comparators are

shown as jumpers connecting a pair of lines. A jumper sends the smaller of the elements

coming in to the comparator input upwards, and the larger one downwards.

The complexity of a circuit Σ is the number of comparators in it; denoted by

S∗(Σ). By S∗(n) we denote the minimum complexity of a circuit sorting n elements.

By definition, S∗(n) > S(n).

Another important indicator of the circuit efficiency is its depth. This is the number

of layers of parallel (i.e. independent) comparators. Alternatively, as in the case of

ordinary circuits of functional elements, the depth can be defined as the maximum

number of comparators in an input-output chain in the circuit. To denote the circuit

27
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Figure 3.1: Comparator circuit sorting 4 elements: standard (a) and special (b) rep-

resentations

depth, we use the symbol D. The circuit in Fig. 3.1 has complexity 5 and depth 3.

For the analysis of sorting circuits (in general, circuits sorting posets) the well-

known principle of zeros and ones is useful.

Lemma 3.1 (D. Knuth). If a comparator circuit sorts a poset on any input of zeros

and ones, then it does it correctly on an arbitrary input.

� Since a comparator maps an input vector (x, y) to the

vector (min{x, y}, max{x, y}), then for any monotone function f it maps a vector

(f(x), f(y)) to (f(min{x, y}), f(max{x, y})). Therefore, if a comparator circuit maps

an input vector (x1, . . . , xn) to (y1, . . . , yn), then it maps the vector (f(x1), . . . , f(xn))

to (f(y1), . . . , f(yn)).

Let a comparator circuit map some input (x1, . . . , xn) into an output (y1, . . . , yn),

in which the order is violated due to, say, yi > yi+1. Define the function f : R→ {0, 1}
as f(x) = (x > yi). Then we obtain that the circuit does not order the poset on the

boolean input (f(x1), . . . , f(xn)).

3.2 Merging circuits

The limitations of the comparator circuit model become apparent when attempting to

construct efficient sorting circuits. Simple approaches, on which fast sorting algorithms

are based, do not lead to optimal solutions for comparator circuits. This can be clearly

demonstrated on the example of the problem of merging ordered sets. Recall that in

the unconstrained model, merging has linear complexity (see Lemma 1.3).

Theorem 3.1 (P. B. Miltersen, M. Paterson, Y. Tarui). S∗(Ln,n) > n log2 n−O(n).

I Let the inputs of the circuit be ordered arrays x1 6 . . . 6 xn and y1 6 . . . 6 yn,

and the outputs be z1 6 . . . 6 z2n.

On the set Πn,n of permutations π : {x1, . . . , xn, y1, . . . , yn} → {z1, . . . , z2n}
consistent with the partial order, we consider some probability distribution. Then

σk = π−1(zk) is a random variable taking values in the set of input variables.
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First, recall a well-known fact from information theory. Let σ be a random variable

taking values in a finite set A = {ai}, where P[σ = ai] = pi. Entropy (information

entropy, Shannon entropy) of σ is defined as H(σ) = −
∑
pi log2 pi. A prefix code is a

mapping of a set A into a set of words of some alphabet such that no coding word is

the beginning of another.

Lemma 3.2 (C. Shannon). For any prefix encoding of the elements of an alphabet A by

binary words, ai → c(ai), we have E[|c(σ)|] > H(σ), where |b| is the length of a word b.

� Consider an optimal encoding c that provides the minimum average symbol length

E[|c(σ)|]. We apply induction on the size of the set A.

In the case |A| = 2, a one-bit code is always optimal, for which the inequality

p1 + p2 = 1 > H(σ) = H(p1) obviously holds: here the entropy of a random variable

coincides with the binary entropy function of one variable.

Now note that with optimal encoding there are two symbols whose codes differ

only in the last position. Otherwise, the last digit could be removed from the longest

code word.

For |A| = n > 2, assume that the codes of the symbols an−1 and an differ exactly in

the last position. Identifying these symbols (an := an−1), we move to the alphabet A′

of size n − 1. Consider the random variable σ′ on A′, which differs from σ in that

it takes the value an−1 with probability pn−1 + pn, and the encoding c′, in which the

common part of the code words of the two identified symbols is used to encode the

symbol an−1. Then, by the induction assumption,

E[|c(σ)|] = pn−1 + pn + E[|c′(σ′)|] > pn−1 + pn +H(σ′) =

H(σ) + pn−1 + pn + (pn−1 + pn) log2(pn−1 + pn)− pn−1 log2(pn−1)− pn log2(pn).

Due to inequality (2.6), the expression on the right-hand side is not less than H(σ).

Our next goal is to estimate the number of segments R into which horizontal lines

are divided by comparators in the minimal merging circuit S. Each segment conducts

some input (or output, depending on which side you look at it) variable. Let P π
i

denote the path (set of segments) that an input variable passes to an output zi under

a permutation π. Each such path can be specified as a binary code: scanning the

path from right to left, each time a comparator is reached by zero, determine the

continuation through the upper input of the comparator, and by one – through the

lower input.

Then, to each possible value x of a random variable σk, we can associate a code

Ck(x) of the shortest path passing through the variable x to the output zk for some

suitable permutation from Πn,n. For any k, the set of words Ck(x) will be a prefix

code, since the paths have different starting (final from the code’s point of view) points.
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Now, applying Lemma 3.2, for a random permutation π we obtain

R =
2n∑
k=1

E[|P π
k |] > 2n+

2n∑
k=1

E[|Ck(σk)|] > 2n+
2n∑
k=1

H(σk). (3.1)

It remains to construct a probability distribution on the set Πn,n that provides a

high lower bound.

Note that the feasible permutations in the merge problem are in one-to-one corre-

spondence with monotone paths in an integer lattice on vertices with coordinates from

0 to n, see Fig. 3.2. The paths start in the lower left corner and end in the upper right.

If the next element in order belongs to the group {xi}, then we move to the right, if

to the group {yj}, then up1. Conversely, it is easy to reconstruct a permutation from

a path.
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Figure 3.2: Permutations and monotone paths in a lattice

Next, we denote by αi,j and βi,j the probabilities that a path passes through the

edge ((i − 1, j), (i, j)) and, respectively, through ((i, j − 1), (i, j)), see Fig. 3.2. Set

γi,j = αi,j + βi,j — the probability that a path visits the vertex (i, j).

By construction, αi,j = P[zi+j = xi] and βi,j = P[zi+j = yj]. At all vertices (i, j),

except the starting and final ones, we have

αi,j + βi,j = αi+1,j + βi,j+1 = γi,j. (3.2)

For the extreme vertices,

1 = γ0,0 = α1,0 + β0,1 = αn,n + βn,n = γn,n. (3.3)

Conditions (3.2), (3.3) define a unit flow (through the lattice). Thus, the probability

distribution on Πn,n determines a flow. We will show that the correspondence between

flows and distributions is one-to-one.

Claim 3.3. Any unit flow, i.e. a system of nonnegative quantities αi,j, βi,j, satisfying

conditions (3.2), (3.3), corresponds to some probability distribution on the set Πn,n.

1The path shown in Fig. 3.2 corresponds to the permutation (x1, y1, y2, x2, x3, y3, x4, y4).
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� A random path is constructed according to the rule: from a vertex (i, j), a move

to the right is performed with probability αi+1,j/γi,j, and upwards — with probability

βi,j+1/γi,j. Now, by induction on i+j, it is easy to verify that the probability of visiting

a vertex (i, j) is γi,j, from which it follows that the proposed probability distribution

determines the given flow.

Let us define the flow by the following rules: for 0 < i+ j 6 n set

αi,j = βj,i = αn+1−i, n−j = βn−j, n+1−i =
i

(i+ j)(i+ j + 1)

(the coefficients are symmetric with respect to the diagonals x = y and x+ y = n). It

is easy to verify that the conditions (3.2), (3.3) are satisfied2.

Noting that H(σk) = −
∑k

i=1 αi,k−i log2 αi,k−i −
∑k

i=1 βk−i,i log2 βk−i,i, by taking

into account the symmetry of the coefficients, we obtain

2n∑
k=1

H(σk) = −4
n∑
k=1

k∑
i=1

αi,k−i log2 αi,k−i = −4
n∑
k=1

1

k(k + 1)

k∑
i=1

i log2

i

k(k + 1)

= 4
n∑
k=1

log2(k(k + 1))

k(k + 1)

k∑
i=1

i− 4
n∑
i=1

i log2 i ·
n∑
k=i

1

k(k + 1)

= 2
n∑
k=1

log2(k(k + 1))− 4
n∑
i=1

(
1− i

n+ 1

)
log2 i

= 4 log2(n!) + 2 log2(n+ 1)− 4 log2(n!) +
4

n+ 1

n∑
i=1

i log2 i

> 2 log2(n+ 1) +
4

n+ 1

∫ n

1

x log2 x dx

= 2 log2(n+ 1) +
1

n+ 1
· x2(2 log2 x− log2 e)

∣∣n
x=1

= 2 log2(n+ 1) + 2
n2

n+ 1
log2 n− (n− 1) log2 e > 2n log2 n− n log2 e.

Since each comparator adds two segments to the circuit, from (3.1) we finally derive

S∗(Ln,n) = (R− 2n)/2 > n log2 n− 0.5n log2 e.

�

The asymptotic accuracy of the obtained estimate is demonstrated by the simple

Batcher method.

Theorem 3.2 (K. E. Batcher). S∗(Ln,n) 6 ndlog2 ne+ n.

2With a uniform distribution, a random path will almost certainly pass close to the diagonal x = y.

The proposed distribution increases the probability of a path moving away from the diagonal and

uniformly distributes paths along the diagonals x + y = k. The probability of visiting any point of

the lattice on the diagonal x+ y = k is the same and equals 1/(min{k, 2n− k}+ 1).
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I Let us construct recursively circuits Mn of merging of size-n ordered sets. The

inputs of the circuit Mn are x1 6 x2 6 . . . 6 xn and y1 6 y2 6 . . . 6 yn. The circuit is

structured as follows. The subcircuits Mdn/2e and Mbn/2c sort the groups of elements

with odd and even indices, respectively, i.e. x1, y1, x3, y3, . . . and x2, y2, x4, y4, . . . The

result of their work are ordered sets u1 6 u2 6 . . . 6 u2dn/2e and, respectively, v1 6
v2 6 . . . 6 v2bn/2c. Note that ui 6 vi, since each element with an even index can be

associated with a preceding element with an odd index. Thus,

u1 6 v1, u2 6 v2, u3 6 . . .

Therefore, to complete the sorting, it is sufficient to perform comparisons in pairs

vi, ui+1. So we obtain the relation

S∗(Ln,n) 6 S∗(Ldn/2e,dn/2e) + S∗(Lbn/2c,bn/2c) + n− 1,

which, taking into account S∗(L1,1) = 1, is resolved as stated in the assertion the

theorem. �

An attempt to construct a sorting circuit via merging circuits, as in Theorem 1.2,

leads only to circuits of complexity O(n log2 n), although they are quite practical.

Constructing circuits of complexity O(n log n) required a nontrivial mathematical ap-

paratus (see in Section 3.5 below).

3.3 Lower bounds on the complexity and depth of

sorting

The information-theoretic lower bound S(n) > log2 n! ∼ n log2 n is, of course, also

valid for comparator circuits. But given the limitations of the computational model

of the circuits, it can be strengthened.

A good potential function is a continuous function f(x) : [0, 1]→ R, for which the

following conditions are satisfied:

(1) f(0) = f(1) = 0;

(2) For any p, q, r such that 0 6 pq 6 r 6 p 6 q 6 1,

f(p) + f(q)− f(r)− f(p+ q − r) 6 p+ q − 2r. (3.4)

Theorem 3.3 (N. Kahale, T. Leighton, Y. Ma, C. G. Plaxton, T. Suel, E. Szemerédi). If f(x)

is a good potential function, then S∗(n) > (f(1/2)− o(1))n log2 n.

I Consider an arbitrary circuit Σ from the set Σn of n-input sorting circuits and

some input vector α ∈ {0, 1}n. Denote by a(Σ, α), b(Σ, α) and c(Σ, α) the number

of comparators in the circuit whose input values are both equal to 1, both equal

to 0 and different, respectively. Such comparators will be called 11-comparators, 00-

comparators and 01-comparators. Further |α| denotes the weight of a boolean vector α.
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Lemma 3.4. Let α ∈ {0, 1}n . If Σ ∈ Σn, then a(Σ, α) > S∗(|α|) and b(Σ, α) >
S∗(n− |α|).

� Let us prove the first inequality (the second is proved similarly). To do this, we

will show that from the set of 11-comparators of Σ, it is possible to compose a k-input

sorting circuit.

Remove the circuit inputs corresponding to the zeros of the vector α. Next, se-

quentially, moving from the inputs to the outputs, remove the 00-comparators together

with the edges coming out of them, as well as the 01-comparators, connecting their

1-valued inputs to the outputs on which maximums are obtained and removing the

edges outgoing from the minimum outputs. As a result, we will construct a compatator

circuit3 Σ1 with k inputs and complexity exactly a(Σ, α).

In this case, a natural one-to-one correspondence is obtained between:

– inputs of the circuit Σ1 and a subset of inputs (corresponding to 1s of the vector α)

of the circuit Σ;

- comparators of the circuit Σ1 and 11-comparators of the circuit Σ;

- outputs of Σ1 and the subset Ok of outputs that produce the maximum k values

in the circuit Σ.

Now consider an arbitrary size-n input vector β in which the maximum k elements

are at the positions of 1s of the vector α. By feeding the corresponding components

of β to the corresponding inputs of the circuits Σ and Σ1, we obtain that the inputs

and outputs of the corresponding comparators in both circuits take the same values,

and therefore the corresponding outputs of both circuits also take the same values.

Since the outputs Ok of the circuit Σ contain an ordering of the maximal k elements

of the vector β, the same is true for the outputs of the circuit Σ1. Therefore, due to

the arbitrariness of the choice of β, we conclude that Σ1 is a sorting circuit.

Denote

C(n) = min
Σ∈Σn

max
α∈{0, 1}n

c(Σ, α).

Lemma 3.5.

S∗(n) > min
0<i<n

(S∗(i) + S∗(n− i)) + C(n).

� Let us choose as Σ a circuit that delivers the minimum of S∗(n). By the definition

of C(n), there exists a vector α ∈ {0, 1}n such that c(Σ, α) > C(n). Let k = |α|.
Then by Lemma 3.4,

S∗(n) = a(Σ, α) + b(Σ, α) + c(Σ, α)

> S∗(k) + S∗(n− k) + C(n) > min
0<i<n

(S∗(i) + S∗(n− i)) + C(n).

3If we depict the circuits as in Fig. 3.1, it is easy to see that the reduced circuit is placed on k lines

that can change a level in the positions of the 01-comparators of the original circuit.



34 THEME 3: COMPARATOR CIRCUITS

Claim 3.6. If C(n) > (γ − o(1))n, then S∗(n) > (γ − o(1))n log2 n.

� Let us show that for any ε > 0, we have S∗(n) > (γ − ε)n log2 n for all n > n0(ε).

Assume that C(n) > (γ−ε/2)n holds for n > n1, and let the constant cε be chosen

so that for n 6 n1,

S∗(n) > (γ − ε/2)n log2 n− cεn. (3.5)

We prove (3.5) by induction for any n > n1.

Let k provide the minimum of S∗(k) +S∗(n− k). Denoting γ′ = γ− ε/2, according

to Lemma 3.5 and the induction hypothesis, we obtain

S∗(n) > S∗(k) + S∗(n− k) + γ′n

> γ′k log2 k + γ′(n− k) log2(n− k) + γ′n− cεk − cε(n− k) > γ′n log2 n− cεn,

where in the last step we applied inequality (2.6).

Now we can choose n0 from the condition (ε/2)n0 log2 n0 > cεn0.

In view of what has been proved, it remains to obtain a good lower bound for C(n).

Instead of C(n), it is more convenient to consider an average quantity

C̄(n) = min
Σ∈Σn

 1

2n

∑
α∈{0, 1}n

c(Σ, α)

 .

Obviously, C(n) > C̄(n).

Let h(x1, . . . , xn) be a boolean function. Denote by |h| the number of inputs on

which the function is 1. Recall the following well-known fact from the field of boolean

cube combinatorics:

Lemma 3.7. Let u, v be monotone boolean functions of n variables. Then 2n|uv| >
|u||v|.

This statement follows from a more general fact. For the function ϕ(x) : {0, 1}n →
R>0 we introduce the notation |ϕ| =

∑
x∈{0, 1}n ϕ(x). The following holds:

Theorem 3.4 (R. Ahlswede, D. E. Daykin). Let α, β, γ be nonnegative functions such that

for any x, y ∈ {0, 1}n,

α(x)β(y) 6 γ(x ∨ y),

where ∨ denotes the bitwise disjunction of binary vectors. Then |α||β| 6 2n|γ|.

Note that Lemma 3.7 follows from this theorem under the substitution α = u,

β = v, γ = uv, since by monotonicity, u(x ∨ y)v(x ∨ y) > u(x)v(y), and the two

definitions for |ϕ| coincide in the case of a monotone boolean function.
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I Proof is by induction on n. Consider the case n = 1. For any function ϕ ∈ {α, β, γ},
denote ϕx = ϕ(x), x ∈ {0, 1}. By the induction hypothesis,

α0β0 6 γ0, α0β1, α1β0, α1β1 6 γ1.

The relation to be proved in this case has the form

(α0 + α1)(β0 + β1) 6 2(γ0 + γ1).

If γ1 = 0, then it is obvious. Otherwise, from

(γ1 − α0β1)(γ1 − α1β0) > 0

it follows

(α0 + α1)(β0 + β1)γ1 6 (γ1 + α0β0)(γ1 + α1β1).

Dividing both sides by γ1 > 0, we obtain

(α0 + α1)(β0 + β1) 6 (γ1 + α0β0)

(
1 +

α1β1

γ1

)
6 (γ0 + γ1)(1 + 1),

which is what we needed.

Now, consider the induction step from n−1 to n. We will write a vector x ∈ {0, 1}n
as x̄, x∗, where x̄ ∈ {0, 1}n−1, and x∗ ∈ {0, 1}, i.e., selecting a single component

x∗ of the vector x. From the function ϕ ∈ {α, β, γ} derive the function ϕ′(y) =

ϕ(y, 0) + ϕ(y, 1) for any y ∈ {0, 1}n−1.

1. Let us show that α′(y)β′(z) 6 2γ′(y ∨ z) for any y, z ∈ {0, 1}n−1. To do

this, having fixed y and z, we consider the functions ᾱ(x) = α(y, x), β̄(x) = β(z, x),

γ̄(x) = γ(y ∨ z, x), where x ∈ {0, 1}. For ᾱ, β̄, γ̄ the conditions of the theorem are

satisfied in the case n = 1, for which it has already been proved, thus,

α′(y)β′(z) = (ᾱ(0) + ᾱ(1))(β̄(0) + β̄(1)) 6 2(γ̄(0) + γ̄(1)) = 2γ′(y ∨ z).

2. Now we can apply the induction hypothesis to the set of functions α′, β′, 2γ′

and obtain |α′||β′| 6 2n−1|2γ′|, and hence, since |ϕ′| = |ϕ|, the desired inequality

|α||β| 6 2n|γ|. �

Recall that the output of any comparator circuit implements a monotone function

of the input variables, in particular, a monotone boolean function if the inputs take

values from the set {0, 1}. This follows from the fact that the function implemented

at the output is a composition of the monotone functions min and max, implemented

by individual comparators.

Let xi and yi denote the probability that an i-th input (respectively, output) of

a comparator circuit Σ takes the value 1 under the assumption that random variables

uniformly distributed on the set {0, 1} are fed to the inputs of the circuit. In this case,

the probability of event X coincides with the ratio of the number of input vectors for

which X is satisfied to the number of all vectors, that is, 2n for n dimensions. Denote

fI(Σ) =
∑n

i=1 f(xi) and fO(Σ) =
∑n

i=1 f(yi), where f is a good potential function.



36 THEME 3: COMPARATOR CIRCUITS

Lemma 3.8. Let Σ′ be the comparator circuit obtained by connecting a comparator

e to the outputs of Σ. If f is a good potential function, then the probability that e is

a 01-comparator is no less than fO(Σ)− fO(Σ′).

� Let p and q be the probabilities that the first and, respectively, the second input

of comparator e is 1, and let r be the probability that both inputs are equal to 1.

Then the probability that the smaller output of e is equal to 1 is r, and that the larger

output is equal to 1 is p + q − r. Since the outputs implement monotone functions,

r > pq by Lemma 3.7. On the other hand, r 6 min{p, q}. Therefore, we obtain

fO(Σ)− fO(Σ′) = f(p) + f(q)− f(r)− f(p+ q − r) 6 p+ q − 2r,

where p+ q − 2r is precisely the probability that e is a 01-comparator.

Corollary 3.9. In an arbitrary circuit Σ, the average number of 01-comparators is at

least fI(Σ)− fO(Σ) = nf(1/2)− fO(Σ).

Lemma 3.10. If f is a good potential function, then C̄(n) > (f(1/2)− o(1))n.

In order to obtain also a good depth estimate, we will prove this lemma in a

stronger formulation, as applied to the approximate sorting problem. Let Σn,r consist

of circuits obtained from sorting circuits by removing the last r layers of comparators,

and let C̄r(n) denote the minimum average number of 01-comparators in such circuits.

First, we prove an auxiliary lemma.

Lemma 3.11. If elements of ranks r and s can appear at some output of a comparator

circuit, then (on suitable input vectors) elements of any intermediate rank can appear

at the same output.

� Assuming that a set of numbers from 1 to n is fed to the inputs of the circuit, with

each input set v we associate a permutation π([n]) = (π(1), π(2), . . . , π(n)), where

π(k) is the number of line which receives the number k.

Let π1 and π2 be the permutations corresponding to the input vectors for which

the numbers r and s appear at the output of interest to us. It is well known that one

permutation can be transformed into another via transpositions of the form π(i) ↔
π(i+ 1).

As a result of applying a transposition to the input set, the values at the compara-

tors’ outputs change by no more than 1: in fact, all possible changes are reduced to

transformations of the numbers i and i + 1 into one another. Consequently, at the

output of the circuit under consideration, in the process of transforming π1 into π2 by

means of transpositions, every number in the interval between r and s will appear.

Lemma 3.12. If f is a good potential function, and r 6 log2 n− ω(n), then C̄r(n) >
(f(1/2)− o(1))n.
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� As follows from Corollary 3.9, it suffices to show that for an arbitrary circuit

Σ ∈ Σn,r and a good potential function f , we have fO(Σ) = o(n). Let the sorting

circuit Σ′ ∈ Σn be obtained from Σ by adding r layers of comparators.

Let t = max{2r,
√
n log2 n}. In the set of outputs of Σ′, we distinguish three

groups: group G1 of outputs producing n/2 − 2t maximal elements, group G2 of

outputs producing n/2− 2t minimal elements, and group G3 of outputs producing 2t

middle elements.

Since the output of the circuit Σ is connected by directed paths with at most

2r outputs of the circuit Σ′, then by Lemma 3.11 no output of Σ can be connected

with outputs from two different groups G1, G2, G3. By H1 and H2 we denote the sets

of outputs of Σ connected with the groups of outputs G1 and, respectively, G2. By

construction, |Hi| > n/2− 2t.

Recall the standard estimate of the sum of binomial coefficients (a variant of Cher-

noff’s inequality):
n/2−t∑
k=0

Ck
n 6 2ne−2t2/n.

It follows from this that the proportion of length-n vectors in which there are less than

n/2− t ones or less than n/2− t zeros is o(1). Therefore, for any output from H1, the

probability that it takes the value 1 is 1−o(1), and for an output from H2, the similar

probability is o(1).

Thus, fO(Σ) can be estimated as

fO(Σ) 6 (n/2− 2t) (f(o(1)) + f(1− o(1))) + 4t max
x∈[0, 1]

f(x) = o(n),

since f(o(1)), f(1−o(1)) ∈ o(1) due to the continuity of f , and maxx∈[0, 1] f(x) = 1.

Now Theorem 3.3 follows from the proved lemma and Claim 3.6. �

In order to obtain a nontrivial lower bound by Theorem 3.3, it remains to present

a good potential function with a high value at 1/2. The simple examples min{x, 1−x}
and 4(x− x2) are not suitable for this purpose. Therefore, we turn to polynomials of

higher degrees.

Corollary 3.13. S∗(n) > (C − o(1))n log2 n, where C = 25/22 ≈ 1.136.

� First, note that if f(0) = f(1) = 0 and f ′′(x) 6 0, then f is a good potential

function if condition (2) is satisfied for r = pq. Indeed, the difference between the

right and left sides (3.4) as a function of the variable r is convex upward: its second

derivative is f ′′(r)+f ′′(p+q−r) 6 0, and a convex upward function can take minimal

values on a segment only at the ends of the segment. Since inequality (3.4) is certainly

satisfied for r = p, it remains to check it for r = pq.

1. We will search for f in the form γ · f̂(x− 1/2), where f̂(y) = 1
16

+ a
4
− ay2− y4.

The form of the function is determined by natural requirements: f̂ is symmetric with
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respect to the point y = 0, where it has a local maximum, and is zero at the points

y = ±1
2
. We will determine the parameter a > 0 later. The constant γ is chosen so

that inequality (3.4) turns into equality at p = q = 1/2 and r = pq = 1/4 (we assume

this case is extremal). Hence, γ = 64
16a+1

.

By construction, condition (1) is satisfied. It is also easy to see that f̂ ′′(y) =

−2a− 12y2 6 0 for all y. It remains to check condition (2) for r = pq.

2. In the notations y = (p+ q− 1)/2 and x = (q− p)/2, inequality (3.4) for r = pq

may be rewritten as

f̂(y − x) + f̂(y + x)− f̂((y + 1/2)2 − x2 − 1/2)− f̂(2y − (y + 1/2)2 + x2 + 1/2)

= Dy(x)−Dy(1/4− y2 + x2) 6
16a+ 1

32
(1/4− y2 + x2), (3.6)

where Dy(x) = f̂(y − x) + f̂(y + x) = 1
8

+ a
2
− 2ay2 − 2ax2 − 2y4 − 2x4 − 12x2y2.

3. First, we ensure that the difference between the left and right sides of (3.6) is

maximal at x = 0 (i.e. when p = q). To do this, it suffices to show that

Dy(0)−Dy(1/4− y2)−Dy(x) +Dy(1/4− y2 + x2) >
16a+ 1

32
x2. (3.7)

We have

Dy(0)−Dy(x) = (2a+ 12y2)x2 + 2x4.

Denote Y = 1/4− y2. Due to Y 6 1/4 and the convexity of the functions x2 and x4,

we obtain

Dy(Y )−Dy(Y + x2) = (2a+ 12y2)((Y + x2)2 − Y 2) + 2((Y + x2)4 − Y 4)

6 (2a+ 12y2)(x4 + x2/2) + 2(x8 + x6 + 3x4/8 + x2/16)

= (a+ 1/8 + 6y2)x2 + (2a+ 3/4 + 12y2)x4 + 2x6 + 2x8.

Now the left-hand side in (3.7) is estimated from below as

(a− 1/8 + 6y2)x2 − (2a− 5/4 + 12y2)x4 − 2x6 − 2x8.

Since x 6 1/2, we have y2x2 > 4y2x4, so the above expression is minimal at y = 0.

Now the validity of (3.7) is ensured by the inequality(
a

2
− 5

32

)
X−

(
2a− 5

4

)
X2−2X3−2X4 = X

(
1

4
−X

)(
2X2 +

5

2
X + 2a− 5

8

)
> 0

for X = x2 ∈ [0, 1/4] and under the additional restriction a > 5/16.

4. It remains to prove (3.6) for x = 0. It holds

Dy(0)−Dy(Y )− 16a+ 1

32
Y = (2a+ 12y2)Y 2 + 2Y 4 −

(
a

2
+

1

32

)
Y

= (2a+3−12Y )Y 2+2Y 4−
(
a

2
+

1

32

)
Y = Y

(
Y − 1

4

)(
2Y 2 − 23

2
Y + 2a+

1

8

)
6 0
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for Y ∈ [0, 1/4], if only the last quadratic factor P (Y ) is nonnegative. Since it takes

its minimum value at the right end of the segment, for Y = 1/4, it is sufficient to

require P (1/4) > 0. So we obtain a > 21/16. Then, condition (2) is satisfied.

Finally, to maximize the value f(1/2) = γf̂(0) = 1 + 3
16a+1

, we choose a = 21/16.

Lemma 3.12 and Corollary 3.13 imply a lower bound for the depth of sorting circuits

(note that at most n/2 comparators can be placed on one layer).

Theorem 3.5. D(n) > (36/11− o(1)) log2 n.

3.4 Lower bounds on the complexity and depth of

selection

The following method provides decent bounds on the complexity and depth of selection.

Let the layers of comparators divide the horizontal lines of the circuit into segments.

Associate weights with the line segments: let wl,j refer to the l-th segment of line j,

see Fig. 3.3. By [i : j] we further denote the comparison of elements on the i-th and

j-th lines.
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Figure 3.3: Comparator circuit with weights assigned to segments

1) Set w0,j = 0 for all j.

2) If there are no comparators in the l-th layer connected to line j, set wl+1,j = wl,j.

3) If there is a comparator [i : j] in the l-th layer, where i < j, set wl+1,i =

min{wl,i, wl,j} and wl+1,j = max{wl,i, wl,j}+ 1.

Lemma 3.14. To ensure that the j-th output of a comparator circuit always returns

an element of rank > r, it is necessary that the weight of the output segment of line j

be at least log2 r.

� Let vl,j denote the minimal possible rank of an element on the l-th segment of

line j. Obviously, v0,j = 1. Let the comparator [i : j], where i < j, be in the l-th layer

of the circuit. Then

vl+1,i = min{vl,i, vl,j}, vl+1,j 6 vl,i + vl,j.
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The first relation is obvious, the second follows from the estimate of the cardinality of

the union of the sets of elements subordinate to the two compared ones.

It remains to note that by the definition of weight, 2wl,j > vl,j.

Further, the complexity and depth of selecting an element of rank t are denoted

by C∗t (n) and Dt(n). Since the sum of weights of output segments is equal to the

complexity of the circuit, Lemma 3.14 immediately implies

Theorem 3.6 (V. E. Alekseev). C∗t (n) > (n− t) log2 t.

The maximum estimate, asymptotically n log2 n, is obtained for selecting an ele-

ment of rank t � n/ log n.

A good depth lower bound requires a little more careful argument. We show that

the weights of the segments cannot, all together, grow too quickly from layer to layer.

Consider an arbitrary n-input comparator circuit. Let xl,k = |{j | wl,j = k}| be the

number of lines with l-th segment weights equal to k. We also introduce an auxiliary

quantity

yl,k =
k∑
i=0

(k + 1− i)xl,i.

It has the meaning of the total “shortage” of the l-th segment weights to the threshold

value k + 1. By construction, y0,k > y1,k > y2,k > . . . The proof strategy requires that

yl,k be estimated from below.

Claim 3.15.

yl,k >
n

2l

k∑
j=0

(k + 1− j)Cj
l .

� First, note that

yl,k − yl+1,k 6 (xl,0 + xl,1 + . . .+ xl,k)/2. (3.8)

This is true because there are at most s/2 comparators attached to s lines on a single

layer.

Next, we note that by definition of yl,k,

yl,0 = xl,0, yl,k − yl,k−1 = xl,0 + xl,1 + . . .+ xl,k. (3.9)

From here we find that yl+1,0 > yl,0 and in view of (3.8), (3.9),

yl+1,k > yl,k − (yl,k − yl,k−1)/2 = (yl,k + yl,k−1)/2.

Thus, for the normalized quantities y′l,k = 2lyl,k/n, we have

y′0,k = k + 1, y′l+1,k > y′l,k + y′l,k−1.
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Here the first relation provides the base of induction l = 0, and the second — the

induction step from l to l + 1:

y′l+1,k >
k∑
j=0

(k + 1− j)Cj
l +

k∑
j=1

(k + 1− j)Cj−1
l =

k∑
j=0

(k + 1− j)Cj
l+1.

Corollary 3.16. For a depth-d circuit selecting an element of rank t in an n-element

set,

t(blog2 tc+ 1) > n2−d
(
C0
d + C1

d + . . .+ C
blog2 tc
d

)
. (3.10)

� Estimate yd,blog2 tc+1 with the use of Lemma 3.14 on the one hand, and by Claim 3.15

on the other.

For fixed n, t, the right-hand side of inequality (3.10) is a decreasing function with

respect to d. Therefore, the maximum d for which the inequality does not hold serves

as a lower bound for the depth. We restrict ourselves to the extreme case of selecting

the median.

Let D(n, t) denote the depth of selecting an element of rank t in an n-element set.

Theorem 3.7 (A. Yao). D(n, n/2) > (a− o(1)) log2 n, where a = log4/3 2 ≈ 2.41.

I To estimate the depth of a selection circuit, we choose t = nα. Let d = β log2 n.

Taking the base-n logarithm of (3.10), we obtain the condition under which d is a

lower bound for the depth of the selection of a rank-t element for sufficiently large n:4

α < 1− β + βH(α/β).

When substituting β = 3α, the specified condition becomes α < 1/(4 − 3H(1/3)) =

a/3. Therefore, for some α = a/3− o(1), inequality (3.10) is violated.

Thus, the desired bound is proved for the selection of an element of rank t = nα.

It remains to note that D(n, t) 6 D(2n− 2t, n− t). Indeed, if in a circuit for selecting

the median of 2n − 2t elements we fix the lines of the smallest n − 2t elements and

remove the comparators connected to them, then the rest of the circuit will perform

the selection of an element of rank t. �

3.5 Fast sorting (AKS-circuits)

This section presents the design of comparator circuits, now known as AKS-circuits5.

The method exploits several ideas at once, the central one being the idea of approxi-

mate computations. It turned out to be advantageous to construct sorting circuits from

subcircuits that perform sorting approximately, with a controlled error probability.

4Recall that H(x) = −x log2 x−(1−x) log2(1−x) is the binary entropy function. In what follows,

we use the well-known fact: Cαnn = 2n(H(α)−o(1)) for α > 0.
5By the names of the authors of the method: M. Ajtai, J. Komlós, E. Szemerédi.
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Let us introduce the concept of approximate sorting. Assume 0 < ε 6 1 and

0 < λ 6 1/2. A comparator circuit on n inputs is called a (λ, ε)-separator if for any

m 6 λn the circuit places at least (1 − ε)m of the m largest elements among the λn

right outputs and at least (1 − ε)m of the m smallest elements — among the λn left

outputs. The following two lemmas establish the existence of separators of constant

depth (and hence of linear complexity).

Lemma 3.17. For any ε > 0 and any n, there exists a (1/2, ε)-separator6 on 2n inputs

of depth O(1/ε3) as ε→ 0.

� If n is small, say, n < 64/ε3, then apply any sorting circuit. Therefore, we further

assume that n > 64/ε3.

We will show that the required circuit can be composed of several layers of compara-

tors, where at each layer the elements from the junior (left) and senior (right) halves

are compared according to a randomly selected matching. An example of a circuit is

shown in Fig. 3.4a.

Let us associate such a circuit with a bipartite (n, n)-graph: the vertices of one

part correspond to the positions of elements from the junior half, and the other – from

the senior half. Two vertices of the graph are connected by an edge if a comparison of

the corresponding elements was performed at some layer of the circuit, see Fig. 3.4b.

In other words, the graph is a composition of matchings that define the layers of the

circuit.
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Figure 3.4: Comparator circuit (a) and its graph (b)

I. First, we prove that a circuit is a (1/2, ε)-separator if its graph is an (ε, α)-

expander, α = 1/ε− 1/2, which means: for every m 6 εn, any set of m vertices in one

part is connected by edges to at least αm vertices in the other part.

6(1/2, ε)-separators are also called ε-halvers.
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Note that if two nodes are connected by an edge in the graph, then the functions

computed at the corresponding outputs of the circuit satisfy the relation 6 (one part

collects only the minima of ordered pairs, and the other only the maxima).

Now suppose that the circuit is not a separator, i.e., for some input set, say, among

k 6 n largest elements p > εk are placed into the junior half. Consider the set of

nodes in the graph corresponding to the latter elements. In this set m = min{p, bεnc}
nodes are connected by edges with at least αm nodes in the other part. This means

that the minimum of p elements is inferior to at least p− 1 +αm other elements. But

for m = p we have

p− 1 + αm = p− 1 +m/ε−m/2 > p/ε− 1 > k − 1,

and for m = bεnc < p,

p−1+m/ε−m/2 > (p−1)/2+m/ε > (εn−1)(1/ε+1/2) > (1+ε/2)n−1/ε−1 > n−1.

This contradicts the fact that the chosen element is among the k largest.

II. It remains to prove that a bipartite graph composed of a suitable number

r = r(ε) of random matchings7 is an (ε, α)-expander with a positive probability.

Note that a graph is an (ε, α)-expander if it does not contain empty (i.e. edgeless)

(k, n − αk)-subgraphs for any k 6 εn. The probability that a random matching

does not intersect (by edges) a given (k, n − αk)-subgraph is Ck
αk/C

k
n. Then the

probability Pk that r random matchings do not intersect at least one of the (k, n−αk)-

subgraphs is estimated with the help of simple relations 1
4
√
k
( en
k

)k 6 Ck
n 6 ( en

k
)k as

Pk 6 2Ck
nC

αk
n

(
Ck
αk

Ck
n

)r
6 2(4

√
k)r
(
e1+αn1+α(αk)r

k1+αααnr

)k
=

2(4
√
k)r

(
αe1+α

(
αk

n

)r−α−1
)k

6

(
c2

(
c1αk

n

)r−α−1
)k

,

where c1 = (4
√
k)1/k 6 4 and c2 = 21/kα(c1e)

1+α 6 (8e)1+α.

For k 6 εn/4, we have c1αk 6 (1 − ε/2)n. Otherwise k > εn/4 > 16/ε2, so

c1 = eln(16k)/2k < 1+ln(16k)/k 6 1+ ε2

8
ln 16

ε
6 1+ε/2. Therefore, c1αk < (1−ε2/4)n.

In either case, if r is chosen somewhat larger than α+4 ln(2c2)/ε2, we obtain Pk < 2−k.

Then the probability that the graph under consideration is not an (ε, α)-expander does

not exceed
∑

k Pk < 1.

It is easy to check that any r-regular (all vertices have degree r) bipartite graph is

a union of r matchings, so a circuit can be constructed from a graph.

Lemma 3.18. For any constant ε > 0, any λ < 1/2 and n, there exists a (λ, ε)-

separator on 2n inputs of depth O(log4(1/λ)) as λ→ 0.

7The distribution is uniform: all matchings are equally probable.
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� Let s = b2λnc and k = dlog2(1/λ)e. The circuit is composed of k + 1 layers

of (1/2, ε0)-separators (the parameter ε0 will be chosen later): on the first layer —

a separator on 2n inputs, on the next two layers — two separators on the left and

right for 2k−1s marginal elements8, on the next layer — separators for 2k−2s elements

from each end, and so on up to the last layer of two separators on 2s marginal elements,

see Fig. 3.5 (in the figure the circuit is oriented from top to bottom).

Of the m 6 s largest (smallest) elements, the separator of the first layer allocates in

the “wrong” half no more than ε0m elements. In the next pair of separators, regardless

of their order: the separator of the right (left) 2k−1s elements leaves a maximum of ε0m

elements beyond the outermost interval, and the separator on the other side definitely

does not worsen the characteristics of cutting off the largest (smallest) elements9. In

each of the subsequent layers, the separator on the corresponding side erroneously

throws out no more than ε0m elements from the outermost interval.
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Figure 3.5: Construction of a (λ, ε)-separator

Thus, no more than kε0m largest (smallest) elements can miss the s extreme right

(left) outputs of the circuit. Therefore, it is sufficient to choose ε0 = ε/k. Now the

circuit depth estimate follows from Lemma 3.17.

Theorem 3.8 (M. Ajtai, J. Komlós, E. Szemerédi). D(n) = O(log n).

I For simplicity of reasoning we assume n = 2k. Let µ, ε > 0 be parameters to be

chosen later. The sorting circuit is constructed from layers of parallel (λ, ε)-separators,

8If 2k−1s = n, then these two separators can be placed in parallel on the same layer.
9In any comparator circuit, the set of m largest (smallest) elements moves strictly to the right

(left).
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where λ is determined individually for each layer, and λ > µ. It is convenient to

imagine the circuit functioning in time: transformations of one layer are performed

in one time unit. We consider the action of a separator layer as a rearrangement of

elements in a structure associated with the complete binary tree of depth k. At each

vertex of the tree there is a container for storing elements.

At the initial time t = 0 all n elements are in the root container. Then, at any

time, the elements of each nonempty container are subjected to approximate sorting

by a separator: elements from the outermost intervals are sent to the parent node, the

remaining ones are distributed equally between the containers of child nodes, in the

direction to the leaves.

We define the capacity of a container at depth d at time t as Bd,t = nadνt, where

the constant parameters a > 1 and ν < 1 will be specified later. If the container

stores b elements, then in the case µBd,t < b/2 the container’s contents, except for

a possible odd element, are ordered by a composition of (1/2, ε)- and (λ, ε)-separators,

λ = µBd,t/b, after which bµBd,tc elements from each end, as well as the odd element

(if any), are sent to the parent node above. The remaining elements are moved down

one level: the left half — to the container of the left child node, the right half — to

the container of the right one. Otherwise, in the case µBd,t > b/2, no separation is

performed — all elements should be returned to the parent container. The scheme

of migration of elements is shown in Fig. 3.6. The root container is an exception —

its elements are rearranged by a (1/2, ε)-separator, divided equally into two parts

(the number of elements in the container is necessarily even), which are sent to the

corresponding containers of the child nodes.

q qq q��
��

��*

��
��

��*

�
�

��=

Z
Z
ZZ~

µ µ1
2
− µ 1

2
− µ

parent

left child right child

Figure 3.6: Scheme of migration of elements

The process continues until all elements are at the bottom O(1) levels of the tree;

the exact termination condition is stated as Bk,t < 1/µ. After that, sorting circuits are

applied in each subtree of depth O(1). The constructed circuit contains k log1/ν(2a) +

O(1) � log n layers of separators and therefore has the desired depth. It remains to

check the correctness of the algorithm.

First of all, note that at any time moment, the containers of the same level are

filled equally. In particular, this is why the root container always has an even number
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of elements. In addition, a leaf container cannot keep more than one element. Hence,

the described procedure does not throw elements outside the tree.

It is also clear from the construction that at any given time, all elements are

concentrated either at even or at odd levels of the tree.

I . By induction on t we prove that under certain conditions on the parameters

a, ε, µ, ν the number of elements in any container never exceeds its capacity. The

statement is obvious for t = 0.

Consider an arbitrary container at depth d, empty at time t − 1. The number of

elements in it at the next time t in the case Bd,t > aν does not exceed

2(2µBd+1,t−1 + 1) +Bd−1,t−1/2 = Bd,t(4µa+ 1/(2a))/ν + 2 < Bd,t(4µa+ 3/a)/ν,

which is less than Bd,t subject to

ν > 4µa+ 3/a. (3.11)

In the remaining case Bd,t < aν at time t− 1 all containers at higher levels d′ < d

are empty, because Bd′,t−1 < 1. This means that all elements are at levels d + 1 and

lower. In this case Bd+1,t−1 < a2, and under the additional assumption

a2 = 1/µ (3.12)

we conclude that d + 1 6= k (otherwise the process of constructing the circuit would

have already been completed). This means that in each subtree rooted at a node of

depth d + 1 at time t − 1 there are an even number of elements, therefore, an even

number of elements are at the root of the subtree (this applies to the child nodes with

respect to the one under consideration). Thus, at most 4µBd+1,t−1 = 4µaBd,t/ν < Bd,t

elements are sent to a container of depth d at time t according to (3.11).

II . The proof of the correctness of the algorithm is based on the evaluation of

the number of irrelevant elements in each container. We assume that when placed in

the tree leaves, elements should obey to ascending order from left to right. For any

element, the native vertices are the tree leaf in which the element should be located

after ordering, as well as all vertices on the path from the tree root to this leaf.

During the execution of the algorithm, an element of some container will be called an

r-stranger if it is at a distance > r along the tree edges from the nearest native vertex.

By induction on t we check that at time t the number of r-strangers (r > 1) in

a container of depth d does not exceed εr−1µBd,t for an appropriate choice of param-

eters. The induction base is trivial, since at time t = 0 all elements are in the root

container, native to them. We are going to prove the induction step.

III . First, let us consider the simpler case r > 2 (then we can assume d > 2). The

r-strangers of a container of depth d can include (r + 1)-strangers from containers of

child nodes and (r − 1)-strangers from the parent container at the previous moment

of time. Taking into account filtering, their number is bounded from above as

2εrµBd+1,t−1 + ε(εr−2µBd−1,t−1) = εr−1µBd,t(2εa+ 1/a)/ν,
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i.e., does not exceed εr−1µBd,t provided

ν > 2εa+ 1/a. (3.13)

IV . Now consider the case r = 1. In a vertex v at time t strangers can ar-

rive from two sources: 2-strangers from child vertices, and from the parent vertex —

both strangers and elements native to its other child vertex v′ at the previous mo-

ment of time. The number of strangers from child vertices can be easily estimated as

2εµBd+1,t−1 = 2εµaBd,t/ν. The parent container requires a more careful analysis.

Let the parent container at time t − 1 contain q elements, of which q0 are native

elements for v, q1 are native elements for v′, and q2 are strangers. If q0 > q/2,

then the number of strangers for the vertex v sent to its container is estimated as

ε(q1 + q2) 6 εq/2, i.e., as the sum of errors of a (λ, ε)-separator that did not send

strangers upward, and a (1/2, ε)-separator that sent elements native to v′ to a wrong

half. Otherwise, if q0 < q/2, then this number should be estimated as εq/2+(q/2−q0),

where the second term takes into account native elements of v′, which end up in the

container of v even after correct sorting. Let us estimate q/2− q0.

Consider a special hypothetical distribution of elements into containers at time t−1

with the same number of elements in each container as in the real distribution. Sort

and distribute all elements uniformly among the nodes at level d (where the vertices

v and v′ reside), and then arbitrarily move elements up and down the tree to fill all

containers correctly, but so that the parent node of v and v′ receives dq/2e and bq/2c
elements from these child nodes, respectively.

In the considered distribution, the subtree rooted at vertex v contains only elements

native to it, and the container of the parent vertex contains > q/2 elements native

to v. Let us estimate the maximum number of elements native to v that can be moved

from this container to any other. This will yield an estimate for q/2− q0.

For containers of the same level d− 1: for one container the specified elements will

be 1-strangers, for two — 2-strangers, for four — 3-strangers, etc. The total number

of positions available for placement at this level is estimated as

µ
(
1 + 2ε+ (2ε)2 + . . .

)
Bd−1,t−1 < µBd−1,t−1/(1− 2ε). (3.14)

At an arbitrary higher level d−h, for one container the elements in question will be

native, for another — 1-strangers, for two more — 2-strangers, for four — 3-strangers,

etc. The total number of available positions at these levels (for odd h > 3) is estimated

as

(
1 + µ(1 + 2ε+ (2ε)2 + . . .)

) d/2∑
i=1

Bd−2i−1,t−1 <(
1 +

µ

1− 2ε

)∑
i>1

a−2iBd−1,t−1 =

(
1 +

µ

1− 2ε

)
Bd−1,t−1

a2 − 1
. (3.15)
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Since there are no more free positions to fill in the subtree of the vertex v, at any

lower level d+h there are available 2h containers10 for which the specified elements will

be (h+1)-strangers, 2h+1 containers for which these elements will be (h+2)-strangers,

etc. The total number of available positions does not exceed

(k−d)/2∑
i=1

µ
(
(2ε)2i−1 + (2ε)2i + . . .

)
Bd+2i−1,t−1 <

µ
∑
i>1

(2ε)2i−1

1− 2ε
a2i−1Bd,t−1 =

2εaµBd,t−1

(1− 2ε)(1− (2aε)2)
. (3.16)

Summing up (3.14), (3.15), (3.16), we obtain

q/2− q0 <

(
1

a2 − 1
+

µa2

(1− 2ε)(a2 − 1)
+

2εa2µ

(1− 2ε)(1− (2aε)2)

)
Bd−1,t−1.

As a consequence, the total number of strangers in the container of vertex v at time t,

including those coming from child vertices, is estimated as(
2εaµ+

1

a3 − a
+

µa

(1− 2ε)(a2 − 1)
+

2εaµ

(1− 2ε)(1− (2aε)2)

)
Bd,t/ν,

which does not exceed µBd,t provided

ν > 2εa+
1

µ(a3 − a)
+

a

(1− 2ε)(a2 − 1)
+

2εa

(1− 2ε)(1− (2aε)2)
. (3.17)

V . Now it is easy to see that at the moment t of completion of the circuit construc-

tion procedure there are no strangers in any container (assuming that the parameters

are chosen correctly). Indeed, in an arbitrary container of depth d, according to what

was proved above, there are at most µBd,t 6 µBk,t < 1 strangers.

Moreover, by (3.12), Bd,t = ad−kBk,t < ad−k/µ 6 1 for d 6 k − 2, which means

that all elements are in the lower two layers of the tree.

It remains to specify the choice of parameters that satisfies all the necessary con-

ditions (3.11), (3.12), (3.13), (3.17). For example, ε = µ = 1/100, a = 10, ν = 0.7 will

do. �

Corollary 3.19. S∗(n) = O(n log n).

10In the subtree rooted in v′.
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Exercises

Ex. 3.1. Show that the result of Theorem 3.1 can be generalized to S∗(Lm,n) >
0.5(m+ n) log2m−O(m) for m 6 n [P. Miltersen, M. Paterson, Y. Tarui]

Ex. 3.2. Estimate the limits of the method of Theorem 3.3. Show that if a good potential

function f(x) monotonically increases on the interval [0, 1/2] and decreases on the

interval [1/2, 1], then, say, f(1/2) 6 1.75.

Ex. 3.3. Using Corollary 3.16, show that the depth of selecting an element of rank 2 is

log2 n+ log2 log n±O(1). [A. Yao]

Comments. Theorem 3.1 is proved in [7] with a slightly sharper bound n log2 n− 0.66n,

and also in a more general form S∗(Lm,n) > 0.5(m+ n) log2m − 0.73m for m 6 n. A

somewhat simpler proof of an asymptotically similar bound, but weaker in the precision of

the remainder term, is given in [6]; a simple and order-accurate lower bound is proved in [5].

An upper bound is obtained in [3], see also [5].

Theorem 3.3 and Corollary 3.13 with constant C = 1.12 were proved in [4]. Theorem 3.4

is a special case of the four-function theorem of R. Ahlswede and D. Daykin. The results of

section 3.4 were obtained by V. E. Alekseev [2] (see also [5]) and A. Yao [9].

The proof of Theorem 3.8 follows the adaptation by J. Seiferas [8] of the sorting method of

M. Ajtai, J. Komlós, and E. Szemerédi [1]. The multiplicative constant hidden in the depth

estimate of Theorem 3.8 is insanely large. A number of papers have attempted to reduce it.

The estimates published with the proofs (for various modifications of the algorithm) have

an order of several thousands. Some rough estimations admit the existence of circuits with

the depth of approximately 100 log2 n. In practice, better results are provided by variants of

Batcher’s circuits [3] with a theoretical depth of the order log2 n.

The choice of the polynomial f̂(y) = 1
64 + a

4−ay
2−y6 with a = 0.268 allows to improve the

constant in Corollary 3.13 to C > 1.215, and the bound of Theorem 3.5 to (3.43−o(1)) log2 n.
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