
ON THE LOGARITHMIC DEPTH CIRCUITS
FOR INVERSION IN FINITE FIELDS

OF CHARACTERISTIC 2∗

I. S. SERGEEV
(MOSCOW)

1 Introduction

In the last 30 years, finite field arithmetic has received a strong impact for de-
velopment, primarily from cryptographic applications. Of particular interest is
the implementation of operations in finite fields of characteristic 2 (see, for exam-
ple, [5]).

This paper considers the operation of calculating an inverse element (that is,
inversion operation) in the field GF (2n) (this notation is accepted for the Galois
field of order 2n). It is usually a part (and the most significant from the point of
view of circuit performance) of the division operation.

To implement the above operations, we will employ circuits of functional ele-
ments over the basis of all two-input Boolean functions. For the most frequently
used operations of negation, conjunction, disjunction, and addition modulo 2, we
use the notations ¯ , ·,∨,⊕, respectively.

The most important measures of efficiency of a circuit are its complexity (the
number of elements) and depth (the maximum number of elements in an input-
output chain). The concepts of complexity and depth are extended to Boolean
functions. The complexity (depth) of a function is the minimum possible complex-
ity (depth) of a circuit implementing this function1). The complexity and depth
of a function f are denoted by L(f) and D(f). A more detailed exposition of the
concepts of depth and complexity can be found in [25].

A finite field is a finite ring with unity such that the set of its nonzero elements
forms an abelian group under the operation of multiplication. The finite field
GF (2n) is an n-dimensional vector space over the two-element field GF (2) (with
the operation of vector multiplication). Different representations of the field are
related to the choice of different bases in it. The most commonly used are standard
(or polynomial) and normal bases. In the main text, only polynomial bases and
the polynomial representation of field elements will be considered. A thorough
exposition of the theory of finite fields can be found in [23], and algorithmic aspects
are discussed in [5, 17].

∗Translated version. Originally published in: Matematicheskie Voprosy Kibernetiki [Math-
ematical Problems of Cybernetics]. Vol. 15. Moscow: Fizmatlit, 2006, 35–64 (in Russian).
The work was supported by RFBR, project 05–01–00994, program “Leading scientific schools”,
project NSh–5400.2006.1, and the fundamental research program of the Department of Mathe-
matical Sciences of the Russian Academy of Sciences “Algebraic and combinatorial methods of
mathematical cybernetics” (project “Synthesis and complexity of control systems”).

1)For a multidimensional Boolean function, we will use the term “operator” or “mapping”.

1

INVERSION IN FINITE FIELDS WITH LOGARITHMIC DEPTH 2

In calculations in a polynomial basis, elements of GF (2n) are interpreted as
polynomials of degree n− 1 over GF (2), and arithmetic operations are performed
modulo some irreducible polynomial mn(t) of degree n. As a rule, a characteristic
polynomial of a field is chosen to be an irreducible polynomial containing the
smallest number of nonzero coefficients, usually a trinomial or pentatomial.

In practice, two groups of algorithms are used for inversion in finite fields
GF (2n). The algorithms of the first group are based on the method of addition
chains. Since for any x ∈ GF (2n) the Fermat identity x = x2

n

holds, then inversion
coincides with raising to the power 2n − 2, which can be performed by construct-
ing an addition chain for the exponent 2n − 2. Brauer’s method reduces inversion
to performing O(log n) multiplications and Frobenius operations (i.e., raising to
powers of the form 2k). By performing the last operations via the Brent—Kung
method [6] (see §6), one can obtain estimates O(n1.667) for the complexity and
O(log2 n) for the depth of inversion (for more details on the application of addi-
tion chains to inversion, see [5]). In practice, methods with depth O(log2 n) and
complexity O(n2) are applied.

The second group of methods is based on the extended Euclidean algorithm
for compuing the GCD of polynomials. A fast version of this algorithm, due to
Schönhage and Moenck (see [11, Ch. 11]), in combination with Schönhage’s method
of multiplying binary polynomials [29] leads to estimates O(n log2 n log log n) for
the complexity and O(log2 n) for the depth2) of inversion. In practice, however,
asymptotically more complex methods are used. Since the Euclidean algorithm
isn’t adapted for circuits, the algorithms of this group are usually used in software
implementation.

In [24] a circuit for inversion in the field GF (2n) of depth O(log n) was con-
structed. Another way of constructing such a circuit was proposed in [10]. Neither
the exponent in the complexity estimate nO(1), nor the multiplicative coefficient in
the depth estimate in [10, 24] are specified (see §7.1). Probably, the present work
is chronologically the next after the two mentioned ones, dedicated to inversion in
finite fields with logarithmic depth (not counting a short note [30]).

The main result consists in proving the following theorem.

Th e o r em. Inversion and division in the field GF (2n) may be implemented with
depth 6.44 log n+o(log n) and complexity 2

3n
4+o(n4); or with complexity O(n1.667)

and depth O(log n).

Here and everywhere below we omit the base symbol for binary logarithms.
This work is purely theoretical: despite the fact that the proposed method for

sufficiently large n can outperform known methods, at least in depth, in fields with
dimensions n < 1000, which have practical significance, it can hardly be in demand.
For practical construction of circuits for inversion, see [9, 19].

The main tool for constructing division and inversion circuits is a circuit im-
plementing raising to an arbitrary power M in the field GF (2n). It is described in
§3, where a depth estimate for inversion is also obtained. Before that, in §2, we
consider auxiliary finite fields operations, which are used in further constructions.
In §4, we discuss in detail a circuit for discrete logarithm, necessary for justifying
the result of §3. A method for reducing the asymptotic complexity of inversion is
described in §5. In §6, the final result of the work on the complexity of inversion
is presented. In §7, some remarks concerning related issues are collected.

2)Note from 31.03.2025: an erroneous statement: actually, the depth can be estimated only as
O(n).

2

INVERSION IN FINITE FIELDS WITH LOGARITHMIC DEPTH 3

2 Auxiliary finite fields operations

An operatorUUU : GF (2)n → GF (2)m is called linear if for any vectors x, y ∈ GF (2)n

UUU(x+y) = UUU(x)+UUU(y). The last condition is equivalent to the existence of an m×n-
matrix U over GF (2) such that for any vector x ∈ GF (2)n, we have UUU(x) = Ux.
In this case we say that the operator UUU has dimension m× n.

2.1 Examples of linear operations

We list some operations of finite field arithmetic used below, for which the linearity
property holds.

Let Sn,lSn,lSn,l denote the operator of raising to the power 2l in the field GF (2n). It
is called the Frobenius operator and is linear: for any a, b ∈ GF (2n) the Frobenius
identity holds:

(a+ b)2
l

= a2
l

+ b2
l

.

When working in a polynomial basis, we often use the operation of calculating
the remainder of division of an arbitrary polynomial h(t) by a (irreducible) polyno-
mial mn(t) defining the field basis under consideration. We introduce the notation
Bn,pBn,pBn,p for the transform that reduces a polynomial of degree at most p − 1 over
GF (2) modulo mn(t). This operation is linear, since for any binary polynomials
h1(t) and h2(t),

(h1(t) + h2(t)) mod mn(t) = (h1(t) mod mn(t)) + (h2(t) mod mn(t)).

Let us also consider the operation of evaluating an arbitrary polynomial of
degree at most p−1 over GF (2) in a fixed point a ∈ GF (2n). This operation is the
so-called modular composition of polynomials, denoted by Cn,p,aCn,p,aCn,p,a. It is linear, since
for any pair of polynomials h1(x) and h2(x) the identity (h1+h2)(a) = h1(a)+h2(a)
holds, which follows directly from the rule for adding coefficients at similar powers
of a:

(h1,i + h2,i)a
i = h1,ia

i + h2,ia
i,

where h1,i and h2,i denote the coefficients of the corresponding polynomials at xi.
In the field GF (2k) we fix a set of elements {αj | j = 1, . . . , p}. The operator

Fk,s,pFk,s,pFk,s,p maps an arbitrary polynomial of degree at most s − 1 over GF (2) to the
vector of its values on this set.

Let s = p. According to the main property of interpolation, the operator Fk,p,pFk,p,pFk,p,p
establishes a one-to-one correspondence between GF (2)p and Im(Fk,p,pFk,p,pFk,p,p) ⊂
GF (2k)p, hence, there exists an inverse mapping F−1k,pF−1k,pF−1k,p .

In fact, the mappings Fk,s,pFk,s,pFk,s,p and F−1k,pF−1k,pF−1k,p perform the inverse and forward interpola-
tion operations, respectively, for the set of polynomials with coefficients in GF (2)
(one could consider the coefficients of the polynomials as belonging to the field
GF (2k), which is more common, but we will not need such a generalization).

The operator Fk,s,pFk,s,pFk,s,p is the union of p linear mappings Ck,s,αjCk,s,αjCk,s,αj , j = 1, . . . , p, and

is thus linear. The operator F−1k,pF−1k,pF−1k,p , as the inverse of Fk,p,pFk,p,pFk,p,p, is also linear.

2.2 Complexity of linear operations

Consider an arbitrary linear mapping Am,nAm,nAm,n of dimension m × n with matrix A.
Multiplication of such a matrix by an arbitrary vector of length n can be interpreted

3

INVERSION IN FINITE FIELDS WITH LOGARITHMIC DEPTH 4

as computing a system of m linear combinations of the vector components over the
field GF (2).

The computational complexity of one linear combination of n variables does not
exceed n−1 while the depth is dlog ne. Consequently, for independent computation
of m combinations, no more than m(n − 1) functional elements are required. By
the method of O. B. Lupanov [26] (see also [25]), which is presented below, one
can construct a circuit of complexity O(mn/ log n) and depth dlog ne + 1, i.e.,
asymptotically optimal in depth and complexity with respect to the class of all
linear mappings of dimension m× n.

L emma 1. There is a circuit computing all linear combinations of s variables,
minimal in depth and complexity.

P r o o f. In parallel, all possible sums of two variables are calculated. At the
next level — sums of various triplets and quadruplets of variables (using what has
already been calculated). Then sums of sets of 5, 6, 7 and 8 variables, etc. All
elements, as well as all inputs of the constructed circuit are its outputs, which
implies minimal complexity. The number of elements in the circuit is 2s − s − 1,
and the depth is dlog se and is minimal possible.

Th e o r em 1 (O. B. Lupanov, 1956). The complexity of multiplying a bi-
nary matrix A of size m × n by a binary vector x of length n does not exceed
mn
logm (1 + log logm+2

logm−log logm), and the depth does not exceed3) dlog ne+ 1.

P r o o f. Divide the components x0, . . . , xn−1 of the vector x into groups of size s.
For each of the groups, implement all linear combinations by the method of
Lemma 1. An arbitrary linear combination of all components of the vector x is
constructed from “short” group sums, additionally requiring dn/se − 1 elementary
additions. The complexity of the entire circuit can be estimated as

L(Am,nAm,nAm,n) <
n

s
(2s − s− 1) +m

n

s
.

After choosing s = dlogm− log logme, the obtained estimate takes the form

L(Am,nAm,nAm,n) <
n

logm− log logm

(
2m

logm
+m

)
=

mn

logm
· logm+ 2

logm− log logm
,

which proves the theorem in part of complexity.
The circuit depth is estimated as

D(Am,n) ≤ dlog se+ dlogdn/see ≤ dlog ne+ 1.

2.3 Nonlinear operations

Note that each of the linear operations given as examples can be implemented with
smaller complexity than a linear mapping in general.

For instance, by the method [6], the modular composition operation Cn,p,aCn,p,aCn,p,a can
be reduced to multiplying a matrix of size

√
p × √p by a matrix of size

√
p × n,

which can be performed in O(pn/ log p) operations (see, e.g., [16]). The Frobenius

3)Here and in all subsequent formulations, estimates of the complexity and depth of functions
are given for implementation by a single circuit.

4

INVERSION IN FINITE FIELDS WITH LOGARITHMIC DEPTH 5

operation Sn,lSn,lSn,l is a special case of modular composition and also requires less than
O(n2/ log n) operations and, in particular, can be implemented with complexity
O(n1.667) (see §6).

A fundamental nonlinear operation in the field GF (2n) is multiplication, de-
noted by MnMnMn. Field multiplication is usually implemented in two steps: multipli-
cation of polynomials representing the elements being multiplied, and reduction
of the result modulo mn(t). The “school” algorithm for multiplying polynomials
of degree n − 1 has complexity 2n2 and depth dlog ne + 1. Modulo reduction is a
linear operation of type Bn,2n−1Bn,2n−1Bn,2n−1 and can be performed with the same depth and
complexity.

However, the Schönhage method [29] allows to multiply binary polynomials
with complexity O(n log n log log n) and depth O(log n). In turn, modulo reduc-
tion can be reduced to multiplication of polynomials. We describe this reduction
following [11]. Write a polynomial h(t) of degree at most 2n − 1 as a(t)tn + b(t),
where deg a, b < n. We introduce the notation c̃(t) = tdeg cc(1/t), i.e., the coeffi-
cients of the polynomial c̃(t) are the coefficients of c(t) written in reverse order. Let
a(t)tn = q(t)mn(t) + r(t), where deg q, r < n, then h(t) mod mn(t) = r(t) + b(t).
The remainder r(t) is computed by two multiplications as follows. We have,

ã(t) = q̃(t)m̃n(t) + tnr̃(t).

If i(t) is the inverse polynomial to m̃n(t) modulo tn, i.e., i(t)m̃n(t) = 1 mod tn (it
exists because the free coefficient of m̃n(t) is 1), then

q̃(t) = ã(t)i(t) mod tn and r(t) = q(t)mn(t) mod tn.

Thus,
L(Bn,2nBn,2nBn,2n) ≤ 2M(n) + n, D(Bn,2nBn,2nBn,2n) ≤ 2D(n) + 1,

and consequently

L(MnMnMn) ≤ 3M(n) + n, D(MnMnMn) ≤ 3D(n) + 1,

where M(n), D(n) are the complexity and depth of multiplication of binary poly-
nomials of degree n− 1.

The operation Fk,s,pFk,s,pFk,s,p, i.e., the evaluation of a polynomial of degree s − 1
at p points of the field GF (2k) in the case s ≤ p (of interest to us), can be
performed by an algorithm [1] in O(M(p) log p) operations in the field GF (2k)
with depth O(log2 p) over the same field (for comparison, the complexity estimate
O(skp/ log(kp)) follows from Theorem 1). Therefore,

L(Fk,p,pFk,p,pFk,p,p) ≤ O(M(p) log p)L(MkMkMk), D(Fk,p,pFk,p,pFk,p,p) ≤ O(log2 p)D(MkMkMk).

A similar algorithm (see [1]) allows us to obtain the same estimates for the interpo-
lation operation F−1k,pF−1k,pF−1k,p . In §6, a “parallel” version of this algorithm will be described,
with depth of logarithmic order.

Note that Lupanov’s method allows to implement an arbitrary linear mapping
with an asymptotically optimal depth, so it will be used primarily in the part
devoted to minimizing the depth of inversion; in the part related to the complexity
of inversion with logarithmic depth (§6), alternative methods will be used, including
those mentioned above.

5

INVERSION IN FINITE FIELDS WITH LOGARITHMIC DEPTH 6

3 Exponentiation algorithm

The subsequent constructions will be based on the algorithm for raising a field ele-
ment to an arbitrary (but fixed for the algorithm) power. Here is a brief description
of it.

Let x ∈ GF (2n) be an element in the polynomial representation, and we need
to compute xM , where M = 2e1 + 2e2 + . . .+ 2em . We can assume that M < 2n−1
(due to the Fermat identity x2

n

= x) and, therefore, m < n.
1.1.1. Compute the powers x2

e1
, . . . , x2

em
. Let x2

ei
correspond to a polynomial fi(t)

in the field representation. Let further f(t) = f1(t)·. . .·fm(t). Set p = m(n−1)+1,
and choose a field GF (2k) containing at least p elements; in it, choose a set of
elements α1, . . . , αp.

2.2.2. Compute all possible fi(αj) ∈ GF (2k), where i = 1, . . . ,m, j = 1, . . . , p.
3.3.3. For all j, compute the products f1(αj) · . . . · fm(αj) = f(αj). To do this, in

the field GF (2k), choose a primitive element α. If fi(αj) 6= 0 for all i, then
3.1.3.1.3.1. Compute the discrete logarithms, logα fi(αj).
3.2.3.2.3.2. Compute

∑m
i=1 logα fi(αj) mod (2k − 1) = logα f(αj).

3.3.3.3.3.3. Compute f(αj) = αlogα f(αj).
4.4.4. Given the values f(αj), j = 1, . . . , p, reconstruct the polynomial f(t) of

degree at most p− 1.
5.5.5. The element xM corresponds to the polynomial f(t) mod mn(t).
It is easy to see that the algorithm is based on the idea of interpolation, which

goes back to the work of A. L. Toom [33]. It allows to reduce iterated multiplication
in the field GF (2n) to multiplication in a field of lower dimension GF (2k). For
multiplication in the “small” field GF (2k), discrete logarithm is used, the idea of
which is taken from [7].

The operation of raising to a power of weight m (weight is the number of ones
in binary notation) in the field GF (2n) is denoted by En,mEn,mEn,m. For brevity, we omit
information about the power to which the field element is raised — this will be clear
from the context. Let L(En,mEn,mEn,m) and D(En,mEn,mEn,m) denote the complexity and depth of
implementation of the most complex (deep) of the exponentiation operations with
powers of weight m.

Note that at step 1 of the algorithm the operations Sn,eiSn,eiSn,ei , i = 1, . . . ,m, are
performed, at step 2 — m operations Fk,n,pFk,n,pFk,n,p, at step 4 — operation F−1k,pF−1k,pF−1k,p , at step 5 —
operation Bn,pBn,pBn,p. All listed operations are linear (see §2).

We also introduce the following notation: ΛkΛkΛk for the operation of discrete log-
arithm with base α in the field GF (2k); Σm,kΣm,kΣm,k for the operation of summing m
k-digit numbers modulo 2k − 1; Λ−1kΛ−1kΛ−1k for the operation of raising a primitive el-
ement α ∈ GF (2k) to a power that is a k-digit number; Xk,mXk,mXk,m to indicate that
m elements of the field GF (2k) are nonzero.

Step 3 consists of performing p operations of m-fold multiplication in the field
GF (2k) (we introduce the notation Φk,mΦk,mΦk,m for one such multiplication) according to
the scheme

Φk,mΦk,mΦk,m(y1, . . . , ym) = Xk,mXk,mXk,m(y1, . . . , ym) × Λ−1k · Σm,kΛ−1k · Σm,kΛ−1k · Σm,k(ΛkΛkΛk(y1), . . . ,ΛkΛkΛk(ym)),

where the symbol · denotes the composition of mappings, and the symbol ×— the
usual multiplication of a scalar value by a vector.

The operation Xk,mXk,mXk,m is implemented by the conjunction of disjunctions of the
digits of the arguments (field elements) with the minimum possible complexity
mk − 1 for a function that essentially depends on all its variables, and depth

6

INVERSION IN FINITE FIELDS WITH LOGARITHMIC DEPTH 7

dlogme + dlog ke, which is neglible in the context of the parallel iterated multi-
plication.

The discrete logarithm operation ΛkΛkΛk is discussed in detail in §4, where it is
shown that for an arbitrary ε > 0 one can choose k = log p+ C0(ε) such that

L(ΛkΛkΛk) ≤ C1(ε)O(pε), D(ΛkΛkΛk) ≤ ε log p+ C2(ε) +O(log2 log p).

Consider the operation of m-fold summation Σm,kΣm,kΣm,k. One way to construct low-
depth circuits for this operation is as follows. It is known (see, e.g., [18]) that
summation of several numbers can be reduced to summation of a smaller number
of summands with depth O(1) via a circuit called compressor.

The simplest example of such a circuit is a (3,2)-compressor. If three k-digit
numbers are given: a = (ak−1, . . . , a0), b = (bk−1, . . . , b0), c = (ck−1, . . . , c0) (the
seniority of the digits increases from right to left), then the sum ai + bi + ci can be
represented as 2ui + vi, where

vi = ai ⊕ bi ⊕ ci, ui = ai · bi ⊕ bi · ci ⊕ ai · ci.

Thus the number of terms is reduced from 3 to 2: a + b + c = u + v, where
u = (uk−1, . . . , u0, 0), v = (vk−1, . . . , v0). The pair of bits (ui, vi) is computed with
complexity 5 and depth 3. Finally, the complexity of the compressor is 5k, and the
depth is 3.

From such subcircuits-compressors, one can compose a circuit that with depth
O(logm) transforms m input numbers into O(1) output numbers while preserving
the sum. Finally, the resulting numbers can be summed using ordinary adders.

If (as in our case) k-digit numbers are summed modulo 2k − 1, then the most
significant digits obtained in the process of calculations should be moved to the
place of the least significant ones. For example, a modular (3,2)-compressor should
return numbers u′ = (uk−2, . . . , u0, uk−1) and v = (vk−1, . . . , v0), where ui, vi are
defined as above.

Probably the best theoretical estimate of the depth of a compressor circuit
that reduces m-fold summation to addition of two numbers, 3.44 logm + O(1), is
obtained in [14] using the method from [27]. The complexity of such a circuit is
O(mk). The constants hidden under the O sign in these estimates are quite large —
in practice, one can construct circuits of depth at most 3.71 logm and complexity
5mk from (3,2)-compressors.

A usual k-bit adder can be implemented by a circuit of linear complexity and
depth log k + O(

√
log k) by the method of V. M. Khrapchenko [20]. However, on

a practical range of k values, other methods work better. For example, the method
of M. I. Grinchuk [13] has a depth estimate of 1.27(log k+1)+3. The complexity of
a circuit directly constructed by the Grinchuk method is O(k log k), but it can be
reduced to linear using the standard linearization procedure (see, for example, [20])
with an increase in depth by O(log log k).

Addition of two k-digit numbers modulo 2k − 1 can be reduced to the usual
addition of 2k-digit numbers. Indeed, if a, b ≤ 2k−1, then a+b mod (2k−1) = c+d,
where a+b = c2k+d and c+d ≤ 2k−1. The result a+b mod (2k−1) is contained
in the k-th through (2k − 1)-th digits (numbering starting from zero) of the sum
of the numbers (2k + 1)a and (2k + 1)b.

Finally, we have

L(Σm,kΣm,kΣm,k) = O(mk), D(Σm,kΣm,kΣm,k) ≤ 3.44 logm+O(log k).

7

INVERSION IN FINITE FIELDS WITH LOGARITHMIC DEPTH 8

We will roughly estimate the complexity and depth of the exponentiation circuit
(implementing the Λ−1kΛ−1kΛ−1k operation), but this will be sufficient for our purposes. If
(bk−1, bk−2, . . . , b0) is the binary notation of a number b, then

αb = αb0α2b1 · . . . · α2k−1bk−1 .

To compute each of the factors on the right-hand side of the formula, k functional
elements (k − 1 conjunctors and an element implementing x ∨ y function) are
sufficient, since

α2ibi = bi · 1∨∨∨ biα2i ,

where 1 is the unit of the field GF (2k), and the symbol ∨∨∨means bitwise disjunction.
We assume that the powers of α have been computed in advance.

Thus, the simplest way to compute αb is to perform k− 1 field multiplications,
which yields the estimates

L(Λ−1kΛ−1kΛ−1k) ≤ kL(MkMkMk) = O(k2 log k log log k),

D(Λ−1kΛ−1kΛ−1k) ≤ dlog keD(MkMkMk) + 1 = O(log2 k).

Th e o r em 2. Let m be the weight of a number M . Then for the operation of
raising to the power M in GF (2n) the following estimates hold (for ε > 0):

L(En,mEn,mEn,m) .
log(mn) + C0(ε)

log(m2n)
m2n2 + C1(ε)m2+εn1+ε, (1)

D(En,mEn,mEn,m) . (2 + ε) log n+ 4.44 logm+D0(ε). (2)

P r o o f. Choose k = log(mn)+C0(ε) such that the complexity and depth estimates
for the discrete logarithm from Corollary 3 (see §4) hold.

Considering the composition of linear mappings Sn,eiSn,eiSn,ei and Fk,n,pFk,n,pFk,n,p, i =
1, . . . ,m, as a single linear mapping of dimension kmp × n, from Lupanov’s
method we derive the complexity estimate for the corresponding subcircuit

(1 + o(1))(kmpn/ log(kmp)) ≤ log(mn)+C0(ε)
log(m2n) m2n2. The depth of the subcircuit

does not exceed log n+ 2.
Another linear operator Bn,p · F−1k,pBn,p · F−1k,pBn,p · F−1k,p of dimension n × kp is implemented by

a subcircuit of complexity O(pkn/ log n) ∼ O(mn2) and depth log(kp) + 2 ∼
log(mn) +D1(ε).

The subcircuit for computing discrete logarithms in an auxiliary field consists
of mp parallel blocks implementing operations of type ΛkΛkΛk. The complexity of this
subcircuit (see §4) is estimated as C1(ε)mp1+ε ∼ C1(ε)m2+εn1+ε. The depth is
(ε+ o(1)) log p+D2(ε) ∼ (ε+ o(1)) log(mn) +D2(ε).

Further, the complexity of implementing p adders of type Σm,kΣm,kΣm,k is estimated as
O(mkp) ∼ O(m2n log n). The depth can be estimated as 3.44 logm + O(log k) =
3.44 logm+O(log log n) +D3(ε).

Thus, the complexity of the entire circuit is determined by the complexity
estimate for the first block of linear mappings. The depth asymptotics is composed
of the depths of the four subcircuits,

D(En,mEn,mEn,m) . log n+ log(mn) +D1(ε) + ε log(mn) +D2(ε) + 3.44 logm+D3(ε) ∼
∼ (2 + ε) log n+ 4.44 logm+D0(ε).

8

INVERSION IN FINITE FIELDS WITH LOGARITHMIC DEPTH 9

Th e o r em 3. Inversion in the field GF (2n) may be implemented by a circuit
with the depth and complexity

D(InInIn) ≤ (6.44 + o(1)) log n, L(InInIn) ≤ (2/3 + o(1))n4.

P r o o f. The inversion operation corresponds to raising to the power 2n−2, having
weight n− 1. Indeed,

x−1 = x2
n−2 = x2x2

2

· . . . · x2
n−1

.

This theorem is a direct consequence of Theorem 2. It suffices to set m = n − 1,
and to choose ε within the rounding error of the constant from [14] up to 3.44.

Let ∆n∆n∆n denote the division operation in the field GF (2n). Obviously, the divi-
sion is reduced to one inversion and one multiplication in the field, but the multi-
plication can be integrated into the inversion circuit described above, since

y

x
= yx2x2

2

· . . . · x2
n−1

.

Let’s set m = n in the algorithm from the beginning of the section. Performing
step 2 for y separately and in parallel with combined steps 1, 2 for x, and then
applying the remaining steps of the exponentiation algorithm with a power of
weight n, we obtain the following result.

Th e o r em 4. For the division operation in GF (2n), we have

D(∆n∆n∆n) ≤ (6.44 + o(1)) log n, L(∆n∆n∆n) ≤ (2/3 + o(1))n4.

From a practical point of view, the proposed circuit is hardly of interest. The
obtained estimates show that for n of size of not more than several hundred thou-
sand, the standard inversion method apparently has better depth. At the same
time, the complexity of the standard method is always O(n3), and actually for
most fields is O(n2).

4 Discrete logarithm

Fix α — a generating element of the multiplicative group of the field GF (2k) (the
multiplicative group is denoted by GF (2k)∗ and consists of all nonzero elements of
the field). Then for any element β ∈ GF (2k)∗ a number b ∈ 0, . . . , 2k−2 is uniquely
determined such that β = αb. It is called the discrete logarithm of the element β to
the base α. We are going to estimate the parameters of a circuit implementing the
discrete logarithm operation ΛkΛkΛk, where ΛkΛkΛk(β) = b.

The method considered below is an adaptation of the Silver—Pohlig—Hellman
algorithm (see, e.g., [22]) to the model of circuits of functional elements.

Let
2k − 1 = r1r2 · . . . · rw

be some known decomposition of 2k − 1 into coprime factors. We introduce the
notation qi = (2k − 1)/ri, where i = 1 . . . w. Note that

βqi = (αb)qi = (αqi)b mod ri .

Thus, by comparing βqi with all possible powers of the element αqi (a total of ri such
comparisons are needed), we can determine the remainder bi = b mod ri. From

9

INVERSION IN FINITE FIELDS WITH LOGARITHMIC DEPTH 10

the set of remainders bi, i = 1 . . . w, the number b is restored uniquely. Consider
the following computation scheme.

1.1.1. Compute all βi = βqi , i = 1, . . . , w.
2.2.2. For each i, among j = 0, . . . , ri − 1, by coefficient-by-coefficient comparison

of elements βi and αjqi (the latter are calculated in advance), find bi satisfying
βi = αbiqi .

3.3.3. The number b = logα β is restored by its remainders bi = b mod ri.
The operation of computing w powers of an element β ∈ GF (2k) is denoted by

Hk,wHk,wHk,w. Obvious estimates for the depth and complexity of this operation are stated
in the following lemma.

L emma 2. For the complexity and depth of the operator Hk,wHk,wHk,w the following
estimates hold:

L(Hk,wHk,wHk,w) ≤ w(k − 3)L(MkMkMk) +O(k3/ log k), (3)

D(Hk,wHk,wHk,w) ≤ dlog(k − 2)eD(MkMkMk) + dlog ke+ 1. (4)

P r o o f. All powers of the form β2l , l = 0, . . . , k − 1, are computed by a circuit
implementing the corresponding linear operator of dimension k2×k with complexity
and depth O(k3/ log k) and dlog ke+ 1, respectively.

An arbitrary power can be represented as a product of at most k − 2 factors

of the form β2l , since obviously qi < 2k−1 − 1. To compute w such products,
each involving at most k − 2 factors, at most w(k − 3) field multiplications are
required.

If the standard multiplication algorithm is applied, we obtain

L(Hk,wHk,wHk,w) ≤ 2wk3 +O(wk3/ log k), D(Hk,wHk,wHk,w) < 2(dlog ke+ 1)2.

In general, the calculation of the system of powers can be performed more
economically exploiting techiques from the theory of addition chains (see, e.g., [5,
21]).

The product of k polynomials of degree k− 1 may be implemented by a circuit
of depth O(log k). To construct it, one can employ an analogous algorithm for
multiplying numbers from [2] (the product of polynomials is reduced to a numerical
product, see, e.g., [7]). Another way is to recursively apply the method of the
present work. Thus, actually, the operator Hk,wHk,wHk,w can be implemented by a circuit
of logarithmic depth.

Let us introduce some additional notation. Let qr = 2k − 1, where (q, r) = 1.
On a subgroup of r-th roots of unity of the field GF (2k), the operation Λ′k,rΛ′k,rΛ′k,r of
taking the logarithm to the base of the subgroup generating element, which is αq,
can be well defined.

Note that Λ′k,rΛ′k,rΛ′k,r(β
q) = b mod r, where b = logα β. The mapping Λ′Λ′Λ′ can be

formally extended to the entire field; outside the indicated subgroup of roots of
unity, define it arbitrarily.

The mapping Rk,wRk,wRk,w restores a number that has given remainders modulo ri,
i = 1, . . . , w, namely

Rk,wRk,wRk,w(b1, b2, . . . , bw) = b, 0 ≤ b <
∏

ri, b = bi mod ri, i = 1, . . . , w.

Using the introduced notations, we can write

ΛkΛkΛk(β) = Rk,wRk,wRk,w(Λ′k,r1Λ′k,r1Λ′k,r1(βq1), . . . ,Λ′k,rwΛ′k,rwΛ′k,rw(βqw)).

10

INVERSION IN FINITE FIELDS WITH LOGARITHMIC DEPTH 11

L emma 3. For the complexity and depth of a circuit implementing Rk,wRk,wRk,w, the
following estimates hold:

L(Rk,wRk,wRk,w) = O(k2), D(Rk,wRk,wRk,w) = O(log k).

P r o o f. According to the Chinese remainder theorem (see, e.g., [21])

b = b1c1 + b2c2 + . . .+ bwcw mod 2k − 1,

ci = νir1 · . . . · ri−1ri+1 · . . . · rw =
νi(2

k − 1)

ri
,

where the normalizing coefficient νi ∈ [1, ri − 1] is chosen based on the condition
ci = 1 mod ri. By construction, the numbers ci consist of no more than k binary
digits.

Consider the following way of executing calculations (close to [2]). Let bi =
(bi,j−1, bi,j−2, . . . , bi,0) in binary representation, j = dlog rie. Then

bici = bi,0ci + 2bi,1ci + . . .+ 2j−1bi,j−1ci.

The computation of the terms in the given formula is carried out “for free” — their
reduction modulo 2k − 1 is also “free” (the most significant digits are substituted
for the least significant ones). Apply this to every product bici, i = 1, . . . , w. The
number of newly formed terms is estimated as

w∑
i=1

dlog rie < w +

w∑
i=1

log ri = w + log(2k − 1) < k + w.

The problem is reduced to summing at most k+w instances of k-digit numbers
modulo 2k − 1 (the corresponding mapping was denoted by Σk+w,kΣk+w,kΣk+w,k). Therefore,

L(Rk,wRk,wRk,w) ≤ L(Σk+w,kΣk+w,kΣk+w,k), D(Rk,wRk,wRk,w) ≤ D(Σk+w,kΣk+w,kΣk+w,k).

Now the assertion of the lemma follows from the estimates of §3 and an obvious
observation w < k.

In [15] a method for constructing a circuit of complexity O(k1+ε) and depth
O(ε−1 log k), where ε > 0, is proposed. Apparently, this method does not outper-
form the standard method in terms of depth.

It is shown below that the subcircuits implementing Hk,wHk,wHk,w and Rk,wRk,wRk,w do not
have a significant effect on the asymptotic complexity and depth of the discrete
logarithm circuit as a whole.

Th e o r em 5. The complexity and depth of the operator Λ′k,rΛ′k,rΛ′k,r satisfy the estimates:

L(Λ′k,rΛ′k,rΛ′k,r) < r

(
2 +

k

log r
· log r + 6

log r − log log r

)
, D(Λ′k,rΛ′k,rΛ′k,r) ≤ dlog ke+ dlog re+ 1.

The circuit is constructed from subcircuits, which are described in the next two
paragraphs.

4.1 Implementing systems of comparators

Let βq be fed to the inputs of the subcircuits of comparison with the correspond-
ing αlq, l = 0 . . . r − 1. Since the latter are precomputed, comparing of a k-bit

11

INVERSION IN FINITE FIELDS WITH LOGARITHMIC DEPTH 12

element βq with a fixed field element is represented by a generalized conjunction
of the bits of βq (here, comparing is understood as determining the coincidence or
non-coincidence of two vectors).

Split the set of k variables (which encode βq) into groups containing at most
s variables. For each group, construct a circuit implementing all possible general-
ized conjunctions of this group of variables (it is called a decoder). To compute the
required r conjunctions of k variables, we additionally need at most r(dk/se − 1)
conjunctions to connect the corresponding outputs of the decoders. The following
lemma is actually contained in [25].

L emma 4. The complexity of the decoder of s variables is L(KsKsKs) < 2s+3.81 ·2 s2 ,
and the depth is D(KsKsKs) ≤ dlog se+ 1.

P r o o f. Consider the following circuit. Split the set of variables into two parts:
they are equal when s is even, and differ by 1 in the odd case. Let two decoders be
constructed for them. Then, using 2s conjunctions, combine the outputs of these
subcircuits in every possible way.

The lower-dimension decoders involved in this design are constructed in exactly
the same way. The decoder of one variable includes only one functional element of
negation: L(K1K1K1) = 1, D(K1K1K1) = 1. Let us estimate the complexity of the simplest
decoders:

L(K2K2K2) = 22 + 2L(K1K1K1) = 6, L(K3K3K3) = 23 + L(K1K1K1) + L(K2K2K2) = 15,

L(K4K4K4) = 24 + 2L(K2K2K2) = 28, L(K5K5K5) = 25 + L(K2K2K2) + L(K3K3K3) = 53,

L(K6K6K6) = 26 + 2L(K3K3K3) = 94, L(K7K7K7) = 27 + L(K3K3K3) + L(K4K4K4) = 171,

L(K8K8K8) = 28 + 2L(K4K4K4) = 312.

In these cases, the stated complexity estimate is satisfied; the constant 3.81 is
obtained for s = 7.

Now, we will verify the assertion for s > 8 by induction. Note that the calcu-
lation below is correct for both the even (δ = 0) and odd cases (δ = 0.5).

L(KsKsKs) ≤ 2s + L(K s
2−δK s
2−δK s
2−δ) + L(K s

2+δ
K s

2+δ
K s

2+δ
) <

< 2s + 2s/2(2δ + 2−δ) + 3.81 · 2s/4(2δ/2 + 2−δ/2) <

< 2s +
3√
2

2s/2 + 3.81 · 1 +
√

2
4
√

2
2s/4 < 2s + 3.81 · 2s/2,

if 2s/4 > 4.6, which holds for s ≥ 9.
The depth of the constructed decoder circuit is dlog se+ 1.

Co r o l l a r y 1. For the complexity and depth of a system of r k-bit comparators
(with a common input set), the following estimates hold:

L(Qk,rQk,rQk,r) <
kr

log r
· log r + 6

log r − log log r
, D(Qk,rQk,rQk,r) ≤ dlog ke+ 2.

P r o o f. By the proven lemma, the overall complexity of the comparison circuit is
estimated as

L(Qk,rQk,rQk,r) ≤
k

s
(L(KsKsKs) + r) ≤ k

s

(
2s + 3.81 · 2 s2

)
+
k

s
r.

12

INVERSION IN FINITE FIELDS WITH LOGARITHMIC DEPTH 13

Let’s choose the parameter s = dlog r − log log re, then the estimate take the
form:

L(Qk,rQk,rQk,r) <
k

log r − log log r

(
2r

log r
+ 3.81

√
2r

log r
+ r

)
<

<
kr

log r(log r − log log r)

(
2 + 3.81

√
2 log r

r
+ log r

)
<

kr

log r
· log r + 6

log r − log log r
,

since 2 log r ≤ r.
The depth of a single comparator, and hence of the entire circuit, does not

exceed dlog ke+ 2.

4.2 Implementating encoders

The following circuit, given r inputs (comparator outputs), only one of which can
take the value 1, calculates the number of the nonzero input. Such a circuit is
called an encoder.

Let the output of each circuit comparing βq and αlq be associated with the
number l, or more precisely, its binary notation. Call a partial disjunction at
digit h the disjunction of all inputs with numbers whose h-th digit is 1. Note that
a partial disjunction of the comparator outputs at arbitrary digit h calculates the
h-th digit of the number b mod r. Indeed, on input β only one comparator takes the
value 1, namely, the one labeled by b mod r. If the h-th digit of b mod r is 1, then
the output of the corresponding comparator participates in the partial disjunction
at digit h, which is therefore 1. Otherwise, if the h-th digit of b mod r is 0, the
output of the comparator is not connected to the input of this disjunction, which
therefore takes the value 0. Thus, computing the entire set of partial disjunctions
yields a binary representation of the dlog re-digit number b mod r. In other words,
the outputs of the encoder implement partial disjunctions at all digits, up to the
dlog re-th.

L emma 5. For s > 0, the complexity of the 2s-input encoder is L(V2sV2sV2s) ≤ 2s+1−
2s− 2 while the depth is D(V2sV2sV2s) = s− 1.

P r o o f. We construct inductively a circuit for which these estimates are satisfied.
In fact, we are going to construct a circuit in which all partial disjunctions are
calculated for groups of inputs with fixed senior code bits. For s = 1, the inputs
of the circuit are coded by one bit; the only disjunction coincides in this case with
the input numbered by 1, so L(V21V21V21) = 0, D(V21V21V21) = 0.

Consider the induction step from s to s+1. Depending on the value of the most
significant (s + 1)-th digit of the code (0 or 1), all inputs can be divided into two
groups, each containing 2s inputs. For each of the groups, implement a system of
s partial disjunctions at the least significant digits. Connecting the corresponding
outputs of these subcircuits with disjunction elements, we obtain all correct partial
disjunctions for the full set of 2s+1 inputs, with the exception of the disjunction at
the (s+ 1)-th digit.

The partial disjunction at the highest digit unites all the inputs of one of the
subgroups. To calculate it, we can use the results of the preceding computations.
Note that the partial disjunction at the s-th digit for a given set of inputs has
already been obtained at depth s − 1; it calculates the disjunction of half of the
inputs of the subgroup under consideration. Note further that the disjunction of

13

INVERSION IN FINITE FIELDS WITH LOGARITHMIC DEPTH 14

half of the remaining inputs as a partial disjunction at the (s−1)-th digit of a group
of inputs with two fixed highest digits 1 and 0 has also already been calculated
at depth s− 2, and so on.

Thus, a 2s+1-input encoder is obtained from two 2s-input encoders, and s ele-
ments are additionally required to compute the partial disjunction at the highest
digit and one for each of the remaining partial disjunctions. Then, by induction,
we derive

L(V2s+1V2s+1V2s+1) ≤ 2L(V2sV2sV2s) + 2s ≤ 2(2s+1 − 2s− 2) + 2s = 2s+2 − 2(s+ 1)− 2.

Simultaneously, it can be checked that the depth of the constructed circuit is s.
The depth of the partial disjunction at (s + 1)-th digit is s by construction. The
depth of the outputs of the particular disjunctions at other digits is greater than
the depth of an encoder with 2s inputs by 1, which implies that their depth is
also s.

Co r o l l a r y 2. The complexity of an encoder with r inputs is L(VrVrVr) ≤ 2r −
2dlog re − 2 while the depth is D(VrVrVr) = dlog re − 1.

P r o o f. Let 2s+1 ≥ r = 2s + r′, r′ > 0. The proof is by induction on r.
The circuit will be structured in the same way as in the special case. Split the

set of inputs into two halves: 2s inputs with a zero leading digit and r′ with a
leading digit 1. Calculate the partial disjunctions on these subsets (the second of
them is encoded, generally speaking, by dlog r′e least significant digits of the input
code).

Next, dlog r′e functional elements are needed to obtain the disjunctions of the
least significant digits. The same number more are needed to compute the disjunc-
tion at the (s+ 1)-th digit. This leads to the recurrence relation

L(VrVrVr) ≤ L(V2sV2sV2s) + L(Vr′Vr′Vr′) + 2dlog r′e ≤
≤ (2s+1 − 2s− 2) + (2r′ − 2dlog r′e − 2) + 2dlog r′e = 2r − 2(s+ 1)− 2.

The depth of the circuit is s = dlog re − 1.

P r o o f o f T h e o r e m 5. The proof is obtained by summing up the estimates from
Corollaries 1 and 2:

L(Λ′k,rΛ′k,rΛ′k,r) ≤ L(Qk,rQk,rQk,r) + L(VrVrVr) <
kr

log r
· log r + 6

log r − log log r
+ 2r,

D(Λ′k,rΛ′k,rΛ′k,r) ≤ D(Qk,rQk,rQk,r) +D(VrVrVr) ≤ (dlog ke+ 2) + (dlog re − 1).

4.3 The choice of an auxiliary field

Th e o r em 6. Let 2k−1 = r1r2 ·. . .·rw, where the factors ri are pairwise coprime,
w is bounded, ρ = log maxi ri. Then for k →∞,

L(ΛkΛkΛk) .
w∑
i=1

(2 + k/ log ri)ri, D(ΛkΛkΛk) ≤ ρ+O(log2 k).

14

INVERSION IN FINITE FIELDS WITH LOGARITHMIC DEPTH 15

P r o o f. By construction,

L(ΛkΛkΛk) ≤
w∑
i=1

L(Λ′k,riΛ′k,riΛ′k,ri) + L(Hk,wHk,wHk,w) + L(Rk,wRk,wRk,w).

Let rmax = maxi ri. From rmax & 2k/w it follows that the estimate of the order of
complexity Λ′k,rmaxΛ′k,rmaxΛ′k,rmax from Theorem 5 is

rmax(2 + k/ log rmax) & O(w2k/w).

The complexity of the subcircuits implementing Hk,wHk,wHk,w and Rk,wRk,wRk,w, according to Lem-
mas 2 and 3, isO(wk3). This quantity is insignificant for the asymptotics, compared
to the complexity of the subcircuit implementing Λ′k,rmaxΛ′k,rmaxΛ′k,rmax .

The depth estimate is verified similarly,

D(ΛkΛkΛk) ≤ D(Λ′k,rmaxΛ′k,rmaxΛ′k,rmax) +D(Hk,wHk,wHk,w) +D(Rk,wRk,wRk,w) ≤ ρ+O(log2 k).

Using the logarithm circuit described above, we make its efficiency dependent on
the existence of a “smooth” factorization4 of 2k−1 into a product of coprime factors.
The smaller the maximum of the factors, the more efficient the factorization.

For interpolation, a field containing at least p elements is required. In practice,
among several fields of dimensions k ≥ dlog pe, it is necessary to choose a field with
the smoothest order of the multiplicative group.

For example, GF (29) is less smooth than GF (210), since 29 − 1 = 7 · 73, and
210 − 1 = 3 · 11 · 31. But GF (212) is even smoother, since 212 − 1 = 5 · 7 · 9 · 13.

To evaluate the efficiency of the logarithm operation, let us consider several
ways to choose a smooth field for an arbitrary p.

The first of these takes the smallest even of the suitable values of k, k = 2l ≥
dlog pe, and exploits the factorization of 22l − 1 into the always coprime factors
2l− 1 and 2l + 1. Note that one of these numbers is divisible by 3, whence we have

22l − 1 =

{
3d 2l−1

3d
(2l + 1), l — even;

3d 2l+1
3d

(2l − 1), l — odd,

where 3d is the largest power of 3 that divides 22l−1. By Theorem 3, we obtain the
following estimates for a circuit computing discrete logarithm in the field GF (22l):
the order of complexity is (8 + o(1))2l . (16 + o(1))

√
p, the depth is l + o(l) .

(1/2) log p.
A better circuit is obtained by choosing the field GF (2k), where k = 6l ≥

dlog pe (the smallest possible value of k is chosen). The coprime factors 23l − 1
and 23l + 1 admit a further factorization: 23l ± 1 = (2l ± 1)(22l ∓ 2l + 1). Since
22l ± 2l + 1 = 3 mod (2l ∓ 1), then 3 is the only common divisor that the factors
in the given factorization can have.

26l − 1 =

{
3d+1 2l−1

3d
(2l + 1) 22l+2l+1

3 (22l − 2l + 1), l — even;

3d+1 2l+1
3d

(2l − 1) 22l−2l+1
3 (22l + 2l + 1), l — odd.

The complexity of the logarithm circuit for the field GF (26l) is estimated as (20/3+
o(1))22l . (80/3 + o(1)) 3

√
p, the depth is 2l + o(l) . (1/3) log p. For p > 28 (recall

4A factorization is “smooth” if all its factors are small. A number is also called smooth if it
admits a smooth factorization (see, e.g., [22]).

15

INVERSION IN FINITE FIELDS WITH LOGARITHMIC DEPTH 16

the example of the field GF (212)), the estimates obtained by the second method
are better than in the first case.

Further development of the idea of decomposing polynomials of the form xk−1
into irreducible polynomials over Z allows us to construct a circuit computing the
discrete logarithm with complexity C(ε)O(pε) and depth ε log p + o(log p), ε > 0.
This is the subject of the next section.

4.4 Asymptotic estimate of the efficiency of computing log-
arithms

Consider the field GF (2kvl), where kv = p1p2 · . . . · pv, and {pi} is an increasing
sequence of prime numbers.

Th e o r em 7. Let l ∈ N. Then the number 2kvl − 1 can be represented as a
product of pairwise coprime factors r1, r2, . . . , rs with

max
i
ri ≤ 2ϕ(kv)leϕ(kv)/2

l

,

where ϕ(k) is the Euler function.

We preface the proof of the theorem with several auxiliary statements. First,
we turn to the theory of cyclotomic polynomials.

Let d ∈ N. A monic polynomial Fd ∈ C[x] of minimal possible degree such that
its roots are all primitive roots5 of order d is called the d-th cyclotomic polynomial.

The following properties of cyclotomic polynomials are well known (for more
details on cyclotomic polynomials, see [23]):

(1) Fd ∈ Z[x];
(2) degFd = ϕ(d);
(3) Polynomials {Fd} are pairwise coprime;
(4) xh − 1 =

∏
d|h Fd(x).

L emma 6. Let x ≥ 1. Then Fd(x) ≤ xϕ(d)eϕ(d)/x.

P r o o f. The roots of the polynomial Fd(x) are equal to 1 in absolute value, we
denote them by ξi. Then

Fd(x) =

ϕ(d)∏
i=1

(x−ξi) <
ϕ(d)∏
i=1

(x+|ξi|) = (x+1)ϕ(d) = xϕ(d)
(

1 +
1

x

)ϕ(d)
≤ xϕ(d)eϕ(d)/x.

Note that if x → ∞, then Fd(x) = O(xϕ(d)). We will need another lemma on
divisibility of numbers (it can be found in [31, problem 8]).

L emma 7. Let q be a prime number, and a ∈ Z. Then

GCD(a− 1,
aq − 1

a− 1
) = GCD((a− 1)2,

aq − 1

a− 1
) = GCD(a− 1, q).

P r o o f. Divide the polynomial xq−1+. . .+1 = xq−1
x−1 by x−1 twice with remainder:

xq−1 + xq−2 + . . .+ 1 =

= (x− 1)2
(
xq−3 + 3xq−4 + . . .+

(q − 1)(q − 2)

2

)
+ (x− 1)

q(q − 1)

2
+ q.

5A root of unity of some order is primitive, if it’s not a root of any lower order.

16

INVERSION IN FINITE FIELDS WITH LOGARITHMIC DEPTH 17

Substitute a for x. The subsequent verification of divisibility relations is not diffi-
cult.
P r o o f o f t h e m a i n T h e o r e m 7. The polynomial xkv − 1 can be factored into
a product of cyclotomic polynomials (property (4))

xkv − 1 =
∏
d|kv

Fd(x).

The number of factors in this product is 2v, they correspond to the divisors of kv.
Under assignment x = 2l, we obtain the factorization

2kvl − 1 =
∏
d|kv

Fd(2
l) (∗)

of the number 2kvl − 1 into factors not exceeding 2ϕ(kv)leϕ(kv)/2
l

, which follows
from Lemma 6, since ϕ(kv) is the maximum of the degrees of the polynomials Fd.
Let us further investigate the possibility of transforming this decomposition into a

product of pairwise coprime factors not exceeding 2ϕ(kv)leϕ(kv)/2
l

.
Consider the following decompositions of the polynomial xkv −1 into a product

of two factors (for brevity, we introduce the notation yi = xkv/pi):

xkv − 1 = ypii − 1 = (yi − 1)(ypi−1i + . . .+ 1). (i)

It follows from property (4) of cyclotomic polynomials that

yi − 1 =
∏

d|kv, pi-d

Fd(x), ypi−1i + . . .+ 1 =
∏

d|kv, pi|d

Fd(x),

therefore, any polynomial Fd(x), d | kv, divides some of the two factors on the
right-hand side of every expression (i).

Let us show that the only common divisors of the values of two cyclotomic
polynomials (under substitution of 2l) can be prime numbers pi, i = 2, . . . , v.

Consider an arbitrary pair Fd1(2l) and Fd2(2l), where d1, d2 | kv, and assume
d1 < d2. Then there necessarily exists a number pi such that pi | d2 and pi -
d1. Consider the factorization (i). The polynomial Fd1(x) divides the first of the
factors, and Fd2(x) divides the second. From Lemma 7 it follows that

GCD((yi − 1) |x=2l , (ypi−1i + . . .+ 1) |x=2l) ∈ {1, pi}.

Hence,
GCD(Fd1(2l), Fd2(2l)) ∈ {1, pi}.

By extracting pcii , i = 2, . . . , v, into separate factors, where ci is the multiplicity
of pi in the product, we obtain a factorization into pairwise coprime factors. It

remains to show that the newly formed factors pcii satisfy 2ϕ(kv)leϕ(kv)/2
l

.
If pi divides only one of the factors of the original decomposition (∗), then

there is nothing to prove. Consider the case when pi divides two factors of the
decomposition (∗) Fd1(2l) and Fd2(2l), d1 6= d2. It follows from Lemma 7 that in
any decomposition (j), where j 6= i, the polynomials Fd1(x) and Fd2(x) divide the
same factor on the right-hand side (otherwise pi cannot be a common divisor). We
will show that in the decomposition (i) they divide different factors.

Note that an arbitrary divisor d of kv is uniquely determined if it is known
for any number ps, s = 1, . . . , v, whether it divides d or not. Therefore, the

17

INVERSION IN FINITE FIELDS WITH LOGARITHMIC DEPTH 18

polynomial Fd(x) is uniquely determined by its belonging to one of the factors in
each decomposition (s).

It follows from this remark that if in the decomposition (i) (as in all the others)
the polynomials Fd1(x) and Fd2(x) divided the same factor, they would coincide,
which would contradict the condition d1 6= d2. Thus, in the decomposition (i) they
divide different factors.

Now suppose that another factor Fd3(2l) of the original factorization (∗), dif-
ferent from the two indicated, is divisible by pi. Reasoning similarly, we conclude
that the polynomial Fd3(x) in all decompositions except the (i)-th divides the same
factors as the pair Fd1(x), Fd2(x). But then, depending on which of the factors
of expansion (i) it divides, it coincides either with Fd1(x) or with Fd2(x), which
contradicts the assumption.

Thus, pi can divide at most two numbers from the set Fd(2
l), d | kv, simul-

taneously. Moreover, as follows from Lemma 7, if pi divides exactly two factors
in the expansion (∗), then one of the factors (namely, the one that corresponds
to the polynomial dividing yi − 1 in the decomposition (i)) is divisible by pci−1i .
Consequently, a factor pcii can, at most, be pi times greater than any of the factors
Fd(2

l) of the initial decomposition for which d | kv and pi - d hold. In this case
ϕ(d) ≤ ϕ(kv)/(pi − 1). By Lemma 6, we have

pcii ≤ pi · max
d|kv, pi-d

Fd(2
l) ≤ pi2ϕ(kv)l/(pi−1)eϕ(kv)/(2

l(pi−1)).

Let us show that

pi2
ϕ(kv)l/(pi−1)eϕ(kv)/(2

l(pi−1)) < 2ϕ(kv)leϕ(kv)/2
l

,

where 1 < i ≤ v, l ≥ 1. First, consider the case i = v = 2, l = 1 (i.e. pi = 3,
kv = 6). After substituting the parameters into the inequality, it takes the form
6
√
e < 4e, which is true. The inequality especially remains true with increasing

parameters v and (or) l. If i > 2, then pi < 2ϕ(ki)/2, which can be verified, for
example, by induction as follows. For i = 3, the inequality holds due to 5 < 24. If
pi−1 < 2ϕ(ki−1)/2, then

pi < 2pi−1 < ppi−1i−1 < 2ϕ(ki−1)(pi−1)/2 = 2ϕ(ki)/2.

Here we applied the well-known inequality pi < 2pi−1 (Bertrand’s postulate). From
the proved intermediate inequality we deduce

pi2
ϕ(kv)l/(pi−1)eϕ(kv)/(2

l(pi−1)) < 2ϕ(ki)/2+ϕ(kv)l/(pi−1)eϕ(kv)/2
l

<

< 2ϕ(kv)l(1/2+1/(pi−1))eϕ(kv)/2
l

< 2ϕ(kv)leϕ(kv)/2
l

.

Thus, the theorem is completely proven.
Note that the number of factors in the constructed factorization does not exceed

2v + v − 1, where 2v is the number of factors in the initial factorization (∗), plus
no more than v − 1 factors are additionally factored out.

For illustration, consider the example v = 3, k3 = 30.

x30 − 1 = F1F2F3F5F6F10F15F30;

F1(x) = x− 1, F2(x) = x+ 1, F3(x) = x2 + x+ 1,

F5(x) = x4 + x3 + x2 + x+ 1, F6(x) = x2 − x+ 1,

F10(x) = x4 − x3 + x2 − x+ 1, F15(x) = x8 − x7 + x5 − x4 + x3 − x+ 1,

F30(x) = x8 + x7 − x5 − x4 − x3 + x+ 1.

18

INVERSION IN FINITE FIELDS WITH LOGARITHMIC DEPTH 19

Let l = 1. Substituting x = 2 yields a factorization of 230 − 1 (the order of the
factors is preserved)

230 − 1 = 1 · 3 · 7 · 31 · 3 · 11 · 151 · 331.

We separate into single factors the occurrences of the first two odd primes in the
product: 3 (occurs twice, F2(2) = F6(2) = 3) and 5 (never). Finally, as guaranteed
by the theorem, we obtain a satisfying all requirements decomposition

230 − 1 = 7 · 9 · 11 · 31 · 151 · 331,

which in this case coincides with the canonical factorization of 230 − 1 into prime
factors.

Using Theorem 7, it can be shown that in the field GF (230l) the logarithm can
be computed with complexity O(28l), which for 230l > p ≥ 230(l−1) corresponds to
the estimate O(p4/15). However, the multiplicative constant in this bound is too
large.

Further we will exploit the following fact:

c1
log(v + 1)

<
ϕ(kv)

kv
=

v∏
i=1

pi − 1

pi
<

c2
log v

→0, for v →∞.

It is easy to show that c1 > e−5/2, and c2 < ln 2 = 0.693 . . . More precise estimates
are provided in [28]6.

Th e o r em 8. Let v ∈ N, p ≥ 2kv . Then there exists a field of characteris-
tic 2 containing at least p elements in which the complexity of taking the logarithm
asymptotically (as p→∞) does not exceed

log(v + 1)2ϕ(kv)+v+4eϕ(kv)p
−1/kv

pϕ(kv)/kv ,

and the depth does not exceed

(ϕ(kv)/kv) log p+ 2ϕ(kv) +O(log2 log p).

P r o o f. For a given p, consider the field GF (2kvl), where l satisfies 2kv(l−1) < p ≤
2kvl. According to Theorem 7, the number 2kvl − 1 can be factored into a product

of coprime factors not exceeding 2ϕ(kv)leϕ(kv)/2
l

.
Using Theorem 6, we estimate the circuit depth of the logarithm in the

field GF (2kvl) as

D(ΛkvlΛkvlΛkvl) ≤ log((2le1/2
l

)ϕ(kv)) +O(log2(kvl)) <

< ϕ(kv)(l + 1) +O(log2 log p) < ϕ(kv)(2 + (log p)/kv) +O(log2 log p) <

< (ϕ(kv)/kv) log p+ 2ϕ(kv) +O(log2 log p).

The same theorem 6 allows to estimate the order of complexity of the circuit,

L(ΛkvlΛkvlΛkvl) . (2v + v)(2 + kv/ log rmax)rmax ≤ (2v + v)(2 + kv/ϕ(kv))2
ϕ(kv)leϕ(kv)/2

l

.

6According to Mertens’ theorem, this expression has an asymptotic behavior of eγ

ln v
, where

γ is Euler’s constant (see also [28]).

19

INVERSION IN FINITE FIELDS WITH LOGARITHMIC DEPTH 20

The following inequality holds:

(2v + v)(2 + kv/ϕ(kv)) < 2v+4 log(v + 1),

which can be verified for v = 1, . . . , 4 by direct calculation, and for v ≥ 5 one can
apply the inequality kv/ϕ(kv) < e5/2 log(v + 1), then

(2v + v)(2 + kv/ϕ(kv)) < log(v + 1)2v
[(

1 +
v

2v

)(
e5/2 +

2

log(v + 1)

)]
.

The expression in square brackets is a monotonically decreasing function of v, and
from the fact that for v = 5 its value is less than 16, the stated inequality follows.

Further,

2ϕ(kv)l = 2ϕ(kv)(2kv(l−1))ϕ(kv)/kv < 2ϕ(kv)pϕ(kv)/kv .

Finally, since 2l ≥ p−1/kv , we deduce

eϕ(kv)/2
l

≤ eϕ(kv)p
−1/kv

.

Combining all the above inequalities, we obtain the desired result.

Co r o l l a r y 3. Let ε > 0. Then there exists a field of characteristic 2 containing
at least p elements in which taking logarithms is performed with complexity (as
p→∞) not exceeding C1(ε)O(pε) and depth ε log p+ C2(ε) +O(log2 log p).

P r o o f. We choose v such that ϕ(kv)
kv
≤ ε (for example, v = d20.7/εe will do), and

apply the proven theorem.

5 Refining the complexity bound

Consider another way to calculate x−1. Represent a number n − 1 as n1n2 + n3,
where 0 ≤ ni ≤ d

√
n− 1 e. From this representation we derive the representation

of the number 2n − 2 as N1N2 +N3, where

N1 = 2 + 22 + . . .+ 2n1 , N2 = 1 + 2n1 + 22n1 + . . .+ 2(n2−1)n1 ,

N3 = 2n1n2+1 + 2n1n2+2 + . . .+ 2n1n2+n3 .

The weight of each of the numbers Ni is ni, i = 1, 2, 3.
We use the formula

x−1 = (xN1)N2xN3 ,

which shows that inversion reduces to three relatively small-weight exponentiations
and one multiplication in the field GF (2n). More formally,

InInIn(x) = MnMnMn(En,n2
· En,n1

En,n2 · En,n1En,n2
· En,n1

(x),En,n3
En,n3En,n3

(x)).

Implementing the operations En,niEn,niEn,ni by the algorithm from §3, we can estimate the
complexity of such a circuit as

L(InInIn) ≤ L(MnMnMn) +

3∑
i=1

L(En,niEn,niEn,ni) .
3∑
i=1

log(nin)

log(n2in)
n2in

2 ≤ 9

4
n3.

20

INVERSION IN FINITE FIELDS WITH LOGARITHMIC DEPTH 21

The depth of the circuit is estimated as

D(InInIn) ≤ D(MnMnMn) + max{D(En,n2
En,n2En,n2

) +D(En,n1
En,n1En,n1

), D(En,n3
En,n3En,n3

)} .
. 2 log n+ (4 + ε) log n+ 4.44 log n . 10.44 log n.

This technique can be generalized as follows.

Th e o r em 9. Let r ∈ N and q = d r
√
n e. Then the circuit complexity and depth

of the inversion in the field GF (2n) are estimated as

L(InInIn) ≤ (2r − 1)L(En,qEn,qEn,q) + (r − 1)L(MnMnMn),

D(InInIn) ≤ 2D(En,qEn,qEn,q) +D(MnMnMn) + (r − 2) max{D(En,qEn,qEn,q), D(MnMnMn)}.

P r o o f. Let n− 1 = [mr,mr−1, . . . ,m1] in the number system with base q, i.e.,

n− 1 = qr−1mr + qr−2mr−1 + . . .+ qm2 +m1,

where all mi do not exceed r
√
n.

Set

Ni = 1 + 2q
i−1

+ 22q
i−1

+ . . .+ 2(q−1)q
i−1

=
2q
i − 1

2qi−1 − 1
,

Then
N1N2 · . . . ·Ni = 2q

i

− 1.

Let Mi = 0 in the case mi = 0, and

Mi = 2[mr,...,mi+1,0,...,0]+1(1 + 2q
i−1

+ . . .+ 2(mi−1)q
i−1

)

otherwise. Then,

(2q
i−1

− 1)Mi = 2(2[mr,...,mi,0,...,0] − 2[mr,...,mi+1,0,...,0]),

where the square brackets contain an r-digit number in the q-ary number system.
Summing these equalities over i = 1, . . . , r, we obtain

2n − 2 = N1 · . . . ·Nr−1Mr +N1 · . . . ·Nr−2Mr−1 + . . .+N1M2 +M1,

where the weight of each number Ni is q, and the weight of Mi is mi.
We will construct the inversion circuit based on the formula

x−1 = x2
n−2 =

((
. . .
(
(xN1)N2

)
. . .
)Nr−1

)Mr

×

×
((
. . .
(
(xN1)N2

)
. . .
)Nr−2

)Mr−1

· · (xN1)M2xM1 .

Let us write out the sequence of calculations step by step.
0. x;
1. x1 = xN1 , y1 = xM1 ;
2. x2 = xN2

1 , y2 = xM2
1 , z2 = y1;

i = 3 . . . r − 1. xi = xNii−1, yi = xMi
i−1, zi = zi−1 · yi−1;

r. yr = xMr
r−1, zr = zr−1 · yr−1;

r + 1. x−1 = zr · yr.
The computation circuit includes no more than 2r − 1 subcircuits implement-

ing exponentiations with weights at most q and no more than r − 1 subcircuits
implementing field multiplications. The depth of layers 1 and 2 of the circuit can
be estimated as D(En,qEn,qEn,q), of layers 3, . . . , r — as max{D(En,qEn,qEn,q), D(MnMnMn)}, and of
layer r + 1 — as D(MnMnMn), from which the depth estimate stated by the theorem
follows.

21

INVERSION IN FINITE FIELDS WITH LOGARITHMIC DEPTH 22

Co r o l l a r y 4. Let r ∈ N and q = d r
√
n e. Then the circuit complexity and depth

of the division in the field GF (2n) are estimated as

L(∆n∆n∆n) ≤ (2r − 1)L(En,qEn,qEn,q) + rL(MnMnMn),

D(∆n∆n∆n) ≤ D(En,qEn,qEn,q) +D(MnMnMn) + (r − 1) max{D(En,qEn,qEn,q), D(MnMnMn)}.

P r o o f. To calculate y/x, it is sufficient to embed multiplication by y into the
circuit from Theorem 9 computing x−1:

0. x, y;
1. x1 = xN1 , y1 = xM1 , z1 = y;
i = 2 . . . r − 1. xi = xNii−1, yi = xMi

i−1, zi = zi−1 · yi−1;

r. yr = xMr
r−1, zr = zr−1 · yr−1;

r + 1. y/x = zr · yr.

Under the natural assumption D(En,qEn,qEn,q) ≥ D(MnMnMn), the depth of the constructed
inversion and division circuits is estimated as

D(InInIn), D(∆n∆n∆n) ≤ rD(En,qEn,qEn,q) +D(MnMnMn).

Substituting the estimates of Theorem 2 into Theorem 9 and Corollary 4, and
employing the estimates L(MnMnMn) = O(n2), D(MnMnMn) ≤ (2 + o(1)) log n, we obtain

Co r o l l a r y 5. Let r ∈ N. Then for inversion and division in the field GF (2n)
one can construct circuits with complexity and depth (as n→∞)

L(InInIn), L(∆n∆n∆n) ≤
(

2r − 3 +
5

r + 2
+ o(1)

)
n2+

2
r ,

D(InInIn), D(∆n∆n∆n) ≤ (2r + 6.44 + o(1)) log n.

Thus, an inversion circuit with logarithmic depth and almost quadratic com-
plexity is constructed. In the next section, it will be shown that it is possible to
construct circuits with depth O(log n) and complexity o(n2).

6 A subquadratic complexity algorithm

Here is a brief description of the modified algorithm for raising an element x ∈
GF (2n) to a power M =

∑
i 2ei of weight m.

1.1.1. Compute all x2
ei

= fi(t), i = 1, . . . ,m. Let f(t) = f1(t) · . . . · fm(t). Set
p = m(n−1)+1, choose a field GF (2k) containing at least p elements; in it, choose
a set of elements α1, . . . , αp.

2.2.2. Calculate all possible fi(αj) ∈ GF (2k), where i = 1, . . . ,m, j = 1, . . . , p.
3.3.3. For all j, calculate the products f1(αj) · . . . · fm(αj) = f(αj).
4.4.4. Given the values f(αj), j = 1, . . . , p, reconstruct a polynomial

f(t) mod mn(t), deg f < p, representing xM .
In this algorithm, the general computation scheme of the original algorithm

from §3 is completely preserved, only the implementation method changes. To
implement linear steps 1, 2, the so-called matrix acceleration is used. Also, we
consider an alternative implementation of step 4 (steps 4, 5 of the original algo-
rithm). The implementation of step 3 remains unchanged. Recall that, according
to Corollary 3, step 3 is performed by a circuit of complexity O(m2+εn1+ε) and
depth (ε+ o(1)) log(mn), where ε = const > 0.

22

INVERSION IN FINITE FIELDS WITH LOGARITHMIC DEPTH 23

6.1 Generalized modular composition

As is known (see, e.g., [25]), the O(ns/ log n) complexity upper bound for a linear
mapping of dimension n×s cannot be improved in the general case. However, it can
be reduced for mappings satisfying some extra conditions. Consider homomorphic
mappings that preserve both the addition and multiplication operations.

The following lemma is a simple generalization of a result of Brent and Kung [6]
on the complexity of modular composition (the composition of two polynomials
modulo a third). By Tq,r,sTq,r,sTq,r,s we denote the operation of multiplication of binary
matrices of size q × r and r × s.

L emma 8. Let GGG be a homomorphism from GF (2)[t] to a set V that has the
structure of a vector space of dimension s over GF (2) with the operation of multi-
plication. Let GnGnGn denote the restriction of GGG to the set of polynomials of degree at
most n− 1, and let rq ≥ n. Then

L(GnGnGn) ≤ L(Tq,r,sTq,r,sTq,r,s) + (q − 1)(L(MVMVMV) + s), D(GnGnGn) ≤ D(Tq,r,sTq,r,sTq,r,s) +D(MVMVMV) + dlog qe,

where MVMVMV is the multiplication operator in V .

P r o o f. Let f(t) ∈ GF (2)[t], deg f ≤ n− 1. Write

f(t) = f0(t) + f1(t)tr + . . .+ fq−1(t)t(q−1)r,

where deg fi < r. By assumption,

GnGnGn(f) = GrGrGr(f0) +GrGrGr(f1)GnGnGn(tr) + . . .+GrGrGr(fq−1)GnGnGn(t(q−1)r),

where GrGrGr is the restriction of GGG to the set of polynomials of degree less than r. In
particular, GrGrGr is a linear mapping of dimension r × s. Calculation of all GrGrGr(fi),
i = 0, . . . , q − 1, corresponds to multiplying the q × r-matrix of coefficients of the
polynomials fi(t) by the r × s-matrix of coefficients GrGrGr(t

j) ∈ V .
Assuming that all GnGnGn(tir), i = 1, . . . , q − 1, are precomputed (this is the case

in the circuit implementation), to compute GnGnGn(f) it remains to perform q − 1
multiplications and sum q vectors from V .

Co r o l l a r y 6 (Brent, Kung, 1978). Let

Cg,hCg,hCg,h(f) = f(g(t)) mod h(t),

where g(t), h(t) are fixed polynomials of degree n − 1 and n respectively, let also
rq ≥ n. Then

L(Cg,hCg,hCg,h) ≤ L(Tq,r,nTq,r,nTq,r,n) + (q − 1)(L(MnMnMn) + n),

D(Cg,hCg,hCg,h) ≤ D(Tq,r,nTq,r,nTq,r,n) +D(MnMnMn) + dlog qe.

A special case of modular composition is the Frobenius operation: raising an
element x ∈ GF (2n) to a power of the form 2l. Indeed, let x = f(t) in the
polynomial representation, then

f2
l

(t) mod mn(t) = f(t2
l

) mod mn(t) =

= f(t2
l

mod mn(t)) mod mn(t) = f(ξl(t)) mod mn(t),

where ξl(t) = t2
l

mod mn(t). The Frobenius operation (denoted by Sn,lSn,lSn,l) is an
automorphism of the field GF (2n).

23

INVERSION IN FINITE FIELDS WITH LOGARITHMIC DEPTH 24

L emma 9. The Frobenius operation in the field GF (2n) is implemented with
complexity and depth

L(Sn,lSn,lSn,l) = O(n1.667), D(Sn,lSn,lSn,l) = O(log n).

P r o o f. In the estimates of Corollary 6 we substitute q, r ∼
√
n. From the

Schönhage multiplication algorithm [29] we have L(MnMnMn) = O(n log n log log n) and
D(MnMnMn) = O(log n). The operation Tq,r,nTq,r,nTq,r,n, i.e. the multiplication of a matrix of
size
√
n ×
√
n by a matrix of size

√
n × n, is performed, as shown in [16], with

complexity O(n1.667). In addition, it is known (see, e.g., [3, Section 4.3]) that any
method of matrix multiplication admits implementation by a circuit of logarithmic
depth with an increase in the order of complexity by nε. To complete the proof,
we choose ε within the rounding error of the constant from [16] to 1.667.

It follows from Lemma 9 that the complexity of implementing step 1 of the
algorithm is O(mn1.667).

The value of a polynomial at a fixed point is also obtained by the action of
a homomorphic transform. Let, as before, p = m(n− 1) + 1, m < n, and let some
set {α1, . . . , αp} ⊂ GF (2k) be chosen. By Cmk,nCmk,nCmk,n denote the operation of evaluating
of m polynomials of degree at most n− 1 at the points αi.

L emma 10. The operation Cmk,nCmk,nCmk,n is implemented by a circuit of complexity and
depth

L(Cmk,nCmk,nCmk,n) = O((mn)1.667k) +O((mn)1.5)L(MkMkMk), D(Cmk,nCmk,nCmk,n) = O(log(nk)).

P r o o f. The mapping Cmk,nCmk,nCmk,n can be viewed as a union of m operators Ck,n,αiCk,n,αiCk,n,αi in the

notation adopted in §2. Apply Lemma 8, setting GnGnGn = Cmk,nCmk,nCmk,n and V = GF (2k)p.
Note that instead of m independent matrix multiplications of type Tq,r,pkTq,r,pkTq,r,pk, it suffices
to perform a single multiplication of type Tqm,r,pkTqm,r,pkTqm,r,pk, since the coefficient matrix
GrGrGr(t

j) is the same for all matrix products.
So, we obtain estimates

L(Cmk,nCmk,nCmk,n) ≤ L(Tqm,r,pkTqm,r,pkTqm,r,pk) +m(q − 1)(L(MVMVMV) + pk),

D(Cmk,nCmk,nCmk,n) ≤ D(Tqm,r,pkTqm,r,pkTqm,r,pk) +D(MVMVMV) + dlog qe,

where MVMVMV is the componentwise multiplication over GF (2k). Thus, L(MVMVMV) ≤
pL(MkMkMk), D(MVMVMV) = D(MkMkMk). Let r ∼ √p, q ∼ n/r. Regarding Tqm,r,pkTqm,r,pkTqm,r,pk as perform-
ing k multiplications of matrices of size

√
mn×

√
mn by matrices of size

√
mn×mn,

we finally obtain the required estimates.
From Lemma 10 follows the complexity estimate O((mn)1.667k) of step 2 of the

algorithm.

6.2 Modular interpolation

Turn to step 4. In the previously introduced notations, step 4 implements the
operator Bn,p · F−1k,pBn,p · F−1k,pBn,p · F−1k,p , where F−1k,pF−1k,pF−1k,p reconstructs the coefficients of a polynomial over
GF (2) of degree no greater than p − 1 from its values on a set of p elements
from GF (2k), and Bn,pBn,pBn,p reduces a polynomial of degree p − 1 modulo mn(t). The
construction presented below is actually a modification of the algorithm [1, par. 8.7]

24

INVERSION IN FINITE FIELDS WITH LOGARITHMIC DEPTH 25

L emma 11. Let r = dp/qe, s q ≤ n. Then

L(Bn,p · F−1k,pBn,p · F−1k,pBn,p · F−1k,p) ≤ O
(
k2mnq

log q

)
+O(rs)L(Mq,kMq,kMq,k) +O

(
rn

s2q

)
L(Msq,kMsq,kMsq,k) + 2L(MnMnMn),

D(Bn,p · F−1k,pBn,p · F−1k,pBn,p · F−1k,p) ≤ O(log(kn)) +D(Mq,kMq,kMq,k) +D(Msq,kMsq,kMsq,k),

where Mq,kMq,kMq,k is the operation of multiplication of polynomials of degree q − 1 over
GF (2k).

P r o o f. According to the Lagrange interpolation formula,

F−1k,pF−1k,pF−1k,p (f(α1), . . . , f(αp)) = f(t) =

p∑
i=1

f(αi)li(t),

where li(t) are fundamental Lagrange polynomials whose coefficients depend only
on constants α1, . . . , αp:

li(t) =
∏
j 6=i

t− αj
(αi − αj)

.

Split the set {α1, . . . , αp} into subsets A1, . . . , Ar, with q items in each (except,
perhaps, the last one — but further for convenience we will assume that |Ar| = q).
Represent f(t) as

f(t) =

r∑
i=1

ϕi(t)λi(t),

where

ϕi(t) =
∑
αl∈Ai

f(αl)

∏
j 6=l, αj∈Ai(t− αj)∏

j 6=l(αl − αj)
, λi(t) =

∏
αj /∈Ai

(t− αj).

Note that the coefficients of any polynomial ϕi(t) are linear combinations with
respect to {f(β) | β ∈ Ai}, and degϕi ≤ q − 1. The polynomials λi(t) are fixed.

Let v = dr/se (but for convenience assume r = sv). Set

Λj(t) = GCD(λjs+1(t), λjs+2(t), . . . , λ(j+1)s(t)), j = 0, . . . , v − 1.

Denote µjs+l(t) = λjs+l(t)/Λj(t), for all l = 1, . . . , s and j = 0, . . . , v − 1. Obvi-
ously, degµi = (s− 1)q. So we have

f(t) =

v−1∑
j=0

Λj(t)

s∑
l=1

ϕjs+l(t)µjs+l(t). (4)

Finally,

f(t) mod mn(t) =

v−1∑
j=0

(Λj(t) mod mn(t))

s∑
l=1

ϕjs+l(t)µjs+l(t) mod mn(t).

Consider the following sequence of computations.
4.1.4.1.4.1. Compute all ϕi(t), i = 1, . . . , r, via linear operators of dimension kq × kq.
4.2.4.2.4.2. Compute the products ϕi(t)µi(t), each of which (by splitting the polynomial

µi(t) of higher degree into blocks) can be performed using s− 1 multiplications of
polynomials of degree q−1 (operationsMq,kMq,kMq,k) followed by reduction of similar terms.

25

INVERSION IN FINITE FIELDS WITH LOGARITHMIC DEPTH 26

4.3.4.3.4.3. Multiply the polynomials Λj(t) mod mn(t) by the corresponding sums∑
l ϕjs+l(t)µjs+l(t) of products obtained in the previous step, j = 0, . . . , v − 1.

Each of the multiplications is performed via dn/sqe operations Msq,kMsq,kMsq,k followed by
reduction of similar terms.

4.4.4.4.4.4. Summing all the polynomials computed in the previous step, we obtain a
polynomial of degree at most 2n − 1 with coefficients from GF (2), which is guar-
anteed by the conditions of the lemma. Its reduction modulo mn(t) is performed
via two multiplications and addition of polynomials of degree n− 1 (see §2.3).

The terms in the complexity estimate stated by the lemma correspond to the
steps of this algorithm in the same order. These terms also absorb the complexity
of the addition operations performed at different stages. The same is true for the
depth (the depth of step 4.4 is taken into account in the first term).

The choice of parameters q, r, s depends on the algorithm for multiplying
polynomials over GF (2k). In relation to the construction of an exponentiation
circuit of logarithmic depth, a restriction on the depth of the algorithm should
be imposed, D(Mn,kMn,kMn,k) = O(log(kn)) (then the total depth of the algorithm of
Lemma 11 will be O(log(kn))).

Let us discuss known algorithms for multiplying polynomials of degree n − 1
with depth O(log n) over the field of coefficients.

Obviously, the standard algorithm has depth O(log kn), since all multiplica-
tions in it are performed at one level (and addition operations in the field GF (2k)
are performed with depth one, as in GF (2)). The same is true for Karatsuba’s
method [18], as well as for the more general Toom’s method with complexity esti-
mate O(nlogl+1(2l+1)) operations over GF (2k), l ∈ N (see [33]).

Note that already using Karatsuba’s method, we can obtain an acceptable com-
plexity estimate for step 4. Indeed, let L(Mn,kMn,kMn,k) = O(nlog 3k2) (for multiplication
in GF (2k) the standard algorithm is applied). Choose the parameters to provide
q ∼ sqlog 3−1 ∼ n(sq)log 3−2. So we obtain

q ∼ n1/(1+(2−log 3)(3−log 3)) ∼ n0.63, s ∼ n(2−log 3)/(1+(2−log 3)(3−log 3)) ∼ n0.26,

from which it follows that step 4 can be implemented with complexity
O(mk2n1.631).

Let us, however, derive a stronger estimate using the method of Schönhage [29].
This method is based on the Fourier transform, due to which all multiplications
are also performed at one level, and the depth satisfies the estimate O(log kn).

In the estimates of Lemma 10, substitute Mn,kMn,kMn,k = O(nk2 log n log log n). From
the condition q ∼ s ∼ n/qs we find that q, s ∼ 3

√
n. Therefore, we obtain the

following result.

L emma 12. The operator Bn,p · F−1k,pBn,p · F−1k,pBn,p · F−1k,p is implemented with complexity and depth

L(Bn,p · F−1k,pBn,p · F−1k,pBn,p · F−1k,p) ≤ O(mn4/3k2 log n log log n), D(Bn,p · F−1k,pBn,p · F−1k,pBn,p · F−1k,p) = O(log(kn)).

R e m a r k. By choosing the parameters more carefully, the complexity estimate
may be obtained in the form

O
(
m(log log n+ log k log log k) 3

√
k4n4 log n/ log log n

)
.

Note also that the decomposition of formula (4) can be iterated by grouping
the polynomials Λj(t), extracting their common factor, etc. Thus, for any natural

26

INVERSION IN FINITE FIELDS WITH LOGARITHMIC DEPTH 27

number d ≥ 3, one can construct a circuit of complexity O(mn1+1/dk2) and depth
O(d log(kn)). The described construction is actually obtained by applying the
method [15], which deals with a similar numerical operation, to polynomials.

The choice of k = log(mn) + O(1) and the application of Lemma 12 together
with the previously proven Corollary 3 and Lemmas 9 and 10 to the algorithm
given at the beginning of this section leads to the following result.

Th e o r em 10. The operation of raising to a power of weight m in the field
GF (2n) is implemented by a circuit of complexity and depth

L(En,mEn,mEn,m) = O((mn)w+δ log n+m2+δn1+δ), D(En,mEn,mEn,m) = O(log n),

where w is the exponent of the multiplication of matrices of size
√
n ×
√
n and√

n× n, and δ is an arbitrary positive constant. In particular, L(En,mEn,mEn,m) =
O((mn)1.667).

The application of this algorithm in combination with the method of Theorem 9
allows us to state the main result of this section.

Th e o r em 11. Let r = const ∈ N. Then the inversion and division operations
in the field GF (2n) are implemented by circuits with complexity and depth

L(InInIn), L(∆n∆n∆n) = O(rnw+(w+1)/r log n+ n1+3/r), D(InInIn), D(∆n∆n∆n) = O(r log n).

In particular,

L(InInIn), L(∆n∆n∆n) = O(n1.667), D(InInIn), D(∆n∆n∆n) = O(log n).

The multiplicative constants hidden under “O” symbol that can be specified
for the latter estimate are very large (at least tens of thousands), so the proposed
algorithm has no practical value. However, by multiplying matrices by Strassen’s
method [32] (see also [21, par. 4.6.4]) with an exponent 1.904 in the complexity
estimate and applying Theorem 9 with the parameter r = 20, we can derive a
circuit of complexity O(n1.999) and depth O(log n) with multiplicative constants
under “O” of the order of several hundred. However, such an algorithm is also
ineffective in fields of practical importance.

7 Remarks

7.1 On the Litow—Davida and von zur Gathen methods

Inversion by the method [24], based on the matrix representation of the field el-
ements, involves reconstructing the coefficients of a polynomial of degree n from
its roots, which are encoded by O(n2) bits, which means calculating elementary
symmetric functions of n numbers, each containing O(n2) digits. In particular, the
product of these n numbers is computed.

Method [10], which also exploits matrix representation, is intended for general
finite fields GF (qn). In the case q = 2, an elementary inversion algorithm can be
directly derived from [7]. As above, write

x−1 = x2
n−2 = x2x2

2

· . . . · x2
n−1

.

27

INVERSION IN FINITE FIELDS WITH LOGARITHMIC DEPTH 28

The product of the polynomials fi(t) corresponding to the elements x2
i

may be
reduced, according to [7], to computing an integer product

f1(2L)f2(2L) · . . . · fn−1(2L),

where L is approximately n log n. Thus, it is required to multiply n − 1 numbers
containing about n2 log n digits.

Both [24] and [7] suggest to use the result from [2]. The complexity of a circuit
that multiplies n numbers, encoded by n bits, with logarithmic depth is estimated
in [2] as O(n5 log2 n). The multiplicative coefficient in the depth estimate is not
given, but elementary analysis shows that it is not less than 15.

7.2 On inversion in normal bases

The roots of an irreducible binary polynomial of degree n in the field GF (2n) form

a normal system {α, α2, . . . , α2n−1}, which, if its elements are linearly independent,
is a basis of the field. Such bases are called normal. It is known that there are quite
a lot of normal bases: at least one such basis exists in any field (see [5, 17, 23]).

Normal bases were studied as early as the 19th century, but practical interest in
them arose only at the end of the 20th century, with the development of finite field
cryptography. The use of normal bases is supported by the exceptional simplicity
of the implementation of Frobenius operations, which do not require any circuit
resources at all, since they are reduced to a cyclic shift of coefficients (this is clear
from the definition). However, the situation with multiplication is more compli-
cated. The standard Massey—Omura algorithm (see, e.g., [5, 17]) has a theoretical
complexity O(n3), which, even in the case of an optimal choice of basis from the
point of view of this algorithm, is of order n2. For some specific types of bases,
the complexity estimate may be reduced to O(n log n log log n) (see [8]), but such
bases do not exist in every field.

Therefore, the problem of transition to a standard basis in which multiplica-
tion is performed comparatively simply — theoretically no more difficult than in
O(n log n log log n) operations, as follows from [29], is of practical interest. The
transition between bases is a linear transform of coordinates and can be performed
by O. B. Lupanov’s method with complexity O(n2/ log n), which automatically
leads to a decrease in the estimate of the complexity of multiplication in normal
bases. It turns out that the transition is performed especially simply for the same
bases for which the Massey—Omura algorithm works well. And using the arith-
metic of standard bases, the complexity of multiplication in them turns out to be
almost linear (see [4, 5]). For Gaussian normal bases, the transition to a standard
basis in the field extension is applied (see, e.g., [5, 8]).

Since the inversion algorithm from §3 performs linear transforms at the initial
and final stages, and the dimension of these transforms does not change when com-
posed with the transition from one basis to another, the estimates of Theorems 3
and 4 are valid for computations in any basis, not just a normal or standard ba-
sis. The estimate of Theorem 11 should be adjusted for the implementation of the
transition, then the estimates of the complexity and depth of inversion and division
in a normal basis will take the form O(n2/ log n) and O(log n).

7.3 On raising to an arbitrary power

In recent works [8, 12] devoted to exponentiation in finite fields, upper bounds on
the complexity of raising to an arbitrary power in the field GF (2n) are obtained in

28

INVERSION IN FINITE FIELDS WITH LOGARITHMIC DEPTH 29

the form O(n2 log log n) for standard bases and normal bases of linear complexity
(for a normal basis, the same estimate generally holds, since the transition to
a polynomial basis and back is always performed in no more than O(n2/ log n)
operations). The depth of all the listed methods is not less than O(log2 n). In [10],
a logarithmic depth circuit is constructed, but the complexity of such a circuit is
rather large. The question of implementing exponentiation with at least O(n2)
complexity apparently remains open.

The author is grateful to his scientific advisor S. B. Gashkov for posing the
problem, numerous ideas, discussions and support in solving it.

References
[1] A h o A. V., H o p c r o f t J. E., U l l m a n J. D. The design and analysis of computer

algorithms. — Reading: Addison–Wesley, 1976.
[2] B e a m e P. W., C o o k S. A., H o o v e r H. J. Log depth circuits for division and

related problems // SIAM J. Comput. — 1986. — V. 15, n. 4. — P. 994–1003.
[3] B i n i D., P a n V. Y. Polynomial and matrix computations. Vol. 1. — Boston:

Birkhäuser, 1994.
[4] B o l o t o v A. A., G a s h k o v S. B. On fast multiplication in normal bases of finite

fields // Discrete Math. Appl. — 2001. — V. 11, n. 4. — P. 327–356.
[5] B o l o t o v A. A., G a s h k o v S. B., F r o l o v A. B., C h a s o v s k i k h A. A. Elemen-

tary introduction to elliptic cryptography: algebraic and algorithmic foundations. —
Moscow: KomKniga, 2006. (in Russian)

[6] B r e n t R. P., K u n g H. T. Fast algorithms for manipulating formal power series //
J. ACM. — 1978. — V. 25, n. 4 — P. 581–595.

[7] E b e r l y W. Very fast parallel polynomial arithmetic // SIAM J. Comput. —
1989. — V. 18, n. 5. — P. 955–976.

[8] G a o S., v o n z u r G a t h e n J., P a n a r i o D., S h o u p V. Algorithm for exponenti-
ation in finite field // J. Symb. Comput. — 2000. — V. 29. — P. 879–889.

[9] G a s h k o v S. B., K h o k h l o v R. A. On the depth of logic circuits for operations in
the fields GF (2n) // Chebyshevskii Sbornik. — 2003. — V. 4, n. 4(8). — P. 59–71.
(in Russian)

[10] v o n z u r G a t h e n J. Inversion in finite fields using logarithmic depth // J. Symb.
Comput. — 1990. — V. 9. — P. 175–183.

[11] v o n z u r G a t h e n J., Gerhard J. Modern computer algebra. — Cambridge Univer-
sity Press, 1999.

[12] v o n z u r G a t h e n J., N ö c k e r M. Polynomial and normal bases for finite fields //
J. Crypt. — 2005. — V. 18. — P. 337–355.

[13] G r i n c h u k M. I., B o l o t o v A. A. Process for designing comparators and adders
of small depth // US patent application. — 2006. — no. 7020865.

[14] G r o v e E. Proofs with potential. — Ph.D. thesis, U.C. Berkeley, 1993.
[15] H a s t a d J., L e i g h t o n T. Division in O(logn) depth using O(n1+ε) processors.

Unpublished manuscript. — 1986. — www.nada.kth.se/˜yohanh/paraldivision.ps.
[16] H u a n g X., P a n V. Y. Fast rectangular matrix multiplication and applications //

J. Complexity. — 1998. — V. 14. — P. 257–299.
[17] J u n g n i c k e l D. Finite fields: structure and arithmetics. — Mannheim: Wis-

senschaftsverlag, 1995.
[18] K a r a t s u b a A. A., O f m a n Yu. P. Multiplication of multidigit numbers on au-

tomata // Soviet Physics Doklady. — 1963. — V. 7. — P. 595–596.
[19] K h o k h l o v R. A. Implementation of multiplication and inversion operations in finite

fields of characteristic 2 by logic circuits. — Ph.D. thesis, Moscow State Univ., 2005.
(in Russian)

[20] K h r a p c h e n k o V. M. Asymptotic estimation of addition time of a parallel adder //
in: Problemy Kibernetiki. Vol. 19. — Moscow: Nauka, 1967. — P. 107–120. (in
Russian)

29

INVERSION IN FINITE FIELDS WITH LOGARITHMIC DEPTH 30

[21] K n u t h D. E. The art of computer programming. Vol. 2. Seminumerical algo-
rithms. — Reading: Addison–Wesley, 1997.

[22] K o b l i t z N. A course in number theory and cryptography. — New York: Springer-
Verlag, 1994.

[23] L i d l R., N i e d e r r e i t e r H. Finite fields. — Cambridge: Cambridge Univ. Press,
1983.

[24] L i t o w B. E., D a v i d a G. I. O(logn) parallel time finite field inversion // Proc.
Aegean Workshop on Computing, Lecture Notes in Computer Science 319. — Berlin,
1988. — P. 74–80.

[25] L u p a n o v O. B. Asymptotic estimates of the complexity of control systems. —
Moscow: Izd. MGU, 1984. (in Russian)

[26] L u p a n o v O. B. On rectifier and switching-and-rectifier schemes // Doklady AN
SSSR. — 1956. — V. 111, n. 6. — P. 1171–1174. (in Russian)

[27] P a t e r s o n M. S., P i p p e n g e r N., Z w i c k U. Optimal carry save networks //
LMS Lecture Notes Series. — V. 169. Boolean function Complexity. — Cambridge
University Press, 1992. — P. 174–201.

[28] R o s s e r J. B., S c h o e n f e l d L. Approximate formulas for some functions of prime
numbers // Ill. J. Math. — 1962. — V. 6 — P. 64–94.

[29] S c h ö n h a g e A. Schnelle Multiplikation von Polynomen über Körpern der Charak-
teristik 2 // Acta Inf. — 1977. — V. 7. — P. 395–398.

[30] S e r g e e v I. S. Inversion in finite fields of characteristic 2 using logarithmic depth //
Moscow Univ. Math. Bull. — 2007. — V. 62, n. 1. — P. 29–33.

[31] S i e r p i ń s k i W. 250 problems in elementary number theory. — Warszawa: PWN,
1970.

[32] S t r a s s e n V. Gaussian elimination is not optimal // Numer. Math. — 1969. —
B. 13, n. 4. — P. 354–356.

[33] T o o m A. L. The complexity of a scheme of functional elements simulating the
multiplication of integers. Soviet Math. Doklady. — 1963. — V. 3. — P. 714–716.

Submitted to editors 09 XI 2005

30

