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FORMULAE

®p(f) — formula complexity of the function over a basis B



Sensitivity of a boolean function f:

N, P)?
s(f) = max [V, P) ,
Ncf-1(0), Pcf(1) |N|-|P|

where R(N, P) is the set of pairs of neighboring vectors from N and P.

Sp (f) > s(f) (V. M. Khrapchenko, 1971)

Corollary: &g, (1,) > n?.
In arbitrary basis: ®5(l,,) = n's, where I's is the shrinkage exponent of a basis B.

U — maximal basis of k-ary functions, where the complexity of the linear func-
tion /,, is linear.

U, ~ {all monotone k-ary functions, Z, 1}.

Z/{Q ~ BO: Z/{3 ~ {m3($3 Y, Z), z, 1}
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Ty > 1+ 3]{%4 (N. A. Peryazev, 1995; D. Yu. Cherukhin, 2000)
Ty > 3 (H. Chockler, U. Zwick, 2001)
By, (1) = n* 7T, n’? < &y, (1,) < '™,

Formal complexity measures of functions (over a basis B)
1) 1(0) = (1) = 0.

2) p(z) = 1.

3) Forany g € B:  u(g(fi,---, fs)) < p(fr) +- o+ p(fs).
Property: u(f) < ®g(f).

s(f) — formal complexity measure over Us | (M. S. Paterson; A. E. Andreev)

Hypothesis: s*(f) — formal complexity measure over Uj.




Khrapchenko exponent xp — maximal y, such that for any function f (com-
putable in the basis B),
S5(f) = s*(f)-
As follows from the definition, ®z(1,) = n*¥s.

Xu, = 1.

XB > % Trivially, for a basis B of k-ary functions: if B ¢ U, then yz = %

Special complexity measures of bipartite graphs

) ) EN (X xY))?
G=ABE),  sG)= max v

For a boolean function: Gy = (N, P, R(N, P)), N = f~1(0), P = f~1(1).
By definition, s(f) = s(Gy).



Coverings of graphs

Set of graphs {G; = (A;, B;, E;)} — covering of a graph G = (A, B, E), if:
1A, CA, B, CB, E =En(A4 xB);

o) E = E,.

Covering is monotone, it additionally:

3) For any set of indices I, either A\ UJ;.;4; =0, or B\ U,4; B; = 0.

The reasoning for 3):  let f = p(f1,..., fr), where ¢ is monotone.
A=f10), B=f1(1),  A=f0)NA B—f(1)nB

Assume that for some I, there exist vectors

O&EA\UAZ', 6€B\UB¢', 1.e.

el i¢l
0, fila)=1Vviel,  f(B)=1 [fi(B)=0Vigl
Then f;(a) > fi(B) for any i — a contradiction with f(«a) < f(5).
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For any k > 2, the complexity exponent x; of bipartite graphs (correspondingly,
the monotone complexity exponent x; ) is defined as the maximal number y, such that

for any bipartite graph G, and for any its covering (monotone covering) Gy, . .., G,
sN(Gr) + ...+ sMGr) > s¥(G).

Claim 1. x; < x; < xv,-

Claim 2. y3=1. . ST S
Claim 3. yy < 0.95.
s(G) =25/4 < >
S(Gl) — S(GQ) —3 e B i“:::::":::: ____ B 2 ...............



Theorem 1 (upper bound). For any k > 2,

1

1
Xv, < 108 /21(1k/2)41) Kk < 2 + 2log, (k/2)

Proof. Consider the majority function m; of k variables.

Choose as IV and P the neighboring layers of a boolean cube, where the function
changes its value, that is, the sets of vectors of the weight p — 1, and of the weight
p, where p = [k/2].

Obviously, @y, (mi) = k. On the other hand,

o BN, P)| RN, P

= 7P N =p(k —p+1) = [k/2]([k/2] +1) = (Lv, (mx))"/,

s(my)

where x = logy21(r/2/+1) k- Therefore, for larger x, the condition Ly, (my) > s (my)
does not hold. [
For instance, xy, < log, 3 ~ 0.792.



Theorem 2 (lower bound). For any k > 2,

Proof.
Let {G; = (A;, B;, E;)}, i =1,...,k, be a covering of a graph G = (A, B, F).
We have to check that for x =1/2+1/(10Ink),

(G + ... + (G > sX(Q).

W.Lo.g. assume s(G) = ‘ﬂ;‘. (otherwise consider a subgraph)
Denote a; = |A;|/|Al, b; = |Bi|/|B|, e; = |Ei|/|E].
Induction on k. In the degenerate case £ = 1, set x; = 1 for convenience.

Further, we prove a transition from k& — 1 to £ > 2. Consider the two cases:
I. One of the covering graphs contains a huge portion of both parts of G.

I1. There is no such graph in the covering.
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Case 1. a1 +by > 1.63 o
4,
G' = (A, B\ B, E') ~ G\ By,
G"=(A\ A, B, E")~ G\ Ay,
where F' = E\ (Ax By) and E" = E'\ (A; X B).
Graph G’ has a covering G, . . ., G}, where G, = (A;, B; \ By, E; N E') = G;\ B.
Graph G” has a covering GY, ..., G}, where G/ = (A;\ A1, B;, E;NE") = G; \ A;.

Informally, G UG’ = G\ E;.

Consequently, graphs G’ and G” together contain at least (1 — e1)|E| edges.
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max{s(G), s(G")} = max{\/s(G"), /s(G")}* >

max{ ¥l ¥2d }2> (1— e E? o)
JIA-BNBi| VIA\A|- 1Bl T VT—a+vI=5)Al-[B

. r1 T Tr1 +x
since max {—1, —2} > ! 2 for 1, y2 > 0.
Y1 Y2 Y1 + Y2

For x =1/24+1/(101In(k — 1)) (for x =1 in the case k = 2),

s\ (G2) +... + s(Gy) > max{s¥(Gy) +... + s*(G}), s*(Gy) +... + s(G)}

Q. (G (1— 1)’ BJ? '
> max{s*(G"), s*"(G")} > ((m+ V1 —b1 )2A|- |B|>

by the inductive assumption and by (1).
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The obtained inequality

X X (1 —e1)?|EJ? :
X (Gy) + ...+ sX(G) > ((H+H)Q|A|-|B|)

holds also for any smaller y due to the Minkowski inequality

Hence, for x =1/2+4+1/(10In k),

R ((ﬁ)x ' ((\/%1\1/)12—761)2))6) (|A||E.||QB|),X
[ ()

where t = (a1 + b1)/2.

12



Further, we apply the Holder’s inequality

Z TiYi S (Z xf)) " (Z yf)l/q’ L + 3 =1, vy =0,

with parameters

€1 1—61
L1 = L) — —F——

So we obtain

D 1 — p\ 1/p 1/q
1:81+(1—81):$1y1—|—3}2y2<((6—1) —|—(—61) ) (tq—|—(2 1—tq) .
— t 241 —t
Therefore,

81)2X ( I —e ) X] 1 ( 2x x \ 1—2x

(— + | —F— > s—T = |t +(4(1—t))2x—1) :
_ 2 2 x—1

t 21—t (tg—;imr(g\/m)w&)
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Easy to check, that for y < 1 and ¢t € [0.815, 1],

g(t) = 1707 + (4(1 — t))"T < 1.

Since t = (a1 + b1)/2 > 0.815 by the case requirement, the chain of inequalities

finishes as

(G + ...+ sX(Gp) > [(8_1)2x+( 1 — e )zx

t
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Case I1. a; + b; < 1.63 for any 1.
We apply the Holder’s inequality with parameters z; = e;, y; = 1, p = 2y,
g =2x/(2x - 1):

l<e+...4+e < (6§X—|—...—|—ez’<)ﬁkg—’§;—l
It follows from a;b; < 0.815% that for y = 1/2+1/(101In k),

, . e1 \2x er \2X\
sX(Gl)—|—...—|—sX(Gk)>((0.815) +...+(0.815) )SX(G)
1 | s¥(G)

> et osie S @) 2 SR osn

Corollary 1.

1+ 1 C e 1 1
0k = X S X S X0 S 5+ 1o
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Complexity of a linear function

Theorem 3. For k > 2, it holds that Oy, (I,,) < 2n!*1/logk,

1) Any function f of k variables may be implemented by a formula over the basis

Usr in such way that any variable is repeated at most twice.

Yi=T;

DNF for f(xla“'axk) — Qo(xla”'axkayla"'ayk) € UQk-
2) Verify by induction that &y, (1,) < n - 21081,
For n =mn; + ...+ ng, due to 1) we have

d)Uzs;: (lﬂ) < Z(q)Uzk (lﬂl) T+ ...+ (DU% (lm))

If n € (k%!, k9], then we can always take n; < k91,

Corollary 2. & (1,,) =< nttO0/Ink),
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Theorem 4. x3 > 0.769. (x5 < logy 3 ~ 0.792)

[a lengthy proof is omitted]

Corollary 3. n!*% < &y, (1,). (< nl T
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