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The paper deals with fast algorithms for discrete Fourier transform in some
rings and their application to the multiplication of polynomials. The algo-
rithm’s performance measure is its complexity, defined as the number of binary
operations of addition, subtraction, multiplication, as well as operations of mul-
tiplication by ring constants.

1. Discrete Fourier transform

Let K be a commutative ring with unity2. An element ζ ∈ K is called
a primitive root of order N ∈ N if ζN = 1, and none of the elements ζN/p − 1,
where p is a prime divisor of N , is a zero divisor in K. (Recall that an element a
is a zero divisor if there exists a nonzero element b such that ab = 0.)

The discrete Fourier transform (DFT) of order N is the (KN → KN )-
transform

DFTN,ζ [K](γ0, . . . , γN−1) = (γ∗0 , . . . , γ
∗
N−1), γ∗j =

N−1∑
i=0

γiζ
ij , (1)

where ζ is a primitive root of order N .
The fundamental property of the DFT is stated as follows:

Lemma 1. Let elements γ∗j be determined from (1). Then

DFTN,ζ−1 [K](γ∗0 , . . . , γ
∗
N−1) = (Nγ0, . . . , NγN−1),

where N on the right-hand side of the formula is the sum of N units of the ring.

Before we proceed to the proof of the lemma, we establish several auxiliary
facts.

Note that if a ∈ K is not a zero divisor, and a = cd, then the factors c and d
are also not zero divisors. Indeed, if, say, ce = 0 and e 6= 0, then ae = (ce)d = 0,
which implies that a is a zero divisor.

1Translated version. Originally published in: “Discrete mathematics and its applica-
tions”. Part V. Moscow: Izd. IPM RAN, 2009. P. 3–23. (in Russian) — a few minor typos
are corrected

2Note from 01.11.2010. In the proof of Lemma 2, the associativity of the ring K is used.
Therefore, throughout the text, the ring should also be considered associative.
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Lemma 2. If ζ is a primitive root of order N , then for any l = 1, . . . , N − 1,

N−1∑
i=0

ζil = 0.

Proof. Consider the expansion

0 = ζlN − 1 = (ζl − 1)

N−1∑
i=0

ζil.

From the definition of a primitive root it follows that N is the minimal natural
exponent n for which ζn = 1, therefore ζl − 1 6= 0. Consequently, either ζl − 1
is a zero divisor, or

∑N−1
i=0 ζil = 0. We will show that the first is impossible.

Let m = GCD(l, N). As is known, there exist integers q, s such that m =
ql + sN (these numbers q, s are called Bezout coefficients), and we can assume
that q is positive. In this case, ζm − 1 = ζql − 1 is divisible by ζl − 1. On
the other hand, since m < N , there exists a prime p such that m | (N/p).
Then (ζm − 1) | (ζN/p − 1). Finally, we have (ζl − 1) | (ζN/p − 1). Since
ζN/p− 1 is not a zero divisor, ζl− 1 cannot be a zero divisor as well. Therefore,∑N−1
i=0 ζil = 0.

Proof of Lemma 1. In the vector DFTN,ζ−1 [K](γ∗0 , . . . , γ
∗
N−1) consider an

arbitrary j-th component:

N−1∑
i=0

γ∗i ζ
−ij =

N−1∑
i=0

N−1∑
k=0

γkζ
kiζ−ij =

N−1∑
k=0

N−1∑
i=0

γkζ
i(k−j) =

N−1∑
k=0

γk

N−1∑
i=0

(ζk−j)i.

The inner sum, as follows from Lemma 2, is zero in all cases except for the case
k− j = 0, when this sum is N . Therefore, continuing the calculation, we obtain
Nγj , as required.

As a consequence, we obtain that if N = 1 + . . .+ 1 ∈ K is invertible, then
the inverse DFT transform is defined:

DFT−1N,ζ [K] = N−1DFTN,ζ−1 [K].

2. Polynomial interpretation of the DFT

Consider a polynomial Γ(x) = γ0 + . . .+ γN−1x
N−1. Then, by definition,

DFTN,ζ [K](γ0, . . . , γN−1) =
(
Γ(ζ0), . . . ,Γ(ζN−1)

)
,
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i.e., the DFT evaluates the polynomial Γ(x) at the points ζi. The meaning
of the inverse transform DFT−1N,ζ [K] is to restore the coefficients of a unique
polynomial of degree less than N that has a given set of values at the points
ζ0, . . . , ζN−1.

Formally, the relationship between the DFT and interpolation is described
by the following lemma:

Lemma 3. The transform DFTN,ζ [K] defines an isomorphism:
K[x]/(xN − 1)→ KN .

Proof. The bijectivity of the mapping follows from the fact that a polynomial
of degree no greater than N − 1 is uniquely determined by its values on a set
of N distinct points.

Let us verify that the DFT preserves the operations of addition and mul-
tiplication: in the ring K[x]/(xN − 1) these operations are performed as with
ordinary polynomials, only with subsequent reduction modulo xN − 1, in the
ring KN the operations are performed componentwise.

Indeed, the value of the sum of the polynomials Γ1(x)+Γ2(x) at some point
coincides with the sum of the values of each of the polynomials at this point.
Representing the product of the polynomials in the form Q(x)(xN − 1) +R(x),
where R(x) is the remainder of division by xN − 1, we see that the product is
mapped into a product, since

Γ1(ζj)Γ2(ζj) = Q(ζj)(ζjN − 1) +R(ζj) = R(ζj) = (Γ1Γ2 mod (xN − 1))(ζj).

The above isomorphism leads to an efficient way of multiplying polynomials
over K.

Theorem 1. Let DFTN,ζ [K] and its inverse be defined over a ring K. Then
the multiplication of two polynomials of total degree at most N − 1 over K can
be performed using two transforms DFTN,ζ [K], one DFT−1N,ζ [K], and N multi-
plications in K.

Proof. Denote the polynomials to be multiplied by A(x) =
∑
aix

i and
B(x) =

∑
bix

i. Compute the vectors

(a∗0, . . . , a
∗
N−1) = DFTN,ζ [K](a0, . . . , aN−1),

(b∗0, . . . , b
∗
N−1) = DFTN,ζ [K](b0, . . . , bN−1).

Then the coefficients of the polynomial C(x) =
∑
cix

i = A(x)B(x) due to
C(x) = C(x) mod (xN − 1) can be determined as

(c0, . . . , cN−1) = DFT−1N,ζ [K](a∗0b
∗
0, . . . , a

∗
N−1b

∗
N−1),
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whence the assertion of the theorem follows.

3. DFT computation

Independent calculation of the DFT components by formulas (1) can be
performed in O(N2) operations of addition, subtraction, and multiplication by
constants in a ring K. For a composite number N , the following more efficient
method can be proposed.

First, note that if ζ is a primitive root of order ST , then ζS and ζT are
primitive roots of order T and S, respectively (this can be easily verified directly
from the definition).

Lemma 4 (Cooley, Tukey [5]). A DFT of order ST is implemented using S
DFTs of order T , T DFTs of order S, and (S − 1)(T − 1) multiplications by
powers of ζ — a primitive root of order ST .

Proof. For s = 0, . . . , S − 1 and t = 0, . . . , T − 1, write

γ∗sT+t =

ST−1∑
I=0

γIζ
I(sT+t) =

T−1∑
i=0

S−1∑
j=0

γiS+jζ
(iS+j)(sT+t) =

=

T−1∑
i=0

S−1∑
j=0

γiS+jζ
itS+jsT+jt =

S−1∑
j=0

(ζT )js · ζjt · γ(j),t, (2)

where

γ(j),t =

T−1∑
i=0

γiS+j(ζ
S)it.

The obtained formula allows to perform computations in the following order:
a) For j = 0, . . . , S − 1, compute the vectors(

γ(j),0, γ(j),1, . . . , γ(j),T−1
)

= DFTT,ζS [K](γj , γS+j , . . . , γ(T−1)S+j).

b) Compute the products ω(t),j = ζjt ·γ(j),t, j = 0, . . . , S−1, t = 0, . . . , T−1.
c) Note that

γ∗sT+t =

S−1∑
j=0

ω(t),j(ζ
T )js.

This allows to finally find the components of the DFT by the formulas(
γ∗t , γ

∗
T+t, . . . , γ

∗
(S−1)T+t

)
= DFTS,ζT [K](ω(t),0, ω(t),1, . . . , ω(t),S−1),
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where t = 0, . . . , T − 1.
The assertion of the lemma follows immediately from the form of the op-

erations performed at steps a–c) if we note that among ST multiplications at
step b) there are S + T − 1 multiplications by ζ0 = 1.

Remark (Good, Thomas [6]). If S and T are relatively prime, then to
implement the DFT of order ST it is sufficient to perform S DFTs of order T
and T DFTs of order S, i.e., no additional multiplications are required.

Let F (N) = FA(N) + FC(N) denote the complexity of an order-N DFT
circuit constructed by the method of Lemma 4, where FA(N) is the number
of additive elements (additions and subtractions) in the circuit, and FC(N) is
the number of scalar multiplications (i.e. multiplications by constants of the
ring K). In this case, the required circuits implementing DFT of prime orders
should be constructed separately.

It is easy to construct a circuit for the DFT of order 2, if it exists. The
components of the DFT are determined by the formulas

γ∗0 = γ0 + γ1, γ∗1 = γ0 − γ1,

since −1 can be taken as a primitive root of order 2. Therefore, we set
F (2) = 2, FA(2) = 2, FC(2) = 0.

To calculate the complexity of an order-2k DFT circuit, where k > 1, we use
recurrence relations that follow from Lemma 4 with the choice of parameters
S = 2k−1 and T = 2:

FA(2k) = 2FA(2k−1)+2k−1FA(2), FC(2k) = 2FC(2k−1)+2k−1FC(2)+2k−1−1.

It is easy to check that these relations are resolved as

FA(2k) = k2k, FC(2k) = (k − 2)2k−1 + 1. (3)

So, we proved

Theorem 2. A DFT of order 2k can be performed in k2k addition-subtraction
operations and (k − 2)2k−1 + 1 scalar multiplication operations.

This bound is asymptotically the best known upper bound for the complexity
of a DFT of order 2k.

The complexity of the circuit for the inverse DFT of order 2k coincides with
the complexity of the “forward” DFT up to 2k multiplications by constants
2−k. For k ≥ 2, multiplications by 2−k can be combined with multiplications
at step b).
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The given algorithm is an example of the fast Fourier transform (FFT)
algorithm. In general, FFT algorithms are understood as those algorithms that
imply reducing a DFT of composite order N to DFTs of orders of factors of N .
Sometimes the term FFT is applied to any algorithms of complexity O(N logN).

4. Real complexity of complex DFT

The situation when additive and multiplicative operations in a ring K cannot
be considered equivalent leads to the creation of special FFT algorithms. Let
us illustrate this on the example of the field of complex numbers C.

A complex number is usually represented by a pair of real numbers — real
and imaginary parts: z = x + iy. Let’s recalculate operations with complex
numbers into operations with real numbers. Complex addition (subtraction) is
equivalent to two real additions (subtractions). Complex multiplication can be
performed via four real multiplications and two addition-subtractions. In addi-
tion, to multiply by a constant, three real multiplications and three addition-
subtractions are sufficient.

For the above-described circuit for the complex DFT of order 2k, we obtain
the estimates FR

A(2k) < 3.5k2k for the number of real additions-subtractions
and FR

C (2k) < 1.5k2k for the number of real scalar multiplications, and in total
FR(2k) < 5k2k.

However, a better estimate can be derived if we note that it is advantageous
not to perform some multiplications in the algorithm of Lemma 4 immediately,
but to postpone them for the next stage of computations (implementation of
DFTs of order S). The well-known “split-radix” FFT algorithm is based on
such observation.

Theorem 3. A DFT of order 2k over C can be implemented via at most 3k2k

additions-subtractions and at most k2k multiplications in the field R.

Proof. By formula (2), in which S = 2k−1 and T = 2, compute only even
components of the DFT of order 2k, i.e., for t = 0. To do this, it is sufficient to
calculate one component γ(j),0 = γj + γS+j of each of the 2k−1 internal order-2

DFTs and implement the external DFT of order 2k−1.
To calculate the components with odd indices, set S = 2k−2 and T = 4 and

again apply formula (2). For each of 2k−2 inner DFTs of order 4, we need to
compute two components γ(j),1 and γ(j),3. Each such pair, due to ζS = i, can
be obtained by the formulas

γ(j),1 = (γj − γ2S+j) + i(γS+j − γ3S+j),
γ(j),3 = (γj − γ2S+j)− i(γS+j − γ3S+j).
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Since multiplication by ±i is reduced to permutation of the real and imaginary
parts with a sign change for one of them, the calculation of one pair γ(j),1, γ(j),3
by these formulas is performed in 8 real additions-subtractions. Finally, 2k−1

multiplications by powers of ζjt and two DFTs of order 2k−2 are performed.
For the number FR

A(2k) of additions-subtractions and the number FR
C (2k) of

scalar multiplications in the constructed circuit we have the recurrence relations:

FR
A(2k) ≤ FR

A(2k−1) + 2FR
A(2k−2) + 4.5 · 2k,

FR
C (2k) ≤ FR

C (2k−1) + 2FR
C (2k−2) + 1.5 · 2k,

which, taking into account the initial data

FR
A(2) = 4, FR

C (2) = 0, FR
A(4) = 16, FR

C (4) = 0,

are resolved as promised.

A more careful counting allows to obtain the complexity of the method in
the form: 3k2k − 3 · 2k + 4 additions-subtractions and k2k − 3 · 2k + 4 scalar
multiplications over R. This estimate was established no later than 1968, but
it was only in 2004 that van Buskirk discovered that it could be improved (see
the survey [3]). His method takes into account that multiplication by constants
of the form ±1 +ai or a± i can be performed in two real additions-subtractions
and two real multiplications.

Theorem 4. A DFT of order 2k over C can be implemented using at most
(8/3)k2k additions-subtractions and at most (10/9)k2k + 2k+1 multiplications
in R.

Proof. For k ∈ N and j ∈ Z we define real coefficients

σk,j =
∏
l≥0

max

{∣∣∣∣cos
4l2πj

2k

∣∣∣∣ , ∣∣∣∣sin 4l2πj

2k

∣∣∣∣} .
These coefficients satisfy the properties of symmetry σk,j = σk,−j and peri-

odicity σk,j = σk,j+2k−2 , which follows from the known relations

sinx = − sin(−x), cosx = cos(−x),{∣∣∣sin(x+
πn

2

)∣∣∣ , ∣∣∣cos
(
x+

πn

2

)∣∣∣} = {| sinx|, | cosx|},

where x ∈ R, n ∈ Z. Moreover, for a primitive root ζ = e
2πi

2k of order 2k,
(σk−2,j/σk,j)ζ

j has the form ±1 + ai or a± i, since

ζj = cos
2πj

2k
+ i sin

2πj

2k
,

σk,j
σk−2,j

= max

{∣∣∣∣cos
2πj

2k

∣∣∣∣ , ∣∣∣∣sin 2πj

2k

∣∣∣∣} .
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We will construct circuits for transforms

Φ2k(γ0, . . . , γ2k−1) = DFT2k,ζ [C](σ−1k,0γ0, σ
−1
k,1γ1, . . . , σ

−1
k,2k−1γ2k−1).

According to formula (2) with the choice of parameters S = 2k−2 and T = 4
and the periodicity property of the coefficients σk,j , for the components ϕi of
the transform Φ2k the following holds:

ϕ4s+t =

S−1∑
j=0

(ζ4)js · ζjt · σ−1k,jγ(j),t, γ(j),t =

3∑
l=0

γlS+j · ilt.

The components γ(j),t, t = 0, . . . , 3, of each of 2k−2 order-4 DFTs can be com-
puted via 16 real additions-subtractions. Subsequent calculations for t = 0, 1, 3
are performed by the formulas

ϕ4s =

S−1∑
j=0

(ζ4)jsσ−1k−2,j · (σk−2,j/σk,j) · γ(j),0,

ϕ4s+1 =

S−1∑
j=0

(ζ4)jsσ−1k−2,j · (σk−2,j/σk,j)ζ
j · γ(j),1,

ϕ4s+3 =

S−1∑
j=0

(ζ4)j(s+1)σ−1k−2,j · (σk−2,j/σk,j)ζ
−j · γ(j),3.

These calculations involve 2k−2 multiplications by real constants, 2k−1 mul-
tiplications by constants of the form ±1+ai or a±i, and three Φ2k−2 transforms.

To compute the remaining components ϕ4s+2, apply formula (2) with pa-
rameters S′ = 2k−3 and T ′ = 8:

ϕ8s+2 =

S′−1∑
j=0

(ζ8)jsσ−1k−3,j · (σk−3,j/σk−1,j)(ζ
2)j · γ′(j),2,

ϕ8s+6 =

S′−1∑
j=0

(ζ8)j(s+1)σ−1k−3,j · (σk−3,j/σk−1,j)(ζ
2)−j · γ′(j),6,

where

γ′(j),2 = (σk−1,j/σk,j)γ(j),2 + (σk−1,j+S′/σk,j+S′)iγ(j+S′),2,

γ′(j),6 = (σk−1,j/σk,j)γ(j),2 − (σk−1,j+S′/σk,j+S′)iγ(j+S′),2.
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Note that σk−1,j = σk−1,j+S′ . These calculations are performed via 2k−2 mul-
tiplications by real or imaginary constants, 2k−2 multiplications by constants
of the form ±1 + ai or a± i, and two Φ2k−3 transforms.

Thus, for the numbers F̂R
A(2k) of additive real operations and F̂R

C (2k) of real
scalar multiplications, we have the following recurrence relations:

F̂R
A(2k) ≤ 3F̂R

A(2k−2) + 2F̂R
A(2k−3) + 6 · 2k,

F̂R
C (2k) ≤ 3F̂R

C (2k−2) + 2F̂R
C (2k−3) + 2.5 · 2k,

which, in agreement with the initial data for k ≤ 3 obtained by the previous
method, are resolved as

F̂R
A(2k) ≤ (8/3)k2k, F̂R

C (2k) ≤ (10/9)k2k.

It remains to notice that a circuit for the DFT of order 2k is completed from
a circuit for Φ2k via 2k multiplications by real constants σk,j .

A more accurate account of the operations allows to refine the estimates of
Theorem 4 in the remainder term (see, e.g., [2]).

The complexity of the inverse DFT (up to multiplications by 2−k, which
can be combined with internal multiplications) in both considered algorithms
is estimated in the same way as the complexity of the “forward” one, since
a primitive root ζ−1 is the complex conjugate of ζ.

Let us consider the case when a DFT is applied to a vector with real com-
ponents γj — this case is of interest when multiplying polynomials over R. It
turns out that the complexity of such DFT (we will call it real-input DFT) in
this case can be reduced by approximately half compared to the general case.

Note that if all γj ∈ R, then γ∗N−j = γ∗j for any j, where γ∗j are determined
from (1) and denotes the complex conjugation operation.

Lemma 5. A real-input DFT of order 4N can be implemented via a real-input
DFT of order 2N , a complex DFT of order N , 7N addition-subtraction opera-
tions, and 3N scalar multiplication operations in R.

Proof. To determine the components γ∗k with even indices k = 2s, apply
formula (2), assuming S = 2N and T = 2:

γ∗2s =

2N−1∑
j=0

(ζ2)js · (γj + γ2N+j).

These calculations are reduced to the computation of an order-2N real-input
DFT and 2N additions in R.
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Among the components with odd indices, it is sufficient to compute only
γ∗4s+1, since γ∗4s+3 = γ∗4(N−s−1)+1. For this, apply (2) with parameters S = N

and T = 4:

γ∗4s+1 =

N−1∑
j=0

(ζ4)js · ζj · (γj − γ2N+j + i(γN+j − γ3N+j)).

To calculate the above components, it is sufficient to employ a DFT of order N ,
at most 2N subtractions in R, and N scalar multiplications in C.

Another way to reduce a real-input DFT to a complex DFT of half the order
can be found in [1].

An analogous statement can be proved about the complexity of the inverse
real-input DFT — its input is a vector (γ0, . . . , γN−1) such that γ0 ∈ R and
γN−j = γj for any j = 1, . . . , N − 1. We call such a transform a real-valued
DFT. A result similar to the one proved above holds for this DFT.

Lemma 6. A real-valued DFT of order 4N can be implemented via a real-
valued DFT of order 2N , a complex DFT of order N , 7N addition-subtraction
operations, and 3N scalar multiplication operations in R.

Proof. Applying formula (2) and the notation from Lemma 4 with the choice
of parameters S = 2 and T = 2N , write

γ∗2Ns+t = ω(t),0 + (−1)sω(t),1 = γ(0),t + (−1)sζtγ(1),t,

where s = 0, 1 and t = 0, . . . , 2N − 1,

γ(0),t =

2N−1∑
i=0

γ2i(ζ
2)it, γ(1),t =

2N−1∑
i=0

γ2i+1(ζ2)it.

Given that the components ω(t),i are already computed, all γ∗j may be de-
termined in 4N real additions and subtractions.

The vector with components ω(t),0 = γ(0),t is the image of the real-valued
DFT of order 2N , since it is applied to the vector (γ0, γ2, . . . , γ2(2N−1)). To
compute ω(t),1, represent γ(1),t in form (2) with the choice of parameters S = 2
and T = N :

γ(1),Ns′+t′ = γ′(0),t′ + (−1)s
′
ζ2t
′
γ′(1),t′ ,

where s′ = 0, 1 and t′ = 0, . . . , N − 1,

γ′(0),t′ =

N−1∑
i=0

γ4i+1(ζ4)it
′
, γ′(1),t′ =

N−1∑
i=0

γ4i+3(ζ4)it
′
.
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Due to γ4N−j = γj we have

γ′(1),t′ =

N−1∑
i=0

γ4(N−i−1)+1(ζ4)it
′

=

N−1∑
i′=0

γ4i′+1(ζ4)(N−1−i
′)t′ =

= ζ−4t
′
N−1∑
i′=0

γ4i′+1(ζ4)i′t′ = ζ−4t
′
γ′(0),t′ .

Thus, the components ω(t),1 can be determined by the formulas:

ω(Ns′+t′),1 = is
′
(
ζt
′
γ′(0),t′ + (−1)s

′
ζ−t

′
γ′(0),t′

)
,

i.e.3,
ω(t′),1 = Re(2ζt

′
γ′(0),t′), ω(N+t′),1 = −Im(2ζt

′
γ′(0),t′).

To compute all ω(t),1, one DFT of order N and N multiplications in C are
sufficient.

Resolving the recurrence relations following from the proved lemmas, using
Theorem 4 we conclude:

Corollary 1. Any of real-input and real-valued DFTs of order 2k can be per-
formed in (4/3)k2k+O(2k) addition-subtraction operations and (5/9)k2k+O(2k)
scalar multiplication operations in R.

5. DFT in extension ring

If a ring K does not contain roots of unity of an appropriate order, then it is
impossible to directly apply the method of Theorem 1 to multiply polynomials
over K. In the Schönhage—Strassen algorithm [7, 8] and similar ones, in such
a case it is proposed to use an extension K2,n(x) = K[x]/(x2

n

+ 1), provided
two is invertible in K.

In the ring K2,n(x), the DFT of order 2n+1 with primitive root x is defined
(here and below, instead of elements of the factor ring K2,n(x), which are classes
of equivalent polynomials modulo x2

n

+ 1, we will use polynomials that are
representatives of their classes).

Lemma 7. A DFT of order 2k over the ring K2,n(x), k ≤ n + 1, can be
performed in k2k+n addition-subtraction operations in K.

3As usual, Re z and Im z denote the real and imaginary parts of z ∈ C, respectively.
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Proof. Representing elements of the ring K2,n(x) by polynomials of degree at
most 2n−1, it is easy to see that addition or subtraction in K2,n(x) corresponds
to 2n additions-subtractions in the ring K, and multiplication by xm — to
a cyclic shift of coefficients with a change of sign for some of them. Thus,
if the change of sign can be taken into account in subsequent calculations,
multiplication by powers of the primitive root x is implemented “free of charge”.
To complete the proof, it now remains to apply (3).

To implement multiplication in K2,n(x), it is convenient to consider this ring
as an extension of some ring K2,m(y):

Lemma 8. Let m < n. There is an isomorphism

K2,n(x) ∼= K2,m(y)[x]/(x2
n−m
− y), (4)

generated by the substitution x2
n−m

= y.

Proof. The polynomial f(x) ∈ K2,n(x) can be written as f(x) =∑2n−m−1
i=0 fi(x

2n−m)xi, where deg fi < 2m. The substitution x2
n−m

= y maps

f(x) to the polynomial
∑2n−m−1
i=0 fi(y)xi. Assume fi(y) ∈ K2,m(y).

Obviously, the substitution generates a linear one-to-one mapping. It re-
mains to verify that this mapping preserves the product, and due to linearity,
the verification can be restricted to monic monomials. In the ring K2,n(x),

xj12
n−m+i1 · xj22

n−m+i2 = xj32
n−m+i3 = (−1)kxj42

n−m+i3 ,

where

i3 = (i1 + i2) mod 2n−m, j3 = j1 + j2 + (i1 + i2 − i3)/2n−m,

j4 = j3 mod 2m, k = (j3 − j4)/2m.

On the other hand, in the ring K2,m(y)[x]/(x2
n−m − y) it is also true that

yj1xi1 · yj2xi2 = yj3xi3 = (−1)kyj4xi3 .

Evidently, the results of both multiplications turn into each other upon substi-
tution y = x2

n−m
.

It is important to note that the considered mapping is performed by a simple
permutation of the coefficients. For example, the polynomial x3 + 2x2 − 1 ∈
K2,2(x) corresponds to the polynomial yx + (2y − 1) ∈ K2,1(y)[x]/(x2 − y).
Other isomorphisms can also be used to implement multiplication, see [3].
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Theorem 5. Multiplication in the ring K2,n(x) can be performed using
3 · 2nn(log2 n+O(1)) addition-subtraction operations, 3 · 2n+dlog2 ne−1 multi-
plication operations, and 2n scalar multiplication operations in K.

Proof. We apply (4) with the choice of parameter m = dn/2e. The multi-

plication of polynomials over K2,m(y) modulo x2
n−m − y is performed as the

usual multiplication of polynomials of degree at most 2n−m−1 with subsequent
modulo reduction.

The multiplication is performed via three DFTs of order 2n−m+1 = 2bn/2c+1

and 2bn/2c+1 multiplications in the ring K2,m(y), where the inverse DFT is com-

puted up to a normalizing constant factor. The modulo reduction x2
n−m − y is

implemented in 2n additions-subtractions in K. Finally, the result is multiplied
by an appropriate power of 2−1.

For the numbers µA(n) of additions and subtractions and µM (n) of non-
scalar multiplications in the proposed circuit for n ≥ 2 we obtain the recurrence
relations:

µA(n) ≤ 2bn/2c+1µA(dn/2e) + 3(bn/2c+ 1)2n+1 + 2n,

µM (n) ≤ 2bn/2c+1µM (dn/2e),

which are resolved exactly as promised if for n = 1 we apply the estimates
µA(1) = 5 and µM (1) = 3. Otherwise, we can take µA(1) = 2 and µM (1) = 4.
In the latter case the circuit will contain 2n+dlog2 ne+1 multiplications, but the
total number of operations will be somewhat smaller.

These complexity bound is asymptotically the best known. Multiplication
of polynomials over K can now be performed by a circuit for multiplication in
a suitable ring K2,n(x).

6. Application of DFT of order 3k

In a ring of characteristic 2, it is impossible to define a DFT of even order,
so the problem of constructing and efficiently implementing (in the ring itself
or in an extension) a DFT of odd order, preferably of order 3k, is relevant.
This problem is also actual for rings in which either there are primitive roots of
order 3k, or two is irreversible.

The components of the DFT of order 3 may be calculated by the formulas

γ∗0 = γ0 +γ1 +γ2, γ∗1 = γ0−γ2 + ζ(γ1−γ2), γ∗2 = γ0−γ1− ζ(γ1−γ2), (5)

where ζ is a primitive root of order 3 in K. These calculations can be per-
formed in seven addition-subtraction operations and one scalar multiplication
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(or six additions-subtractions and two multiplications). If char K = 2, then five
additions and one multiplication are sufficient.

From Lemma 4 it follows

Theorem 6. A DFT of order 3k can be implemented using at most (7/3)k3k

addition-subtraction operations and (k−1)3k+1 scalar multiplication operations.
In a ring of characteristic 2, the number of additive operations is estimated as
(5/3)k3k.

Proof. The stated estimates follow from the recurrence relations on the num-
bers FA(3k) of additive operations and FC(3k) of scalar multiplication opera-
tions in the method of Lemma 4:

FA(3k) = 3FA(3k−1) + 3k−1FA(3),

FC(3k) = 3FC(3k−1) + 3k−1FC(3) + 2 · 3k−1 − 2

and the initial conditions: FC(3) = 1, FA(3) = 7 in the general case or FA(3) =
5 for a ring of characteristic 2.

If a ring K does not contain primitive roots of sufficiently large or-
der 3k, but 3 is invertible, then we can consider the extension K3,n(x) =
K[x]/(x2·3

n

+ x3
n

+ 1), in which x is a primitive root of order 3n+1.
In the ring K3,n(x), addition (subtraction) is performed in 2 · 3n addition

(subtraction) operations in K, and the complexity of multiplication by xm de-
pends on m:

Lemma 9. The complexity of multiplication by xm up to a factor of ±1 in
the ring K3,n(x) is |m| subtraction operations in K if −3n ≤ m ≤ 3n, and 3n

subtraction operations, otherwise (i.e., if 3n < m < 2 · 3n).

Proof. Let 0 ≤ m ≤ 3n. Write a polynomial f(x) ∈ K3,n(x) as
a(x)x2·3

n−m + b(x), where deg a < m and deg b < 2 · 3n − m. In the ring
K3,n(x), the equality

f(x)xm = b(x)xm − a(x)− a(x)x3
n

holds, from which it is clear that, not counting multiplications by −1, computing
the coefficients of the product requires m subtractions in K.

In the case −3n ≤ m < 0, write f(x) = b(x)x−m + a(x). Then, due to

f(x)xm = b(x)− a(x)x2·3
n

− a(x)x3
n

computing the coefficients of the polynomial also requires |m| subtractions.
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Suppose 3n < m < 2 · 3n. Represent f(x) as a(x) + b(x)x2·3
n−m + c(x)x−m,

where deg a < 2 · 3n − m, deg b < 3n, and deg c < m − 3n. Then computing
f(x)xm requires 3n subtractions, since

f(x)xm = a(x)xm − b(x)x3
n

+ c(x)− b(x).

Lemma 10. Any of the transforms DFT3,ζ [K3,n(x)](γ0, ζ
c1γ1, ζ

c2γ2), where
ζ = x3

n

, c1, c2 ∈ {0, 1, 2}, can be performed in 13 · 3n addition-subtraction
operations in K or in 10 · 3n addition operations if char K = 2.

Proof. Despite the nine possibilities for choosing the parameters c1, c2,
actually it is sufficient to consider three cases, for example, (c1, c2) ∈
{(0, 0), (0, 1), (1, 1)}. The components of any other transform are obtained by
permuting the components of one of the three listed.

Consider the case c1 = c2 = 0, in which the transform is a usual DFT of
order 3. Represent γi ∈ K3,n(x) as ai(x)+x3

n

bi(x), where ai, bi are polynomials
of degree less than 3n, i = 0, 1, 2. Then formulas (5) can be rewritten as

γ∗0 = (a0 + a1 + a2) + x3
n

(b0 + b1 + b2),

γ∗1 = (a0 − a2 − (b1 − b2)) + x3
n

(b0 − b1 + a1 − a2),

γ∗2 = (a0 − a1 + b1 − b2) + x3
n

(b0 − b2 − (a1 − a2)).

If we represent γ∗2 as

γ∗2 = a0 − a2 + ((b1 − b2)− (a1 − a2)) + x3
n

(b0 − b1 + ((b1 − b2)− (a1 − a2))),

then it becomes clear that all three components of γ∗i can be calculated in
13 addition-subtraction operations with polynomials of degree at most 3n − 1.

In a ring of characteristic 2, the formulas for γ∗i take the form

γ∗0 = (a0 + a1 + a2) + x3
n

(b0 + b1 + b2),

γ∗1 = (a0 + a2 + b1 + b2) + x3
n

(b0 + b1 + a1 + a2),

γ∗2 = (a0 + a1 + b1 + b2) + x3
n

(b0 + b2 + a1 + a2).

If we write
γ∗2 = γ∗1 + (a1 + a2) + x3

n

(b1 + b2),

then it is easy to verify that to compute the components γ∗i we can do with
10 additions of polynomials of degree at most 3n − 1.
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The other two cases are treated similarly. For example, the components of
the transform parameterized by c1 = c2 = 1 have the form

(a0 − b1 − b2) + x3
n

(b0 − (b1 − a2 + b2 − a1)),

(a0 − a1 + b1 − a2) + x3
n

(b0 + b2 − a1),

(a0 + a1 − a2 + b2) + x3
n

(b0 + b1 − a2),

from which it is clear that they can be calculated in 13 addition-subtraction
operations of polynomials of degree at most 3n − 1. The remaining cases for
verification are left to the reader.

Lemma 11. A DFT of order 3k over the ring K3,n(x), where k ≤ n + 1, can
be implemented using at most 4.5k3n+k addition-subtraction operations in K,
and in the case char K = 2 — at most 3.5k3n+k addition operations.

Proof. The implementation of a DFT of order 3k+1, if we apply Lemma 4
with the choice of parameters S = 3 and T = 3k, is reduced to performing

3k DFTs of order 3, three DFTs of order 3k and multiplications by x3
n−kjt,

where j = 1, 2 and t = 1, . . . , 3k − 1.
Let m = c3n + m′, where c ∈ Z and |m′| < 3n/2. Then, instead of multi-

plying by xm, we will multiply by xm
′
, transferring the multiplication by xc3

n

inside an outer DFT of order 3. Since the inputs of any of the outer DFTs are
of the form γ(0),t, x

lγ(1),t, x
2lγ(2),t, where l = 3n−kt < 3n, then when reducing

to multiplications by xm
′
, the outer DFT is replaced by one of the transforms

of Lemma 10.
In the group of multiplications under consideration, multiplications by each

of the powers xm
′
, m′ = 3n−kt, t = −(3k − 1)/2, . . . , (3k − 1)/2, are performed

twice, since

{2t mod 3k | t = 1, . . . , 3k − 1} = {1, . . . , 3k − 1}.

Counting the complexity of each such multiplication as |m′|, the complexity of
all these multiplications is estimated as

4 · 3n−k
3k−1

2∑
t=1

t = 3n−k · 32k − 1

2

addition-subtraction operations in K.
Thus, for the complexity Fn(3k+1) of the constructed circuit, we have the

recurrence relation

Fn(3k+1) ≤ 3Fn(3k) + 3kFn(3) + 3n+k/2,

16



which, under the initial conditions Fn(3) = 13 · 3n (or Fn(3) = 10 · 3n for a ring
of characteristic 2), is resolved as stated in the assertion of the lemma.

Lemma 12. Multiplication in the ring K3,1(x) can be accomplished in
30 addition-subtraction operations and 27 multiplication operations in K.

Proof. Represent polynomials A(x), B(x) ∈ K3,1(x) to be multiplied as
A(x) = A1(x)x3 + A0, B(x) = B1(x)x3 + B0, where degAi, Bi ≤ 2. Com-
pute their product via the Karatsuba method:

AB = A1B1x
6 + ((A1 −A0)(B0 −B1) +A1B1 +A0B0)x3 +A0B0.

We denote C = (A1 − A0)(B0 − B1) = C1x
3 + C0, D = A0B0 = D1x

3 + D0,
E = A1B1 = E1x

3 + E0, where degC0, D0, E0 ≤ 2 and degC1, D1, E1 ≤ 1.
Then in the ring K3,1(x), i.e. modulo x6 + x3 + 1, the following relation takes
place:

AB = Ex6 + (C +D + E)x3 +D = (C +D)x3 + (D − E) =

= ((D0 − C1) + C0 − E1)x3 + ((D0 − C1)− E0 −D1) = G1x
3 +G0.

The products C,D,E of polynomials of degree at most 2 are performed
in a straightforward manner in 9 multiplications and 4 additions each. The
remaining calculations are performed in 18 addition-subtraction operations: six
of them are used to compute A1−A0, B0−B1, and 12 — to compute the linear
combinations G0, G1.

Theorem 7. Multiplication in the ring K3,n(x) can be performed using
13.5 · 3nn(log2 n+O(1)) addition-subtraction operations, at most 3n+2 · 2dlog2 ne

multiplication operations, and O(3n) scalar multiplication operations in K.
In the case of a ring of characteristic 2, the additive complexity is at most
10.5 · 3nn(log2 n+O(1)).

Proof. The proof of the theorem is similar to that of Theorem 5. For n ≥ 2,
represent the ring K3,n(x) as an extension of the ring K3,m(y) (an analogue of
Lemma 8 holds):

K3,n(x) ∼= K3,m(y)[x]/(x3
n−m
− y)

and choose m = dn/2e. As in the binary case, the multiplication of polynomials

over K3,m(y) modulo x3
n−m − y may be performed as the usual multiplication

of polynomials of degree at most 3n−m − 1 with subsequent modulo reduction.
Unlike the binary case (due to the absence of a DFT of order 2 · 3n−m),

six DFTs of order 3n−m = 3bn/2c are employed for multiplication: three DFTs
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are used in the usual way to compute the product modulo x3
n−m − 1, and the

other three are used to compute the product modulo x3
n−m − α3n−m , where

α = y3
n mod 2

, which reduces to the substitution x = αz and computing the
product modulo z3

n−m − 1. Indeed,(
f(x) mod (xN − αN )

)
|x=αz= f(αz) mod (zN − 1).

The execution of any of the transforms x = αz and z = x/α is performed in
the ring K3,n(x) by O(3n−m) operations of multiplication by powers of y in
the ring K3,m(y), i.e., in just O(3n) additive operations in K, if we perform
computations up to a factor of ±1.

The reconstruction of a polynomial f(x) ∈ K3,m(y)[x] of degree no greater
than 2N−2 from its remainders f1 and fα from division by xN−1 and xN−αN ,
respectively, can be performed by the formula

f(x) =
1

αN − 1

(
(xN − 1)fα − (xN − αN )f1

)
.

Moreover, for N = 3n−m, due to α2N + αN + 1 = 0, the factor (αN − 1)−1 is
equal to −3−1(αN + 2). It is clear that the described procedure for recovering
a polynomial can also be performed in O(3n−m) additions-subtractions and
multiplications by powers of y in the ring K3,m(y), i.e., in just O(3n) additions-
subtractions in K.

Reduction of a polynomial of degree less than 2·3n−m modulo x3
n−m−y also

costs O(3n−m) addition-subtraction operations and multiplications by powers
of y in the ring K3,m(y), that is, O(3n) additive operations in K.

For the numbers µA(n) of additions-subtractions and µM (n) of nonscalar
multiplications in this circuit for n ≥ 2 we obtain the following recurrence
relations:

µA(n) ≤ 2 · 3bn/2cµA(dn/2e) + 6Fdn/2e(3
bn/2c) +O(3n),

µM (n) ≤ 2 · 3bn/2cµM (dn/2e),

where the value Fdn/2e is determined from Lemma 11. These relations are
resolved as promised in the statement of the theorem if for n = 1 we apply the
estimates of Lemma 12.

Note that the method of Theorem 5 provides an asymptotic estimate
3N log2N log2 log2N for the complexity of polynomial multiplication of to-
tal degree at most N − 1, where N = 2k, and the method of Theorem 7
in the case of a ring of characteristic 2 and N = 2 · 3k — a close estimate
3.32N log2N log2 log2N .
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Remark. Multiplication of binary trinomials can be performed via 6 multipli-
cations and 12 additions-subtractions. Therefore, the estimates for the number
of multiplications in Lemma 12 and, consequently, in Theorem 7 can be reduced
by 1.5 times at the cost of some increase in the number of additive operations.

7. Conclusion

The multiplication strategy in the case 2−1, 3−1 /∈ K is indicated by the
Cantor—Kaltofen method [4]. By the method of Theorems 5 and 7, only replac-
ing the inverse transforms DFT−1N,ζ with non-normalized transforms DFTN,ζ−1 ,
compute the “almost products”

2N1fg = 2N1fg mod (x2
n1

+ 1), 3N2fg = 3N2fg mod (x2·3
n2

+ x3
n2

+ 1)

for suitable ni, Ni ∈ N, where f, g are polynomials being multiplied. Then,
the product fg can be obtained as q2N1fg + s3N2fg, where q, s are Bezout
coefficients from the equality q2N1 + s3N2 = 1.

However, the relevance of developing fast multiplication algorithms over such
rather exotic rings seems insignificant for now.
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