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Abstract

The present paper surveys main works and results by Valery
Mikhailovich Khrapchenko, who stands among the pioneers of na-
tional theoretical cybernetics.
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the famous literary scholar, later academician of the USSR Academy of Sci-
ences Mikhail Borisovich Khrapchenko and music teacher Tamara Erastovna
Tsytovich. He graduated from the Moscow Power Engineering Institute,
Faculty of Automation and Computer Engineering. From 1959 to 1966, he
worked at the Institute of Electronic Control Machines and studied there in
graduate school.
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The early works of V. M. Khrapchenko [1, 2], related to the subject
of constructing computers and their algorithmic support, attracted the at-
tention of Sergei Vsevolodovich Yablonskii and Oleg Borisovich Lupanov,
the leaders of Soviet discrete mathematics and mathematical cybernetics.
In 1966, Khrapchenko moved to their department of theoretical cybernetics
at the Institute of Applied Mathematics, which later received the name of
M. V. Keldysh. Valery Mikhailovich worked in this department for the rest
of his life, over 50 years.

V. M. became especially close with O. B. Lupanov, whom he considered
his scientific advisor. Under his influence, Khrapchenko’s scientific interests
shifted to the theoretical plane, in particular, they turned to the problem
of lower complexity bounds. Nevertheless V.M. always found problems that
had a direct connection with electronics: how to quickly add and multiply
numbers, how to reduce the computation time in a circuit, etc. Khrapchenko,
who knew Oleg Borisovich like no one else, recently wrote his biography [22],
containing many little-known details.

V. M. Khrapchenko often gave reports at the weekly seminars “Mathe-
matical Problems of Cybernetics” and “Synthesis of Control Systems” under
the direction of S. V. Yablonskii and O. B. Lupanov at Moscow University.
According to many participants, he was the most popular speaker. Valery
Mikhailovich always carefully prepared for the seminars and explained the
results so clearly that everyone understood.

Mathematical results of V. M. Khrapchenko can be attributed to five di-
rections: synthesis of parallel adders [3, 13, 19], relations between complexity
and depth of Boolean formulas [3, 4, 12, 14], lower bounds for complexity of
formulas [5, 6, 8, 9, 18, 21], synthesis of formulas for symmetric Boolean func-
tions [7, 9, 10], relations between depth and delay of circuits [11, 13, 16, 20].

Further, the functionals of the formula complexity and depth over
a basis B are denoted by LB and DB, respectively. For definitions,
see [43, 48, 31, 39, 60, 66].

Parallel adders.
One of the first practical problems of complexity theory was the synthesis

of parallel adder circuits. Let us denote the Boolean operator of addition of
n-digit binary numbers by Σn. In essence, the computation time of the
adder Σn is determined by the method of computing the system of carries,
which, when appropriate notations are introduced, takes the form

fk = y1 ∨ y2x1 ∨ y3x2x1 ∨ . . . ∨ ykxk−1 · . . . · x1, k = 1, . . . , n. (1)

The relation DB(Σn) ≤ DB(fn)+O(1) holds in an arbitrary complete Boolean
finite basis B. The bound DB(fn) = O(log n) is trivial to prove, but such
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an important basic operation as addition required more precise knowledge.
In his first widely known paper [3] dated by 1967, Khrapchenko obtained an
asymptotically tight result DB0(Σn) ∼ log2 n for the standard basis B0 =
{∨,∧, }, which follows from the accurate upper bound

DB0(fn) ≤ log2 n +
√

2 log2 n + O(1). (2)

This bound is obtained recursively by applying formulas of the form

fkr = fr(x̃1) ∨ (x1 · . . . · xr)fr(x̃2) ∨ (x1 · . . . · x2r)fr(x̃3) ∨ . . .

. . . ∨ (x1 · . . . · x(k−1)r)fr(x̃k), (3)

where x̃i are suitable groups of variables.
Moreover, V. M. showed that for any finite Boolean basis B, we have

DB(Σn) ∼ τB log2 n, where the constant τB can be determined from the
asymptotic relation DB(x1 · . . . ·xn) ∼ τB log2 n. In this case, the value of the
constant is always within the range 0 < τB ≤ 2. An example of a basis for
which τB = 2 is the basis BS of the single function “Scheffer stroke” x | y.

Direct application of the formulas providing estimate (2) leads to an adder
of nonlinear complexity. Employing a more flexible construction, at the cost
of a small degradation in depth, Khrapchenko constructed an adder of depth
log2 n + O(

√
log n) and linear complexity (12 + o(1))n. Similarly, an adder

of complexity O(n) and depth (τB + o(1)) log2 n can be constructed in an
arbitrary basis.

A little later, bound (2) was also derived by R. Brent [25], but the estimate
he obtained for the complexity of an adder of depth (1 + o(1)) log2 n was
O(n log n). In [33] it is shown that the depth of an adder of linear complexity
can be reduced to log2 n+

√
(2 + o(1)) log2 n (in the basis B0, the complexity

estimate, as in [3], is (12 + o(1))n).
In 2008, M. I. Grinchuk [34] improved Khrapchenko’s bound to

DB0(Σn) ≤ log2 n + log2 log n + O(1). In fact, he established the complexity
of functions fn in the monotone basis BM = {∨, ∧}. Comparing his upper
bound with the lower bound of B. Commentz-Walter [28], we obtain

DBM
(fn) = log2 n + log2 log n±O(1).

By combining the methods of [33] and [34], the depth of a linear-complexity
adder can be estimated as log2 n + O(log2 log n). Recently, in a continuation
of this line of results, S. Held and S. Shpirkl [37] constructed adders of depth
log2 n + O(

√
log n) and linear complexity with an additional constraint of 2

on the fan-out of elements.
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Other known constructions of parallel adders, such as prefix adders, have
depth and complexity asymptotically greater than those of the parallel adders
of Khrapchenko and Grinchuk, although they may have an advantage for
small n.

From the standpoint of lower bounds, B. Commentz-Walter and J. Sat-
tler [29] established

DB0(fn) ≥ log2 n + (1− o(1)) log2 log log n. (4)

Observing that DB0(fn) ≤ DB0(Σn) + O(1), Khrapchenko in [19] deduced as
a corollary that the lower bound (4) also holds for the depth of the adder
DB0(Σn). This result is the first and so far the only nontrivial lower bound
for the depth of addition over the standard basis.

The formulas of Khrapchenko’s method, on which the bound (1) is
achieved, do not use the specifics of Boolean algebra and therefore can be
applied to compute expressions of the form

y1 + y2x1 + y3x2x1 + . . . + ynxn−1 · . . . · x1 (5)

over the arithmetic basis {+, ∗} in an arbitrary ring, see (3). In contrast
to the formulas of Grinchuk’s method. A special case of expressions (5) are
polynomials of single variable: set x1 = . . . = xn−1 = x, and consider yi as
coefficients. Thus, Khrapchenko’s circuit turns into a method for evaluating
a polynomial at a point in log2 n+

√
2 log2 n+O(1) parallel steps. In the early

1970s, K. Maruyama [44], I. Munro, and M. Paterson [46] rediscovered this
method. Later, S. R. Kosarayu [41] proved that the computation depth in
the problem under discussion cannot be less than log2 n+

√
(2− o(1)) log2 n.

Thus, in the general algebraic setting, Khrapchenko’s method is optimal in
a stronger sense than in the Boolean domain.

Formula depth and complexity.
It is more convenient to study computation depth in the formula model,

since the depth of a function when implemented by circuits and formulas
over the same basis coincides, however, the formula is a simpler object (in
graphical representation, is a tree). The relation DB(f) ≥ logk LB(f) is
trivially satisfied if the basis B consists of no more than k-input functions.
But it was Khrapchenko who first noted in 1967 that the inequality also holds
in the other direction:

DB(f) = O(log LB(f)) (6)

is valid for any Boolean complete finite basis B. Unfortunately,
Khrapchenko’s result was reflected only in one paragraph of the report [4].
Therefore, priority is often given to P. Spira, who proved (6) for the basis B0

in [62].
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Bases satisfying (6) are usually called uniform. Following the work of
Khrapchenko [14], to characterize the uniformity of a basis B it is convenient
to introduce a quantity (taking constant values or ∞)

cB = lim
N→∞

max
LB(f)=N

DB(f)

log2 N
.

The definition means that for any function f expressed in a basis B, we
have DB(f) ≤ (cB + o(1)) log2 LB(f), and there exists an infinite sequence of
functions fk for which DB(fk) ≥ (cB − o(1)) log2 LB(fk).

In new terms, the result [4] can be formulated as cB < ∞ for Boolean
finite complete bases. In fact, the argument works for any complete finite
bases, not necessarily Boolean. Proving cB < ∞ for incomplete Boolean
finite bases turned out to be a difficult problem. 20 years passed before
A. B. Ugol’nikov [65] and M. Ragas [56] independently solved it. They also
constructed examples of non-uniform bases (cB = ∞) in three-valued logic.

The pioneering works [4, 62] were followed by a series of results dealt
with bounds on the uniformity constants of various bases, mainly Boolean or
arithmetic. Curiously, the first nontrivial lower bound was actually obtained
by Khrapchenko in an earlier paper [3] for the basis BS = {x | y}. From the
lower bound DBS

(x1 · . . . · xn) ≥ 2 log2 n proved in [3] and the trivial upper
bound LBS

(x1 · . . . ·xn) = O(n) it follows that cBS
≥ 2. Later, W. McColl [45]

rediscovered this result and obtained several upper and lower bounds for the
uniformity constants of other Boolean bases.

In [12] Khrapchenko obtained currently record bound cB0 < 1.73 for the
uniformity constant of the standard basis, strengthening the result [53]. The
proof was carried out via the usual method for such problems of parallel
reconstructing of formulas, but with a deeper case enumeration.

A little later in [14] Khrapchenko considered another rather popular
in Boolean complexity theory basis B3 = {xy ∨ xz ∨ yz, , 0, 1}. For the
uniformity constant of this basis, he managed to obtain close estimates
1 ≤ cB3 < 1.45. Note that the same ratio between the estimates of the
uniformity constant is also known for the basis BS: 2 ≤ cBS

< 2.89 (the
upper bound is proved in [45]). Then the estimates for the monotone arith-
metic basis BA = {+, ∗} were brought even closer together: 1.5 ≤ cBA

≤ 2
(the lower bound was proved in [30], and the upper one in [41]).

It should be noted that among the results on the uniformity constants
of usual Boolean or arithmetic bases there are only a few nontrivial lower
bounds, two of which are due to Khrapchenko. Exact constants have not
yet been established for any of the “interesting” bases. In particular, the
problem of obtaining nontrivial lower bounds for the uniformity constants
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of sufficiently expressive complete bases such as B0 or the arithmetic basis
{+,−, ∗} has not been solved.

Formula lower complexity bounds.
Around 1970, Khrapchenko obtained his most famous result, a method

for establishing lower complexity bounds of formulas in the standard basis,
which is described by the relation

LB0(f) ≥ |R(N0, N1)|2

|N0| · |N1|
, (7)

where N0 and N1 are arbitrary sets of zeros and ones, respectively, of the
function f , and R(A, B) is the set of pairs (α ∈ A, β ∈ B) of Boolean
vectors that differ in exactly one position.

The method gives the highest possible bound LB0(ln) ≥ n2 for linear
functions ln = x1⊕. . .⊕xn⊕σ, where σ ∈ B = {0, 1}. Initially, Khrapchenko
obtained a new lower bound for the complexity of a linear function [5], and
then turned the proof into a general method [6]1. Strictly speaking, the
bound was proved in the model of parallel-sequential switching circuits (π-
circuits). But in essence, a π-circuit is an alternative way of representing a
formula.

The result [5] provides a practically final solution for the problem of
complexity of a linear function, since a simple method of synthesis [67] for an
arbitrary n leads to LB0(ln) < (9/8)n2, and for n = 2k simply to LB0(ln) ≤ n2.
Thus, this problem of the complexity of a linear function, known as the
S. V. Yablonskii problem [67], after Khrapchenko’s work was reduced to
closing the remaining small gap between the lower and upper bounds.

Before the appearance of Khrapchenko’s method, the complexity of a lin-
ear function was estimated as Ω(n3/2) by B. A. Subbotovskaya’s method [63],
and the maximum known lower bounds for the complexity of specific func-
tions were of the order of n2/ log n (E. I. Nechiporuk’s method [47]; however,
this method works for any complete basis). Subsequently, A. E. Andreev [24]
proposed a generalization of Subbotovskaya’s method — a method for com-
pressing formulas under random restrictions on inputs — and for the com-
plexity of a specially devised function he obtained a lower bound of the form
n2.5−o(1). But before Andreev’s work, the bounds of Khrapchenko’s method
remained record-breaking.

As a consequence of (7) Khrapchenko established [6] that the complex-
ity of almost all symmetric functions is of order at least n2, in particular,
quadratic lower bounds hold for the majority function and many threshold

1In [21] Khrapchenko proposed a shortened proof of (7) — approximately as it is usually
presented in lecture courses at Moscow University.

6



functions, for elementary symmetric functions, in general for any functions
taking different values on neighboring layers in the middle part of the Boolean
cube, and also for the determinant of a Boolean matrix. In [8] Khrapchenko
showed that (7) implies quadratic lower bounds for binary components of
real functions with a continuous and not identically zero second derivative.
In particular, the binary digits of the product, quotient, and many analytic
functions have at least quadratic complexity. In [55] A. K. Pulatov’s ap-
plied Khrapchenko’s method to derive lower bounds for the complexity of
characteristic functions of some codes.

The method was further developed. K. L. Rychkov [57] proposed an
interpretation of Khrapchenko’s method in terms of coverings of bipartite
graphs (see also [39]) and obtained the following generalization of (7):

LB0(f) ≥ |Rt(N0, N1)|2(
1 + C1

n−1 + . . . + Ct
n−1

)
|N0| · |N1|

, (8)

where n is the number of arguments of f , and either the set N0 (the zeros
of the function) or N1 (the ones of the function) have pairwise distances
(between their elements) no less than 2t + 1, and Rt(A, B) is the set of pairs
(α ∈ A, β ∈ B) of vectors with distance at most t + 1. The indicated
modification of the method made it possible to obtain high, up to quadratic,
lower bounds for the characteristic functions of arbitrary dense codes. Later,
Khrapchenko [18] applied Rychkov’s method (8) to estimate the complexity
of the characteristic functions of BCH-codes.

Rychkov continued the study of Yablonskii’s problem and proved the
relation LB0(ln) ≥ n2 + 2 + (n mod 2) for 5 ≤ n 6= 2k [58]. The proof of the
equalty LB0(l6) = 40 obtained by D. Yu. Cherukhin [27] is very nontrivial,
see also [59]. As a consequence, for n ≤ 8 Yablonskii’s formulas are optimal.
In addition, S. V. Zdobnov [68] managed to show that Yablonskii’s method
is optimal for all n in a restricted class of formulas — which are represented
by π-circuits without null chains.

M. Paterson (see [66]) proposed a generalization of the Khrapchenko
method, the principle of formal complexity measures. A formal complexity
measure is defined as a functional µ : (Bn → B) → R+ with the properties:
(1) µ(xi) = 1, i = 1, . . . , n, (2) µ(f) = µ(f), (3) µ(f ∨ g) ≤ µ(f) + µ(g). It
follows from the definition that LB0(f) ≥ µ(f). The measure corresponding
to Khrapchenko’s method is

µ(f) = max
N0⊂f−1(0), N1⊂f−1(1)

|R(N0, N1)|2

|N0| · |N1|
.

Subsequently, several more complexity measures were proposed by different
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authors, but none of them allows obtaining superquadratic lower bounds,
see [39].

Perhaps even more valuable than relation (7) is the way of reasoning
in Khrapchenko’s method. This is one of the first methods in the theory
of complexity lower bounds based on the dual nature of zeros and ones of
a function. E.g., in Khrapchenko’s method, ones correspond to chains of a π-
circuit, and zeros correspond to irredundant cuts. Chains and irredundant
cuts are objects of dual nature. Subsequently, this type of argument became
widespread: for example, the duality of zeros and ones underlies methods
for obtaining complexity lower bounds for monotone circuits and bounded-
depth circuits, see [39]. Essentially, the concept of communication complexity
grows out of duality. So, it is not surprising that Khrapchenko’s method
admits a natural description in terms of communication complexity. This
interpretation was proposed by M. Karchmer and A. Wigderson [40], who
obtained an alternative proof of the analogue of (7) for the depth of formulas.

Along the path indicated by Andreev [24], formula complexity lower
bounds of the form n3−o(1) have been obtained for specially constructed
Boolean functions, see, e.g., [36, 64, 32]. However, for example, for sym-
metric Boolean functions, more than quadratic lower bounds are are still
unknown.

The note by Khrapchenko [9] can also be attributed to the direction of
complexity lower bounds. In it, he refined the result of E. Specker [38],
showing that all symmetric functions of n variables, with the exception
of 16 functions, have nonlinear formula complexity Ω(nα(n)) over an ar-
bitrary complete basis, where α(n) is a very slowly growing function. At
the same time, such a corollary stated for binary bases was obtained by
M. Paterson [50]. Later, P. Pudlák [54] showed that the lower bound
holds with α(n) = log log n, and it is already tight in order. Nevertheless,
D.Yu. Cherukhin [26] managed to prove that almost all symmetric functions
have complexity Ω(n log n) (but there are more than 16 functions-exceptions
for this bound). The results [54, 26] are valid in any complete basis.

Formulas for symmetric Boolean functions.
It is natural that Khrapchenko became interested in the question of how

hard it is to implement symmetric functions by formulas. Due to the uni-
formity of Boolean formulas, the question of depth is closely related to the
question of the formula complexity.

Recall that the values of a symmetric Boolean function are determined by
the arithmetic sum of its arguments. Symmetric functions play an important
role in computing practice: the majority function and other simple threshold
functions, periodic functions, and the bits of the Boolean operator Cn of
summation of n bits are symmetric.
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Let Sn denote the class of symmetric functions of n variables. Any func-
tion f ∈ Sn can be represented as h(Cn(x1, . . . , xn)), where h is some func-
tion of log2 n arguments. It has been known since the early 1960s that
DB0(Cn) = O(log n), see, e.g., [49]. When combining this result with the
already known at that time methods of synthesis of arbitrary functions (the
cascade method, asymptotically optimal methods, see [43, 48]), we immedi-
ately obtain the estimates DB(Sn) = O(log n) and LB(Sn) = nO(1) in any
complete basis B.

Nevertheless, Khrapchenko’s work [7] was the first in which the bound
LB(Sn) = nO(1) was stated explicitly (the author separately noted that the
result is also valid in k-valued logic). But the main content of the work [7]
were accurate estimates of the complexity of the operator Cn and the class Sn

in the basis B0: LB0(Cn) = O(n4.62), LB0(Sn) = O(n4.93). The complexity of
threshold and elementary symmetric functions is estimated in the same way
as the complexity of Cn.

To implement Cn, Khrapchenko applied the method of compressors [49].
A (k, l)-compressor is a circuit that transforms k numbers into l < k numbers
while preserving the sum. A multi-bit compressor is composed of parallel
copies of single-bit compressors and therefore has depth O(1), regardless of
the length of the summands. Thus, using a tree of (k, l)-compressors, one can
transform n summands into l summands with depth O(log n) and formula
complexity nO(1). Khrapchenko constructed a special (7, 3)-compressor and
described an efficient method for constructing a tree of such compressors.

The most important application of the compressor method is the imple-
mentation of multiplication of n-bit numbers; the main interest here is the
depth of the computation. Indeed, by pairwise multiplication of bits, the
product of integers is reduced to the summation of n numbers (the school
method of multiplication). Therefore, for the depth of the operator Mn

of multiplication of n-bit numbers, DB(Mn) ≤ DB(Cn) + DB(Σn) + O(1)
holds. Recall that Σn denotes the operator of summation of n-bit integers.
In [10] Khrapchenko, using another design of the (7, 3)-compressor, obtained
bounds DB0(Cn) . 5.12 log2 n and, taking into account DB0(Σn) ∼ log2 n [3],
the bound DB0(Mn) . 6.12 log2 n.

We note that later E. Grove in [35] (cited from [52]) proved that the
difference between the depth of reduction of the summation arising from the
school n-digit multiplication to the usual addition of two numbers and the
depth of Cn actually is o(log n).

The work of Khrapchenko [7] was followed by a series of results by
different authors with refinements of the upper bounds for LB(Cn) and
LB(Sn), mainly in the basis B = B2 of all binary Boolean functions. The
intermediate results were summed up by M. Paterson, N. Pippenger and
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U. Zwick [51, 52], who established an asymptotically optimal way of placing
compressors in a circuit. As applied to Khrapchenko compressors, the new
method yields the estimates LB0(Cn) = O(n4.60), LB0(Sn) = O(n4.85) and
DB0(Cn) ≤ (5.07 + o(1)) log2 n. The authors [51, 52] also proposed several
new techniques for designing and using compressors, and improved the above
estimates to LB0(Cn) = O(n4.57) and DB0(Cn) ≤ (4.95 + o(1)) log2 n.

I. S. Sergeev [61] proposed to compute the remainders σ mod 2k and
σ mod 3l (the lowest components of the operator Cn and the analogous
counting operator in the ternary number system) and the approximate value
σ∗ ≈ σ to finally calculate the sum of bits σ = x1 + . . . + xn, obtaining the
best currently known estimates: LB0(Cn) = O(n3.91), LB0(Sn) = O(n4.01),
DB0(Cn) ≤ (4.14 + o(1)) log2 n, DB0(Sn) ≤ (4.24 + o(1)) log2 n.

Depth and delay of circuits.
Khrapchenko’s latest series of papers is devoted to a curious problem that

apparently no one had realized before him. It is about how accurately the
depth of circuits corresponds to the concept of delay in the physical sense.
Khrapchenko defined the delay T (S) of a circuit S as the minimum time
sufficient to establish the correct value at the circuit outputs for any values
of the inputs, assuming that the delays of functional elements are equal to 1.

Despite the fact that DB(f) = TB(f) always holds, the equality may
not hold for a specific circuit, in particular for a minimal circuit imple-
menting the function f. In [11, 13] Khrapchenko managed to construct a
sequence of functions fk such that for all minimal circuits S implementing
them, DB0(S) ∼ 2TB0(S) holds.

In [16, 20] this result was strengthened. First [16], Khrapchenko con-
structed a sequence of minimal circuits Sk with the property TB0(Sk) <
log2 DB0(Sk) + 6. In the final paper of the series [20] he removed the last
restriction by presenting a sequence of functions fk all minimal circuits Sk of
which2 satisfy TB0(Sk) < log2 DB0(Sk)+14. This result is final due to the eas-
ily verified inequality: TB0(S) ≥ log2 DB0(S) for any minimal circuit S [16].

In [13] Khrapchenko also constructed an n-bit adder circuit over the stan-
dard basis with delay (1 + o(1)) log2 n and complexity (11 + o(1))n. Thus,
about n elements were saved when moving from the requirement of asymp-
totically minimal depth to an asymptotically minimal delay, see above.

These results of Khrapchenko open a new direction of research — mini-
mization of the complexity of functions under a delay restriction. The prob-
lem is especially meaningful in cases where a similar depth restriction does
not allow to construct a sufficiently simple circuit.

However, the study of delay in the sense of Khrapchenko has not yet re-

2In fact, each function fk has a unique minimal circuit.
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ceived further development. But if we look at it more broadly, the movement
towards more accurate modeling of the physical characteristics of circuits, in
the mainstream of which Khrapchenko’s works are located, continues. For
example, S. A. Lozhkin and B. R. Danilov [42] introduced a model of cir-
cuits in which the delay of functional elements depends on the values at their
inputs, and obtained asymptotically accurate results on the depth of com-
putation of Boolean functions in this model. Note that the circuit delay in
this model depends on the values of inputs, as in the case of Khrapchenko’s
delay.

Conclusion.
V. M. Khrapchenko closely followed results in the area of complexity lower

bounds and prepared a very detailed survey [15] for Kiberneticheskii Sbornik3

in 1984. In his works [17, 23] he presented his own viewpoint of the work of
two major specialists in synthesis and complexity theory, R. G. Nigmatullin
and O. B. Lupanov – mathematicians whom Valery Mikhailovich knew well.

Khrapchenko’s method of lower bounds for formula complexity has been
included in many lecture courses and in all major monographs on the
complexity of Boolean functions [48, 31, 39, 60, 66]. A description of
Khrapchenko’s parallel adder is given in books that focus on fast arith-
metic [60, 66]. In books [31, 66], relation (6) is proved that connects the
depth and complexity of formulas, but Khrapchenko’s priority was not known
to the authors.

Valery Mikhailovich was one of the main actors in the theory of synthesis
and complexity in the most active years of the formation of this scientific
direction in the second half of the 20th century. His results left a bright
trace, as did his extraordinary personality, in the memory of all who knew
him.

The authors are grateful to Stasys Jukna for careful reading of the text
and a number of comments that contributed to the improvement of the pre-
sentation.
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