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Abstract

Given a linear boolean operator, how to compute it by a small cir-

cuit using only unbounded fanin addition gates? Since this is one of

the simplest and most basic circuit models, the question was consid-

ered by many authors since early 1950s. This led to a variety of upper

and lower bound arguments—ranging from algebraic (determinant and

matrix rigidity), to combinatorial (Ramsey properties, coverings and

decompositions) to graph-theoretic (the superconcentrator method).

We give a throughout survey of the research in this direction, and

prove some new results to fill out the picture. The focus is on the cases

when the addition operation is either the boolean OR or XOR, but

the model in which arbitrary boolean functions are allowed as gates is

considered as well.

S. Jukna and I. Sergeev. Complexity of Linear Boolean Operators. Foundations and
Trends R© in Theoretical Computer Science, vol. 9, no. 1, pp. 1–123, 2013.

DOI: 10.15610400000063.



1

Introduction

Let (S, +) be a commutative semigroup, that is, a set S closed under a

binary “sum” operation + which is associative and commutative. Our

goal is to simultaneously compute a given system

yi =
∑

j∈Ti

xj , i = 1, . . . , m (1.1)

of m sums by only using the sum operation of the semigroup. By iden-

tifying the subsets Ti with their characteristic 0/1 vectors, this system

turns to a linear operator y = Ax for a boolean matrix A.

A natural computational model towards this goal is that of addition

circuits over (S, +). Such a circuit is a directed acyclic graph with n

input nodes x1, . . . , xn of zero fanin, and m output nodes y1, . . . , ym of

zero fanout. Each non-input node computes the sum of its inputs over

(S, +). There are no restrictions on the fanin or fanout of gates. The

size of a circuit is the total number of edges in it, and the depth is the

length of (the number of edges in) a longest path.

We will concentrate on the most basic semigroups—the OR semi-

group ({0, 1}, ∨), and the XOR group ({0, 1}, ⊕). Thus, OR circuits al-

low “cancellations” x + x = x (partial sums can be “merged”), whereas

XOR circuits allow cancellations x + x = 0 (partial sums can be “anni-
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hilated”). We also consider a restricted model of SUM circuits where

the system of sums (1.1) is computed over the semiring (N, +). In this

model none of these two types of cancellations can be used. Note that

the XOR and OR (and its “dual” AND) are the only commutative

semigroups over S = {0, 1}.

We stress that, given a boolean matrix A, the goal of all these three

types of circuits is the same: to compute the system of sums (1.1) de-

fined by A. The only difference is in what type of cancellations a circuit

can use to achieve this goal. OR circuits constitute the simplest mono-

tone model, whereas XOR circuits constitute the simplest group model

(necessarily non-monotone since the group is finite). SUM circuits are

“universal” in the sense that every such circuit for A is an addition

circuit for A over any semigroup (S, +).

The model of OR circuits was first considered by Lupanov [62]

by inventing the model of rectifier circuits. XOR circuits were first

considered by Nechiporuk in [70]. SUM circuits were first explicitly

introduced by Pippenger [81]. SUM circuits of fanin-2 are also known

as “vector addition chains” (see, for example, Knuth [55, Sect. 4.6.3]).

It is important to note that computing an operator y = Ax for

a boolean matrix A = (aij) by an addition circuit actually means to

“encode” the matrix A by paths in a directed acyclic graph. Namely, if

pij denotes the number of paths from the input node xj to the output

node yi in such a circuit for A then the circuit implements (or encodes)

the matrix A in the following sense:

• SUM circuit: pij = aij .

• OR circuit: pij > 0 if aij = 1, and pij = 0 if aij = 0.

• XOR circuit: pij is odd if aij = 1, and pij is even if aij = 0.

Thus, SUM circuits constitute the most restricted model in which

there cannot be more than one path between the same pair of input

and output nodes. Also, unlike XOR circuits, SUM and OR circuits

are monotone models: increasing values of inputs cannot decrease the

values of outputs. For these circuits, large (almost quadratic) explicit1

lower bounds, without any restriction on the circuit-depth are known.

1Intuitively, a matrix or a boolean function being “explicit” means being “explic-
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However, XOR circuits are a “Waterloo” of circuit complexity: here

superlinear lower bounds are only known for constant-depth circuits

(and these are barely-superlinear even for depth 5, say).

In this text we survey the most important complexity-theoretic

questions about the addition circuit model:

Q1: What is the maximum complexity of implementing a boolean

n × n matrix? Answer: it is about n2/ log n in all three models (Chap-

ter 2).

Q2: What are the best known explicit lower bounds for the three

complexity measures? Answer: for SUM and OR circuits, we have near-

optimal explicit examples of boolean n×n matrices with a lower bound

of n2−o(1) (§ 3.4). On the other hand, we have nothing super-linear for

XOR circuits, except for constant depth d, and these degrade badly

as d grows. For depth 2, the strongest known lower bound is about

n(ln n/ ln ln n)2, and is about n ln ln n for depth 3 (§ 3.7, § 3.8 and

Chapter 6).

Q3: How large a gap can occur between the SUM, OR and XOR

complexities of a given boolean n × n matrix A? Answer: the largest

possible gap in each of the three models is O(n/ log n) (Chapter 2).

The largest known SUM/OR gap is Ω(
√

n/ log2 n), OR/XOR gap is

Ω(n/ log2 n), and the largest known gap between the OR complexity of

a matrix A and its complement is Ω(n/ log3 n) (Chapter 5).

Q4: What are the most important known lower bound techniques

for handling specific matrices, what are their limitations? A variety

of techniques are described in Chapter 3 and Chapter 6. They give a

flexible toolkit for lower-bounding the SUM and OR complexities, their

bounded-depth analogues, and the depth-2 XOR complexity. Each of

presented lower-bound techniques uses some property of matrices and

gives some lower bound based on only these properties. Is the technique

“optimal” in the sense that one cannot derive a larger bound by only

using the same properties? We show various examples of this kind,

indicating where progress on lower bounds gets stuck (Table 4.1, § 6.1

and § 6.2).

itly constructed”, not just being “shown to exist”. A more rigorous definition of the
term “explicit” can be found, for example, in the book [50, Section 1.5.1].
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Q5: XOR circuits are the “natural” way to compute linear operators

over F2; but are they the “best” way? To address this question, we

consider general circuits that allow arbitrary boolean functions at its

gates. Despite this model’s crazy power, we still don’t know if there is

any example where it computes an F2-linear operator more efficiently

than XOR circuits do. Moreover, some of our lower bound techniques

apply also to this stronger model, and we describe some of this work

in Chapter 6.

For general circuits computing linear F2-operators, the strongest

known explicit lower bounds have the form Θ(n(ln n/ ln ln n)2) in

depth 2, and the form Θ(n ln ln n) in depth 3; these bounds are tight

and are achievable even by XOR circuits (see Chapter 6). This high-

lights the power of XOR circuits and difficulties of dealing with them.

In larger depths, the known lower bounds for XOR circuits are only

barely superlinear.

If we consider non-linear operators in the arbitrary gates model,

then we have explicit Ω(n3/2) bounds in depth 2, and Ω(n ln n) in depth

3. These bounds were proved by Cherukhin [18, 19] and Jukna [48]

using entropy arguments which do not work for linear operators. In

larger depths, the known bounds are only barely better than those

known for linear operators.

Though organized as a survey, the text also contains some new,

previously unpublished results. These include:

1. Hansel–Krichevski type lower bound (Theorem 3.5).

2. Rectangle-area lower bounds (Theorem 3.12).

3. Depth-2 lower bound for block matrices (Theorem 3.18(iii)).

4. Lower bound for Kronecker products (Theorem 3.20(ii)).

5. Bounds for the Kneser–Sierpinski matrix (Lemma 4.2).

6. Upper bounds for the Sylvester matrix (Theorem 4.3).

7. Balanced decomposition of the triangular matrix (Lemma 5.3).

8. Coverings vs. decompositions in depth 2 (Theorem 5.4).

9. An XOR/OR gap in depth 2 (Theorem 5.12).

10. Matrix/complement gaps (Theorem 5.13, items (i) and (iii)).

11. Linearization of half-linear depth-2 circuits (Lemma 7.17).

Most of the remaining (known) results are given with proofs—in most
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cases, substantially simplified—or at least with detailed proof sketches.

The subject of this survey previously found an only fragmentary expo-

sition in the books by Wegener [108], Dunne [24], Jukna [50], and in

an earlier very short survey by Lupanov [63].

What we do not cover To compute linear operators over fields

(S, +, ·), and in particular over infinite fields, it is natural to allow

multiplication by arbitrary field elements as a basic circuit operation.

Such circuits are called linear circuits. If S = {0, 1}, then these are just

the addition circuits considered in this survey. However, the ability to

use “for free” arbitrarily complex coefficients of arbitrary magnitude

is one of the central “mysteries” in arithmetic circuit complexity over

infinite fields.

Research in this direction also has long history, starting with the

seminal works of Morgenstern [67, 68], Grigoriev [37] and Valiant [106].

In this case, gates may compute arbitrary linear combinations of their

inputs, not just 0/1 combinations. It is still an open problem to prove

more than linear lower bounds on circuits computing a linear form Ax

defined by an explicit 0/1 matrix A—such bounds are only known when

either the matrix A has very “complicated” entries (say, square roots

of the first n2 distinct primes) or when the circuit is not allowed to

use large coefficients; see, for example, the book by Bürgisser, Clausen,

and Shokrollahi [13], or the more recent survey by Lokam [61].

1.1 Concepts used

We first recall some (mostly basic) concepts concerning boolean matri-

ces which we will use later. A matrix is boolean if it only has entries 0

and 1. If not otherwise stated,

by a “matrix” we will always mean a “boolean matrix”.

For such a matrix A, |A| denotes the number of 1-entries in A. A

rectangle in a matrix is an all-1 submatrix. If this is an a × b rectangle,

then we define its weight as a + b, its area as a · b, and its density as

a · b/(a + b). For a positive integer r, [r] = {1, . . . , r} will always denote

the set of the first r positive integers.
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The Kronecker product A ⊗ B of a p × q matrix A = (ai,j) and

an n × m matrix B is an np × mq block-matrix obtained by replacing

1-entries of A by copies of B. The direct sum of matrices A and B is

the matrix A ⊞ B =
[

A 0
0 B

]
.

We can view a rectangle R in an n × n matrix A as an n × n matrix

R̂ with all entries outside R filled by 0s. A set R1, . . . , Rs of rectangles

in a matrix A is a:

• SUM covering (or a decomposition) of A if A =
∑s

i=1 R̂i;

• OR covering (or just a covering) of A if A =
∨s

i=1 R̂i;

• XOR covering of A if A =
⊕s

i=1 R̂i.

The weight of a covering is the sum of weights of its rectangles. For

L ∈ {SUM,OR,XOR} ,

the L-rank of A is the smallest number of rectangles in an L-covering

of A. The L-product of two matrices is their product over the corre-

sponding semiring. Thus, the L-rank of A is the smallest number r

such that A can be written as an L-product A = PQ⊤, where P and Q

are n × r matrices. To visually better distinguish the three ranks, we

will use rk+(A), rk∨(A) and rk(A) to denote, respectively, the SUM-,

OR- and XOR-rank of A. In communication complexity,2 log rk∨(A) is

exactly the nondeterministic communication complexity of A (see, e.g.

[50, § 4.2]).

The term rank, tr(B), of a boolean matrix B is the largest number

of its 1s, no two of which lie in the same row or column. By the König–

Egerváry theorem, this is exactly the smallest number of rows and

columns covering all 1s of B. It is easy to see that

tr(B) > rk+(B) > rk∨(B) .

Indeed, tr(B) is the smallest number a+b such that, after some permu-

tation of rows and columns, the matrix B can be written in the form

B =
[

C D
F 0

]
, where C is an a × b matrix. We can therefore write B as

a sum of a + b pairwise disjoint rectangles, each corresponding to one

row or column of B.

2If not specified otherwise, log n will always stand for log2 n.



8 Introduction

A matrix A is (k, l)-free (k, l > 1) if it does not contain a k × l

rectangle; being k-free means being (k, k)-free. Known upper bounds

for the Zarankiewicz problem (see, for example, [58] or the book [8])

state that, if A is a (k, l)-free matrix of dimension m × n, then

|A| 6 (k − 1)1/l(n − l + 1)m1−1/l + (l − 1)m . (1.2)

A matrix is (k, l)-Ramsey matrix if both the matrix and its complement

are (k, l)-free.

We will often use the arithmetic-geometric mean inequality

1

n

n∑

i=1

xi >
( n∏

i=1

xi

)1/n
, (1.3)

as well as a special version of the Jensen inequality for a convex func-

tion f :
n∑

i=1

f(xi) > n · f
(X

n

)
, (1.4)

where X =
∑n

i=1 xi and all xi > 0. In particular, by taking f(x) =

x log x, we obtain
n∑

i=1

xi log xi > X log
X

n
, (1.5)

In some estimates we will also use the binary entropy function

H(α) = α log
1

α
+ (1 − α) log

1

1 − α
.

Asymptotic notation To spare parenthesis (in larger expressions), we

will occasionally write f < g instead of f = Ω(g), f 4 g instead

of f = O(g), and f ≍ g instead of f = Θ(g). Also, f ≪ g stands

for f = o(g). Notation f ∼ g means the usual (tight) asymptotic

f/g → 1. By saying “the n × n matrix A has complexity < g(n)” we

will actually mean that we have an infinite sequence {An} of n × n

matrices (n = 1, 2, . . .) for which there exists a constant ǫ > 0 such

that “complexity of An is > ǫg(n)” holds for infinitely many n. By

writing “A has complexity > g(n)”, we will mean that this holds for all

large enough dimensions n.
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1.2 Simple observations

We denote the minimum number of edges in an OR, XOR and SUM

circuit implementing a given matrix A by OR(A), XOR(A) and SUM(A).

If we speak only about circuits of depth 6 d, then the corresponding

measures are denoted by ORd(A), XORd(A) and SUMd(A).

As we noted above, SUM circuits constitute the weakest model:

each such circuit can be turned into an OR circuit or an XOR circuit

just by replacing the operations computed at their nodes. So, for every

matrix A, we have that

OR(A) 6 SUM(A) and XOR(A) 6 SUM(A) .

In the case of depth-d circuits, we will assume that the underlying

graph is “leveled” in the following sense. We have d + 1 levels of nodes.

The first level consists of input nodes, the last consists of output nodes,

and each edge goes from one level to the next one. Thus, if Ai is the

boolean adjacency matrix of the bipartite graph between the (i + 1)-th

and i-th levels, then these measures give the smallest weight
∑d

i=1 |Ai|
of the presentation of A as a product A = Ad · Ad−1 · · · A1 of boolean

matrices over the corresponding semirings, where |Ai| is the number of

1s in Ai. That is,

L-complexity of A = smallest weight of an L-factorization of A .

Observation 1.1 (Transposition principle). The complexities of a matrix

A and its transpose A⊤ are the same.

Proof. Given any circuit for A, one may reverse the direction of all

edges to obtain a circuit for A⊤.

Observation 1.2. The complexity of a submatrix is at most the com-

plexity of the entire matrix.

Proof. Given a circuit for a matrix, we can remove all input and output

nodes that are not in the submatrix.

For counting reasons, it is sometimes convenient to transform the

circuit so that every inner node (non-input node) has fanin at most 2,
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and then count the nodes in a new circuit rather than the edges in the

original one.

Observation 1.3. An unbounded fanin circuit with e edges and v non-

input nodes can be turned into an equivalent fanin-2 circuit with e − v

nodes.

Proof. Just replace every node of fanin d > 2 by a binary tree with

d − 1 inner nodes. The difference e′ − v′ in the new circuit equals e − v

in the original circuit. See [50, Section 1.8] for more details.

Depth-1 complexity is a trivial measure: we have SUM(A) 6

SUM1(A) = |A| 6 n2 for every n × n matrix A. Depth-2 circuits

constitute the first non-trivial model. We already know that L2(A) =

min{|B| + |C| : A = B · C}. Here and in what follows, L(A) stands for

the SUM, OR or XOR complexity, and the matrix product is over the

corresponding semiring. On the other hand, depth-2 circuits have also

a combinatorial description in terms of coverings.

Observation 1.4. For every matrix A, L2(A) is the minimum weight of

an L-covering of A.

Proof. The paths going through one node on the middle level of a

circuit for A define a rectangle in A.

Let again L(A) stand for the SUM, OR or XOR complexity, and let

A + B and A · B denote the matrix sum and the matrix product over

the corresponding semiring. Then we have:

1. L(A + B) 6 L(A) + L(B), if the matrices can be added;

2. L(A · B) 6 L(A) + L(B), if the matrices can be multiplied;

3. L(A ⊞ B) 6 L(A) + L(B);

4. L(A ⊗ B) 6 a · L(B) + b · L(A), if A has a rows, and B has b

columns.

Only (4) needs a proof. First, we rewrite the Kronecker product as

A ⊗ B = (Ia ⊗ B)(A ⊗ Ib), and observe that A ⊗ Ib = P (Ib ⊗ A)Q for

particular permutation matrices P and Q. Since, Ia ⊗ B = B ⊞ B ⊞

· · ·⊞B is a direct sum (a times), the desired inequality (4) follows from

(2) and (3).
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1.3 Some basic matrices

Let us recall the definitions of some basic matrices whose complexities

we will investigate later. These matrices are well-suited to demonstrate

known lower bound techniques. This section is just for later reference,

so that the reader can safely skip it, and proceed with the next section.

Full triangular matrix The full triangular matrix Tn, known also as

the prefix matrix, is an n × n matrix with 1s on the main diagonal

and below it, and zeroes elsewhere. For n = 2r, these matrices can be

defined recursively as follows:

T2 =

[
1 0

1 1

]
, T4 =




1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1


 , T2n =

[
Tn 0

1 Tn

]
.

This gives the recursion SUM2(Tn) 6 2 · SUM2(Tn/2) + n, which

results to

SUM2(Tn) 6 n log n + n . (1.6)

Complement of identity matrix To demonstrate some bounds, we

will also use the complement In = Tn ⊕ T ⊤
n of the identity matrix In

for n = 2r. For this matrix, we have that

rk∨(In) 6 2r = 2 log n and OR2(In) 6 2r2r = 2n log n . (1.7)

To see this, label the rows and columns of In by vectors u ∈ {0, 1}r .

For each position i ∈ {1, . . . , r}, we have two rectangles: one consists

of all pairs (u, v) such that ui = 0 and vi = 1, and the other consists

of all pairs (u, v) such that ui = 1 and vi = 0. This way, we obtain a

covering of In by 2r rectangles of total weight 4r2r−1 = 2n log n.

A general construction of some important n×n matrices, for n = 2r

being a power of two, is the following. Label the rows and columns by

distinct subsets u of [r]. The n × n matrix Mf induced by a function

f : {0, 1, . . . , r} → {0, 1} is then defined by: Mf [u, v] := f(|u ∩ v|).
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Kneser–Sierpinski (disjointness) matrix In graph theory, the Kneser

graph is the graph whose nodes correspond to the k-element subsets

of a set of r elements, and where two nodes are adjacent if and only if

the two corresponding sets are disjoint. Kneser graphs are named after

Martin Kneser, who first investigated them in 1955.

By analogy, the Kneser-Sierpinski n × n matrix (known also as the

disjointness matrix) D = Dn is the f -intersection matrix induced by

the function f(x) = 1 if and only if x = 0. That is, the rows and

columns of D = Dn with n = 2r are labeled by distinct subsets u of [r],

and D[u, v] = 1 if and only if u ∩ v = ∅. These matrices can be defined

inductively as follows:

D2 =

[
1 0

1 1

]
, D4 =




1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1


 , D2n =

[
Dn 0

Dn Dn

]
. (1.8)

The Kneser–Sierpinski matrix D is an important object. This ma-

trix is also sometimes called the Sierpinski matrix, since it resembles

the well-known “Sierpinski gasket”. In particular, it gives a linear trans-

formation between the vector of the values of a boolean function f and

the vector of coefficients of its unique representation as multilinear poly-

nomial over the 2-element field. This polynomial is also known as the

Zhegalkin polynomial for f .

To see this, consider a boolean function f : 2[r] → {0, 1} and its

XOR-polynomial f(X) =
⊕

u⊆[r] g(u)Xu with boolean coefficients g(u),

and Xu =
∏

i∈u xi. Then the 2r ×2r matrix D induces a linear mapping

from the vector (g(u) : u ⊆ [r]) to the vector (f(v) : v ⊆ [r]): just note

that Xu(v) = 1 if and only if u ⊆ v, or, in other words, if and only if

u ∩ v = ∅. Moreover, the inverse map is also given by the matrix D,

since D = D−1 (easy to check).

Intersection matrix The intersection n × n matrix is the f -

intersection matrix induced by the function f(x) = 1 if and only if

x > 0. That is, the intersection matrix is just the complement Ðn = Dn

of the Kneser–Sierpinski matrix with n = 2r. The rows and columns

are labeled by distinct subsets u of [r], and Ð[u, v] = 1 if and only if
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u ∩ v 6= ∅. These matrices also have a recursive definition:

Ð2 =

[
0 1

0 0

]
, Ð4 =




0 1 1 1

0 0 1 1

0 1 0 1

0 0 0 0


 , Ð2n =

[
Ðn 1

Ðn Ðn

]
.

By identifying subsets u with their characteristic vectors, we see that

Ð[u, v] =
∨r

i=1 ui ∧ vi. Thus, over the boolean semiring, we have that

Ð = B ·B⊤ for the n×r matrix B whose rows are all vectors of length r.

This yields

OR2(Ðn) 6 2r2r−1 = n log n . (1.9)

In the unique intersection matrix Ðu we have a stronger condition

for 1s: Ðu[u, v] = 1 if and only if |u ∩ v| = 1.

Sylvester matrices The Sylvester n × n matrix Hn for n = 2r is the

n × n f -intersection matrix induced by the function f(x) = x mod 2.

That is, the rows and columns of H are labeled by distinct subsets u

of [r], and H[u, v] = 1 if and only if |u ∩ v| is odd. Sylvester matrices

can be defined inductively as follows:

H2 =

[
0 0

0 1

]
, H4 =




0 0 0 0

0 1 0 1

0 0 1 1

0 1 1 0


 , H2n =

[
Hn Hn

Hn Hn

]
. (1.10)

By identifying subsets of [r] with their characteristic vectors u ∈ {0, 1}r ,

we see that H[u, v] = 〈u, v〉 = u1v1 ⊕ u2v2 ⊕ · · · ⊕ urvr is the scalar

product of u and v over F2. Thus, H is just a “counting version” of

the intersection matrix, and we have H = B · B⊤ over F2 for the n × r

matrix B whose rows are all n binary vectors of length r. This yields

XOR2(Hn) 6 2r2r−1 = n log n . (1.11)

A basic property of Sylvester matrices is expressed by the following

lemma, whose simple proof can be found, say, in [28, p. 88].

Lindsey’s Lemma. The Sylvester n × n matrix contains no monochro-

matic a × b submatrices, unless ab 6
√

n.
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We will show in § 3.3 that OR(A) > |A|/k2 holds for every k-free

matrix A. Here we give some examples of such matrices.

Random matrices A random n × n matrix A, where each entry is

drawn uniformly and independently from {0, 1}, has Ω(n2) ones, and

is k-free for relatively small k. This holds because A fails to be k-free

with probability at most
(n

k

)2
2−k2 ≪ e2k ln n−k2

: there are
(n

k

)2
k × k

submatrices, and the probability that all k2 entries of a given k × k

submatrix are 0s is 2−k2
. For k > 2 ln n, this probability tends to 0

as n → ∞. Thus, k-free n × n matrices A with k = O(log n) and

|A| = Ω(n2) exist.

Singer matrix [100] The upper bound (1.2) for the Zarankiewicz

problem implies that no 2-free n×n matrix can have more than n3/2+n

ones. On the other hand, there are several explicit constructions of 2-

matrices with almost this number of 1s. One of the oldest construction

is due to Singer [100].

For a prime power q, a projective plane PG(2, q) has n = q2 + q + 1

points and n subsets of points (called lines). Every point lies in q + 1

lines, every line has q + 1 points, any two points lie on a unique line,

and any two lines meet in the unique point.

The point-line incidence matrix of a finite projective plane P was

introduced by Singer [100]. Label rows by points x, columns by lines

L, and let P [x, L] = 1 if and only if x ∈ L, then the obtained matrix is

2-free. The number of 1s is |P | = (q + 1)n > n3/2.

A 2-free matrix similar in spirit to Singer’s was constructed by

Kövari–Sós—Turán [58] and Nechiporuk [74]. This matrix is related to

the point-line incidences in a finite affine plane. Here rows and columns

correspond to pairs of numbers in Fq, and each row (a, b) has 1s in

positions (x, ax − b) with x ∈ Fq. Thus, |A| = nq = q3 = n3/2. The

matrix is 2-free because every system of two equations ax = b + y and

cx = d + y has at most one solution.

Circulant matrices A matrix is circulant if each its row is a cyclic

shift (by one position to the left) of the previous one. Singer [100]
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proved that his n × n matrices P with n = q2 + q + 1 and q a prime

power are circulant: there exists a subset S ⊆ {0, 1, . . . , n − 1} of size

|S| = q + 1 such that (after permutation of rows and columns) we have

that P [x, y] = 1 if and only if y = x + a mod n for some a ∈ S. The

circulant property is significant for us because such matrices have small

XOR complexity (see § 5.4).

We can define a circulant matrix by giving a subset S = {s1, . . . , sk}
of Zn = {0, 1, . . . , n − 1}: these are the positions of 1s in the first row.

The resulting circulant matrix A has |A| = kn ones. Such a set is called

a Sidon set if all differences modulo n of two its elements are distinct.

It is well known (and not difficult to show) that, if the support S of a

circulant matrix A is a Sidon set, then the matrix A is 2-free: the 1s of

A stay on |S| diagonals determined by position in S. It is known that

no Sidon set can have more than
√

n + 1 elements. Explicit examples

of Sidon sets S with |S| ∼ √
n were given by Alexeev [1], Bose [9],

Ruzsa [94], and other authors; see a survey by O’Bryant [77].

Norm matrices Let q be a prime-power, t > 2 an integer, and consider

the field Fqt with qt elements. The norm of an element a of this field is

defined as the element ‖a‖ := a · aq · · · aqt−1
= a(qt−1)/(q−1) of this field.

Now let n = qt, and construct an n × n matrix N = Nn,t whose rows

and columns are labeled by elements of Fqt . The entries are defined by

letting N [a, b] = 1 if and only if ‖a + b‖ = 1.

It is known that the number of solutions in Fqt of the equation ‖x‖ =

1 is (qt − 1)/(q − 1); see e. g., the book by Lidl and Niederreiter [60].

Hence, each row of N has r = (qt − 1)/(q − 1) ones, implying that the

total number of ones is |N | = rqt > q2t−1 = n2−1/t.

Kollár, Rónyai and Szabó [57] proved that, for every t distinct ele-

ments a1, . . . , at of Fqt, the system of equations ‖a1+x‖ = 1, ‖a2 +x‖ =

1, . . . , ‖at + x‖ = 1 has at most t! solutions x ∈ Fqt . This implies that

the constructed matrix N has no t×(t!+1) all-1 submatrix. Hence, the

constructed matrix A is (t, t! + 1)-free. Explicit matrices with slightly

worse parameters were constructed earlier by Andreev [7].



2

General Upper Bounds

The upper bounds presented in this chapter hold for SUM circuits, and

hence, also for OR and XOR circuits. So, let

L ∈ {SUM, OR, XOR}
stand for any of these measures, and let Ld be the depth-d version of L.

Let also L(n, m) and Ld(n, m) denote the maximum of these measures

over all n × m matrices. These functions are symmetric: by the Trans-

position Principle (Observation 1.1), we have L(m, n) = L(n, m) and

Ld(m, n) = Ld(n, m).

2.1 Lupanov’s decomposition bound

We start with two observations made by Lupanov and Nechiporuk more

than 50 years ago. They are amazingly simple, but turned out to be

very useful later. In particular, they have led to asymptotically tight

bounds on the Shannon function for addition circuits.

If we decompose a given p × q matrix A row-wise or column-wise,

then we get a decomposition of weight |A| + min{p, q}. Observe, how-

ever, that the same row (or column) may appear many times in this

decomposition. In this case, it is better to join them into one rectangle.

16
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Lemma 2.1 (Lupanov [62]). Every boolean p × q matrix has a decom-

position of weight at most p + q2q−1.

Proof. Given a p × q matrix A, split the rows of into groups, where

the rows in one group all have the same values. This gives us a decom-

position of A into t 6 2q rectangles. For the i-th of these submatrices,

let ri be the number of its nonzero rows, and ci the number of its

nonzero columns; hence, the submatrix is an ri × ci rectangle. Since

each nonzero row of A lies in exactly one of the these matrices, the

weight of the decomposition is

t∑

i=1

(ri + ci) 6 p +
q∑

j=0

∑

i:ci=j

j 6 p +
q∑

j=0

(
q

j

)
· j = p + q2q−1 .

This gives us an asymptotically tight upper bound in depth 2.

Theorem 2.2 (Lupanov [62]). If log n ≪ m 6 n then

L2(n, m) ∼ nm

log n
.

Proof. To show the upper bound, let A be an n × m matrix. Take a

positive integer q, and split A column-wise into t 6 m/q submatrices

of dimension n × q; the last submatrix may have fewer than q columns.

By applying Lemma 2.1 to each of them, we obtain a decomposition

of A of weight at most nm/q + m2q−1. It remains to take q about

log n − 2 log log n.

The lower bound follows by counting arguments. Suppose we have

r nodes on the middle level, and L edges in total. The number of ways

to assign degrees to these nodes is then at most the number
(L+r−1

r−1

)
<

2L+r of ways to decompose L into a sum of r non-negative numbers.

After the degrees are fixed, there are at most (m + n)L ways to specify

with what nodes on the input or output level the edges are actually

incident. Thus, the number of depth-2 circuits with n inputs, m outputs,

r middle-level nodes and L edges is at most 2L+r(m + n)L, implying

that the number of minimal circuits with n inputs, m outputs and L

edges is at most
∑

r6L/2

2L+r(m + n)L < 23L/2+1(m + n)L < 2L log n+3L .
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For this to be at least the number 2nm of all n × m matrices, we need

L > (1 − o(1))nm/ log n.

This result was later re-discovered by Tuza [104] and Bublitz [12].

A version of it (decomposition of graphs into bipartite complete sub-

graphs) was proved by Chung, Erdős and Graham [21]. These results

were obtained by repeatedly applying the counting argument to show

the existence of a large complete bipartite graph and removing its edges.

Let us note that, besides being asymptotically tight, Lupanov’s decom-

position is much simpler.

The case when m is only logarithmic in n was considered by

Orlov [78] who proved that, if m = k log n then L2(n, m) ∼ (k + 1)n.

To get asymptotics for depth 3 and for unbounded depth,

Nechiporuk used the following version of Lemma 2.1.

Lemma 2.3 (Nechiporuk [71, 75]). Every boolean p × q matrix A has

a decomposition of weight at most 1
2 |A| + q + p2.

Recall that |A| + p and |A| + q are trivial upper bounds.

Proof. By Observation 1.4, it is enough to construct a SUM circuit of

depth 2 with at most 1
2 |A|+q+p2 edges. In each column of A, group all

its 1s into pairs; at most one 1 remains non-paired. Let P (i, j) be the

sum of all input variables x such that the x-th column has paired 1s in

rows i and j. Let also N(i) be the sum of variables corresponding to

non-paired 1s of the i-th row. Note that, the sum P (i, j) is disjoint from

(shares no variable in common with) N(i) as well as from P (i, j′) for

all j′ 6= j. (We need this disjointness to get a SUM circuit.) Compute

all the sums P (i, j) and N(i) at the first layer. Since the 1s are paired,

and since at most one 1 in each column remains non-paired, the total

number of edges in this layer is at most |A|/2 + q. Then compute the

sum yi corresponding to the i-th row of A as

yi = P (i, 1) + . . . + P (i, i − 1) + P (i, i + 1) + · · · + P (i, p) + N(i) .

This results in at most p2 edges on the second layer.

Using Lemma 2.3 one can prove the asymptotically tight bounds

for square matrices.
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Theorem 2.4 (Nechiporuk [71, 75]).

L(n, n) ∼ L3(n, n) ∼ n2

2 log n
.

Proof. The lower bound follows again by counting arguments. We give

an elegant one due to Pippenger [83]. Let us first count the number of

graphs having r labeled nodes (some of which may be isolated) and ℓ

edges. As in the proof of Theorem 2.2, the number of ways to assign

out-degrees is at most
(ℓ+r−1

r−1

)
6 2ℓ+r−1. After the out-degrees are fixed,

there are at most rℓ = 2ℓ log r ways to specify which nodes the outgoing

edges do actually enter. Since a graph with no isolated nodes and at

most L edges can have at most 2L nodes, the number of such graphs

is therefore at most
L∑

ℓ=0

2L∑

r=1

2ℓ log r+ℓ+r−1 6

L∑

ℓ=0

2ℓ log L+2ℓ+2L 6 2L log L+4L+1 .

In each such graph, there are at most (2L)2n ways to choose n input

and n output nodes. Thus, we have at most 2L log L+O(L+n log L) minimal

circuits with at most L edges. For this to be at least the number 2n2

of all n × n matrices, we need L > (1 − o(1))n2/ log n2.

To show the upper bound, let A be an n × n matrix. We first apply

Lupanov’s decomposition: split the matrix column-wise into groups of

k < log n columns and compute all possible (distinct) sums in each

group in depth 1; for simplicity, we assume that k divides n. Note that

we have at most q := n2k/k such sums, and all they can be computed

by a trivial depth-1 circuit with at most n2k−1 edges. Treat these sums

as new variables.

Consider the n × q matrix M such that M [i, z] = 1 if and only if z

is the (new) variable corresponding to a sum of some of the n/k groups

in the i-th row of A. Hence, the matrix M has |M | 6 n · (n/k) = n2/k

ones, and we have that A~x = M~z. Now split the matrix M horizontally

into submatrices of height p (also dividing n), and apply Lemma 2.3 to

each of them. This way we implement M by a depth-2 SUM circuit of

size at most |M |/2 + (n/p)q + (n/p)p2. The size of the entire depth-3

circuit is thus at most

n2k−1 +
|M |

2
+

nq

p
+ np 6 n2k−1 +

n2

2k
+

n22k

pk
+ np .
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The desired upper bound is then obtained by taking p ∼ n/ log2 n and

k about log n − 3 log log n.

In fact, Nechiporuk proved a more general result providing a tight

depth-3 asymptotics for implementation of m×n matrices with various

ratios m/n. Using a relaxation of the bounded-depth condition and a

generalization of Nechiporuk’s method, Pippenger [81, 83] constructed

a SUM circuit of asymptotically optimal size (1+o(1))mn/ log(mn) for

an arbitrary m × n matrix and any log n ≪ m 6 n.

Nechiporuk [72, 75] has also proved the following upper bound for

every n × n matrix A:

L2(A) 4
|A|

log n
log

n2

|A|

This bound was re-discovered by Feder and Motwani [29]. Actually, for

the maximum Ld(n, α) of Ld(A) over all n × n matrices with |A| = αn2

ones, Nechiporuk [72, 73, 75] proved asymptotically tight estimates

L2(n, α) ∼ H(α)
n2

log n
and L(n, α) ∼ L3(n, α) ∼ H(α)

n2

2 log n
,

where H(α) is the binary entropy function; these estimates hold as

long as log n = o(nH(α)) and − log min{α, 1 − α} = o(log n). The

upper bounds here also hold for SUM circuits, and are obtained by

applying a greedy-type algorithm.

An OR circuit may be viewed as an encoding of the adjacency

relation of a given bipartite n×m graph G (represented by its adjacency

matrix) by the connectivity relation in another graph (circuit) H with

more nodes. The circuit H in this case has n+m “poles”, n input poles

and m output poles. The fewer edges H has, the better is the encoding.

Note that L(n, m) is exactly the maximum, over all bipartite n × m

graphs G, of the smallest number of edges in a code H of G.

In the case when G is not bipartite, its circuit H has only n poles

corresponding to the vertices of G. The circuit encodes G if there is

a path from vertex i to vertex j in G precisely when there is a path

from the pole i to the pole j in H. That is, in this case we are trying

to encode the connectivity (not just adjacency) relation in the graph
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G by the connectivity relation in another graph H with more nodes.

For the corresponding Shannon function L(n), Andreev [6] proved the

asymptotic bound

L(n) ∼ n2

8 log n
.

2.2 The low-rank bound

If an n × n matrix A has L-rank r, then L2(A) 6 2rn, just because A

can be written as an L-product A = P · Q⊤ of two n × r matrices. If

r 4 log n, then L2(A) 4 n log n. In depth 3 we can do better.

Lemma 2.5 (Pudlák and Rödl [88]). If a boolean n × n matrix A has

L-rank r, then

L3(A) 4
rn

log n
.

Proof. The lemma was proved in [88, Proposition 10.1] by showing that

A can be written as a product of three matrices, each with O(n) ones.

Here we give a direct construction of the circuit. Let us first do this for

L = XOR.

Since the matrix A has an XOR-rank r, it can be written as a prod-

uct A = B · C over F2 of an n × r matrix B and an r × n matrix C. Set

t = ⌈2r/ log(2n)⌉, and split the matrix B “vertically” into t submatri-

ces Bi with equal number of columns, and split matrix C “horizontally”

into t submatrices Ci with equal number of rows. To implement a prod-

uct Bi · Ci, take the trivial depth-1 circuit F implementing the n × n

Sylvester matrix H = Hn with n = 2r/t. Add new output nodes corre-

sponding to the rows of Bi, and new input nodes corresponding to the

columns of Ci. For each input node x, if the corresponding column of

Ci is u, then connect x with the u-th input node of F . For each output

node y, if the corresponding row of Bi is v, then connect the v-th out-

put of F with y. Clearly, the described circuit implements Bi · Ci and

has at most 2n+22r/t edges. Since A =
∑

i Bi ·Ci, we can get the circuit

for A as a union of t circuits for Bi ·Ci utilizing 2nt+ t22r/t 4 rn/ log n

edges in total.

The same upper bound holds also for OR3(A · B) and SUM3(A · B),

when the product is taken over the corresponding semiring: just use the
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intersection matrix for OR circuits, and the unique intersection matrix

for SUM circuits.

2.3 Recursively defined matrices

Some of the n × n matrices An with n = 2r a power of two, which we

will consider below, can be defined recursively as

A2n =

[
f1(An) f2(An)

f3(An) f4(An)

]

where each fi(An) is either the matrix An, or its complement An, or

the all-0 matrix, or the all-1 matrix. In particular, Kneser-Sierpinski

matrices and Sylvester matrices, as well as their complements, have

this form. For such matrices we have a simple upper bound.

Lemma 2.6. For every recursively defined boolean n × n matrix A, we

have that

L(A) 6 4n log n + 2n .

Proof. We compute recursively triples tn containing matrix An, its com-

plement An and all-1 row bn of length n. To obtain the desired imple-

mentation for t2n we need circuits implementing tn on each half of

inputs and two additional edges to complete each row of A2n, A2n and

b2n (8n+2 additional edges in total). Then, the required bound follows

from the recursion L(t2n) 6 2 · L(tn) + 8n + 2.

Note that the constructed circuit is of depth log n.

2.4 Upper bounds for Kronecker products

We have mentioned in § 1.2 that

L(A ⊗ B) 6 a · L(B) + b · L(A)

holds, where a is the number of rows in A, and b is the number of rows

in B. In depth-2 we have the following.

Lemma 2.7. L2(A ⊗ B) 6 L2(A) · L2(B).
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Proof. Let {Ri} be an optimal L-covering of B by rectangles. Hence,

L2(B) =
∑

i(ai + bi) where ai × bi is the dimension of Ri. One s × t

rectangle in A gives rise to an ais × bit rectangle in A ⊗ Ri. Thus, if we

take an optimal L-covering of A by sj × tj rectangles, then

L2(A ⊗ B) 6
∑

i

∑

j

(aisj + bitj) 6
∑

i

(ai + bi)
∑

j

(sj + tj)

= L2(B)
∑

i

(ai + bi) = L2(B) · L2(A) .

Lemma 2.8. Let A be an m × m matrix, and B a matrix having an

L-covering by s rectangles of total weight W . Then

L(A ⊗ B) 6 s · L(A) + mW .

Moreover, if the circuit for A has depth d, then the resulting circuit for

A ⊗ B has depth d + 2.

Proof. Let R be an a × b rectangle in B. We want first to show that

then

L(A ⊗ R) 6 L(A) + (a + b)m . (2.1)

The input string of variables ~x = (~x1, . . . , ~xm) consists of m consecutive

blocks, each of length k. Fix a nonzero row of R, and take a trivial

depth-1 circuit of size bm computing the scalar products z1, . . . , zm of

this row with all of these m blocks. Now let F be a circuit for the matrix

A of size L(A). Then F (z1, . . . , zm) computes all possible distinct sums

of (A ⊗ R)~x. It remains to add an additional depth-1 circuit with at

most am edges to make copies of equal nonzero sums. This completes

the proof of (2.1).

Now suppose we have a covering {Ri} of B by s rectangles of di-

mensions ai × bi; hence, W =
∑s

i=1(ai + bi) is the total weight of the

covering. By (2.1),

L(A⊗B) 6
s∑

i=1

L(A⊗Ri) 6 s·L(A)+m
s∑

i=1

(ai+bi) = s·L(A)+mW .

For example, the m × m all-1 matrix Jm has a trivial covering with

s = 1 rectangle of weight W = 2m. Hence, for any matrix A, we have
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that L3(A⊗Jm) 6 |A|+2m2. We will use this observation later in § 3.3

to show the optimality of Nechiporuk’s rectangle bound.

Given a covering of a matrix by ai ×bi rectangles, its smaller weight

is the sum s =
∑

i min{ai, bi} of the lengths of the shorter sides, and

its larger weight is the sum ℓ =
∑

i max{ai, bi} of the lengths of the

longer sides. Hence, s + ℓ is the (total) weight of the covering. Note

that every m × m matrix A has a covering with parameters s 6 m and

ℓ 6 |A| 6 m2: just take rows as rectangles.

The following lemma extends Lupanov’s upper bound, given in The-

orem 2.2, to Kronecker products.

Lemma 2.9. Let B be an m × m matrix, and A an arbitrary matrix

admitting an L-covering of smaller weight s and larger weight ℓ 6

m2/2 log m. Then

L2(A ⊗ B) 4
m3

log m
+

sm2

log(m2/ℓ)
.

Note that, if A is also an m × m matrix, then a direct application

of Theorem 2.2 would only give an upper bound of about m4/ log m.

Proof. Take an L-covering of A of smaller weight s and larger weight ℓ.

By Lemma 2.1, for every integer t > 1, both B and B⊤ have coverings

with lengths of their first sides summing to m2/t, and lengths of their

first sides summing to m2t. If R is an a × b rectangle in our covering,

then R ⊗ B has a covering of weight

min{a, b}m2/t + max{a, b}m2t .

By taking the union of these coverings over all rectangles R in the

covering of A, we obtain a covering of A ⊗ B of weight at most sm2/t +

ℓm2t. It remains to take t about log(m2/ℓ) − log log m.

Lemma 2.10 (Find et al. [30]). Let A and B be m × m matrices. If r

is the L-rank of A, then

L3(A ⊗ B) 6 3rm2 and L6(A ⊗ B) 6 6rm2/ log m .

Proof. The matrix A can be written as a product A = PQ⊤ where P

and Q are m × r matrices. Using the mixed-product property

A · B ⊗ C · D = (A ⊗ C) · (B ⊗ D)
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of the Kronecker product, we can represent A ⊗ B as

A ⊗ B = P · Q⊤ ⊗ B

= P · Ir · Q⊤ ⊗ Im · B · Im

= (P ⊗ Im)(Ir ⊗ B)(Q⊤ ⊗ Im) .

As each of the three matrices has at most rm2 ones, we immediately

derive the first bound L3(A ⊗ B) 6 3rm2.

To prove the second bound, observe that Theorem 2.2 gives

L2(P ⊗ Im) = m · L2(P ) 6 2rm2/ log m

and similarly

L2(Ir ⊗ B) 6 2rm2/ log m, L2(Q⊤ ⊗ Im) 6 2rm2/ log m

leading to the second claim of the lemma.

The proof actually shows that, if A is an m × m matrix which can

be represented as an L-product A = P · Q⊤, where P and Q are m × r

matrices, then for every matrix B,

L(A ⊗ B) 6 r · L(B) + m · L(P ) + m · L(Q) .



3

General Lower Bounds

Here we collect some basic lower-bound arguments, in increasing order

of technical difficulty: bounds for SUM circuits, then bounds for OR

circuits, and finally, those for XOR circuits.

3.1 Determinant lower bounds

When restricted to SUM circuits, one of the first general lower bounds

on the size of linear circuits over the field of real numbers is the following

one.

Theorem 3.1 (Morgenstern [67]). For every square matrix A,

SUM(A) > log | det(A)| .

Although Morgenstern counts the number of nodes in fanin-2 cir-

cuit, the bound is also applicable to the number of edges (see Observa-

tion 1.3). But if we count edges directly, then the same proof technique

leads to a sharper bound.

Theorem 3.2 (Kochergin [56]). For every square matrix A,

SUM(A) > 3 log3 | det(A)| .

26
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Proof. We prove the desired inequality

3SUM(A) > | det(A)|3

by induction on SUM(A). The base case SUM(A) = 0 (that is, A = In)

is straightforward. Next we prove the induction step.

In the minimal circuit computing A, consider an output node v

with no outgoing edges. Suppose this node implements the i-th row of

the matrix A. Let r be the number of edges entering v, and Aj be the

matrix obtained from A by replacing its i-th row by the row computed1

at the j-th node (1 6 j 6 r) incident to v; the i-th row is the sum of

these r rows.

Clearly, SUM(Aj) 6 SUM(A) − r holds for every j: we can remove

all r edges incident to v, and the resulting circuit will still compute Aj .

By induction hypothesis, we also have | det(Aj)| 6 3SUM(Aj)/3. Using

well-known properties of the determinant, we obtain:

| det(A)| =
∣∣∣

r∑

j=1

det(Aj)
∣∣∣ 6

r∑

j=1

| det(Aj)| 6
r∑

j=1

3SUM(Aj)/3

6 r3(SUM(A)−r)/3 = r3−r/33SUM(A)/3 6 3SUM(A)/3,

since the function r3−r/3, for natural numbers r, achieves its maximum

when r = 3.

A classical inequality of Hadamard for complex valued n × n matri-

ces A = (aij) states that

det(A) 6
n∏

j=1

√√√√
n∑

i=1

|aij | .

Using the arithmetic-geometric mean inequality (1.3), this yields the

following inequality for every boolean matrix A:

det(A) 6
( |A|

n

)n/2
. (3.1)

1The row computed at a node is the coefficient vector of the sum computed at
that node.
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Theorem 3.3 (Pudlák [87]). For every boolean n × n matrix A, and

every integer d > 1,

SUMd(A) > dn| det(A)| 2
dn .

Proof. As we mentioned above, the computation of linear forms x 7→
Ax associated to a matrix A by depth-d circuits corresponds to a fac-

torization into the product of d rectangular matrices A1, . . . , Ad (each

Ai being the adjacency matrix of one level in the circuit). The number

of edges in the circuit is S =
∑d

i=1 |Ai|. Using (3.1) and the geometric-

arithmetic mean inequality (1.3), one can derive

| det(A)| 6
(∑d

i=1 |Ai|
dn

) dn
2

=

(
S

dn

) dn
2

,

from which the desired inequality S > dn| det(A)|2/dn follows.

Natural candidates to apply Theorem 3.3 are Sylvester matrices

because they have essentially the largest determinant among all boolean

matrices.

Corollary 3.4. Let H = Hn be the n × n Sylvester matrix. Then for

every d > 1,

SUM(H) < n log n and SUMd(H) > dn
(n

4

)1/d
.

Proof. Let H ′ be the (n−1)×(n−1) matrix obtained from H by remov-

ing its all-0 row and all-0 column. By Theorem 3.1 and Theorem 3.3,

it is enough to show that

| det(H ′)| = 2(n/4)n/2 .

For this, consider the ±1-version M of Hn with each entry a ∈ {0, 1}
replaced by 2a − 1 (that is, 0 7→ −1 and 1 7→ +1). The resulting

±1 matrix M satisfies MM⊤ = nIn over the reals (is a Hadamard

matrix), implying that | det(M)| = nn/2. The first row of M contains

only −1s. Divide by 2 all rows, except the first one. (This multiplies the

determinant by 21−n.) Then subtract the first row divided by 2 from
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each other row. This way we obtain a matrix



−1 −1 . . . −1

0
... H ′

0




.

The absolute value of its determinant is

| det(H ′)| = 21−n · | det(M)| = 2(n/4)n/2 .

3.2 Hansel–Krichevski type bounds

For a square matrix A, let α(A) denote the largest number d such that

A has a d × d all-0 submatrix on the diagonal, that is, a principal d × d

minor consisting of 0s. Note that if A is the adjacency matrix of a graph,

then α(A) is the largest size of an independent set in this graph.

Theorem 3.5. If A is an n × n matrix with zero main diagonal, then

OR2(A) > n log
n

α(A)
.

Theorem 3.5 is a direct consequence of the following two lemmas.

A bipartite covering of an undirected graph G = (V, E) is a set

of pairs (Si, Ti), i = 1, . . . , m of disjoint subsets of V such that E ⊆
∪m

i=1Si × Ti. The weight of pairs (Si, Ti) is |Si| + |Ti|. The weight of a

covering is the sum of the weights of all pairs in the covering. In the

biclique covering we have an additional restriction that Si × Ti ⊆ E

must hold for all i. The biclique covering number, bc(G), of a graph G

is the minimum weight of any biclique covering of G.

The relation with OR circuits is given in the following lemma. If A

is a square 0/1 matrix with zero diagonal, then its graph is the graph

GA whose adjacency matrix is A ∨ A⊤.

Lemma 3.6. For every square matrix A with zeroes on the main diag-

onal, OR2(A) > bc(GA).

Proof. Let A be an n×n matrix with zero main diagonal. Take a depth-

2 OR circuit implementing A, and consider the graph G = ([n], E)
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where two nodes i and j are adjacent if and only if either there is a

path from the i-th input to the j-th output, or from the j-th input to

the i-th output in the circuit. Note that the adjacency matrix of the

resulting graph is A ∨ A⊤; hence, G = GA.

Let V be the set of nodes on the middle level of our circuit for A.

For v ∈ V , let Sv ⊆ [n] be the set of (indices of) inputs having edges to

v, and Tv ⊆ [n] the set of (indices of) outputs having edges from v in

the circuit. Since A has only zeroes on the main diagonal, we have that

Sv ∩ Tv = ∅ for each v ∈ V . Thus, we obtain a covering of the graph G

by the bicliques Sv × Tv, v ∈ V , and the weight
∑

v∈V (|Sv | + |Tv|) of

this covering is the total number of edges in our circuit.

The following classical result of Hansel [44] and Krichevski [59] gives

a general lower bound on the weight of bipartite coverings of graphs.

Independently, a similar result was also proved by Katona and Sze-

merédi [52]. For an undirected graph G, let α(G) denote the maximum

number of nodes in its independent set.

Lemma 3.7 (Hansel–Krichevski). Every bipartite covering of an n-node

graph G must have weight at least n log n
α(G) . In particular,

bc(G) > n log
n

α(G)
.

Proof. We give an elegant probabilistic proof due to Radhakrish-

nan [91]. Fix a graph G on n nodes, and take an arbitrary bipartite

covering (Si, Ti), i = 1, . . . , m. For a node v, let mv = |{i : v ∈ Si ∪ Ti}|
be the number of pairs in our covering containing v. By double-counting,

the sum
∑

v mv is exactly the weight
∑

i(|Si| + |Ti|) of the covering.

Now, for each i, randomly choose one of Si and Ti, and delete all its

nodes from the graph. Since every edge of G must belong to at least one

Si × Ti, at most α(G) nodes can survive at the end. On the other hand,

Pr[v survives] = 2−mv . By the linearity of expectation,
∑

v 2−mv 6

α(G). When applied with xi = 2−mi , the arithmetic-geometric mean

inequality (1.3) yields

α(G)

n
>

1

n

∑

v

2−mv >
(∏

v

2−mv

)1/n
= 2− 1

n

∑
v

mv ,
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from which 2
1
n

∑
v

mv > n/α(G), and hence, also
∑

v mv > n log n
α(G)

follows.

In fact, as shown by Newman and Wigderson [76], the extra factor

can be improved to log H(G), where H(G) is the entropy of G; see also

[50, Section 6.13].

To illustrate Theorem 3.5 “at work”, consider the n×n intersection

matrix Ðn, the full triangular matrix Tn, and the complement In of the

identity matrix In. By (1.9), (1.7) and (1.6), we know that OR2(Ðn),

OR2(In) 6 n log n and OR(Tn) 6 n log n + n. Theorem 3.5 implies that

these trivial upper bounds are also optimal.

Corollary 3.8.

OR2(In), OR2(Ðn), OR2(Tn) > n log n .

The lower bounds for Tn and In were proved by Tarjan [103].

Proof. The first two lower bounds follow directly from Theorem 3.5,

because the matrices In and Ðn have zero main diagonals, and α(In) =

α(Ðn) = 1. To show the last lower bound, extend Tn to an (n + 1) ×
(n + 1) matrix T ′

n by adding the all-0 row on the top, and the all-0

column on the right. Since α(T ′
n) = 1 and OR2(Tn) = OR2(T ′

n), the

desired lower bound follows.

Note that XOR2(In) 6 4n. Just take one node on the middle level

connected to all n inputs and outputs and add, for each 1 6 i 6 n, a

new length-2 path from the i-th input to the i-th output. Thus, the

Hansel–Krichevski approach does not yield a superlinear lower bound

for XOR circuits.

3.3 Nechiporuk’s bounds

To make our arguments in what follows more intuitive, let us say that

a node v is seen by node w (and that w can see v) if there is a path

from v to w. Our convention is that a node can see itself and is seen

by itself. We also say that an edge e = (u, v) is seen by a node w if its
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second endpoint v is seen by w, and that the edge can see w if its first

endpoint u can see w.

Most of the lower bounds for SUM and OR circuits are based on

their “rectangle property” (not shared by XOR circuits):

every edge in a SUM or OR circuit for a matrix A defines a

rectangle in A.

This rectangle consists of all entries (i, j) such that the j-th input node

is seen by the edge, and the edge is seen by the i-th output.

A cut in a circuit is a set of its edges such that every input-output

path contains at least one edge in this set. A cut is minimal if no two

of its edges lie on the same path. Thus, every minimal cut gives us a

covering of A by rectangles; in the case of SUM circuits, we have a

decomposition. Note also that the rectangle property alone can only

give a lower bound OR(A) > |A|/r(A), where r(A) is the maximal area

of (number of 1-entries in) a rectangle of A. This holds because every

cut in a circuit for A must have at least |A|/r(A) edges.

To obtain stronger lower bounds on the number of edges, one tries

to find a large minimal cut in a circuit for A, whose induced covering

of A is “legal” in some sense, say, either the dimensions or the areas

of its rectangles do not exceed some given threshold. In order to show

that OR(A) must be large, one then argues in two steps:

1. Find a minimal cut inducing a “legal” covering of A.

2. Show that every “legal” covering must have a large number of

rectangles.

Note that in (2) we are dealing with the number of rectangles in

coverings, not with their weights.

The following lower bound was proved by Nechiporuk [75, Theo-

rems 1.2 and 1.3]. This result remained unknown, and was later inde-

pendently (and almost simultaneously) re-discovered by Mehlhorn [64],

Pippenger [84] and Wegener [107].

Theorem 3.9 (Nechiporuk [75, 73]). If A is (k + 1, l + 1)-free, then

OR(A) >
|A|
k · l

and OR2(A) >
|A|

max{k, l} .
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In particular, the theorem implies that 2-free matrices A have no

better OR circuits than the trivial one: OR(A) = |A| = OR1(A).

Proof. We use an elegant argument due to Pippenger [84]. Take a min-

imal OR circuit implementing A. Say that an edge e is legal if the

dimension a × b of the rectangle induced by e satisfies a 6 k and b 6 l.

Since each such rectangle can cover at most k · l 1-entries of A, it is

enough to show that a cut consisting of only legal edges exists. To show

this, let lu be the number of input nodes seen by u, and ku the number

of output nodes seeing the node u.

Take an arbitrary input-output path P . Let P1 be the initial part

of P consisting of edges (u, v) with lu 6 l, and P2 the final part of P

consisting of edges (u, v) with kv 6 k. Let e = (u, v) be the last edge

of P1. If e is the last edge of the entire path P , then lv 6 l, implying

that e is a legal edge (because kv = 1). Otherwise, we have that lu 6 l

but lv > l. Suppose that e 6∈ P2. Then kv > k. This means that the

node v can see > l inputs and is seen by > k outputs, contradicting

the (k + 1, l + 1)-freeness of A. Thus, P1 and P2 must have some edge

e = (u, v) in common, meaning that lu 6 l and kv 6 k, that is, the

edge e is legal, as desired.

In the depth-2 case, every edge e = (u, v) (be it legal or not) has

either ku = 1 or lv = 1. Thus, if e is legal, then the induced a × b

rectangle must satisfy ab 6 max{k, l}.

Observation 3.10 (Optimality of Theorem 3.9). For every k > 2, there

is a (k + 1)-free n × n matrix A such that

|A|/k2 6 OR(A) 6 |A|/k2 + 2n .

Thus, for all k = o(n1/3), the lower bound given by Theorem 3.9 is

slack by only a lower-order additive term.

Proof. Take a 2-free m × m matrix M with |M | = m3/2 ones. Such

matrices can be easily constructed (see § 1.3). Take also a k × k all-1

matrix J , and consider the Kronecker product A = M ⊗ J . That is, A

is an n×n block-matrix with n = km obtained from M by replacing its

1s by copies of J ; hence, A has |A| = k2m3/2 ones. Since the matrix A
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is (k + 1)-free, Theorem 3.9 gives OR(A) > |A|/k2. On the other hand,

Lemma 2.8 yields OR3(A) 6 m3/2 + 2km = |A|/k2 + 2n.

3.4 Rectangle-area based bounds

Theorem 3.9 gives strong lower bounds on the OR- complexity for ma-

trices that are dense (have may 1s) and are k-free for a small k. In

particular, it yields an almost maximal lower bound OR(Nn,t) < n2−1/t

for the norm n × n matrix with n = qt for a prime power q and any

integer constant t > 1. But this theorem fails on the matrices that have

at least one
√

n×√
n all-1 submatrix: the resulting lower bound is then

at most n. In such cases, the following rectangle-area based bound can

still yield superlinear lower bounds.

Recall that the area of an a × b rectangle is the number ab of its

1-entries, and its density is the fraction ab/(a + b). Let r(A) be the

maximal area, and δ(A) the maximal density of a rectangle in A. From

the arithmetic-geometric mean inequality (a + b)/2 >
√

ab, we obtain

that

δ(A) 6
1

2

√
r(A) .

Lemma 3.11 (Nechiporuk [75]). Every covering of a matrix A by rect-

angles of density 6 δ has weight > |A|/δ.

Proof. Take a covering of A by ai ×bi rectangles Ri, i = 1, . . . , t. Define

the weight w(e) of a 1-entry e of A by

w(e) =
∑

i : e∈Ri

ai + bi

aibi
.

Then the total weight of the covering is2

t∑

i=1

(ai + bi) =
t∑

i=1

∑

e∈Ri

ai + bi

aibi
=
∑

e∈A

∑

i : e∈Ri

ai + bi

aibi
=
∑

e∈A

w(e) .

Since w(e) > 1/δ for every 1-entry e of A, the desired lower bound

|A|/δ on the weight of the covering follows.

2Here e ∈ A means that e is a 1-entry of A.
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Together with Observation 1.4, this gives

OR2(A) >
|A|

δ(A)
>

2|A|√
r(A)

.

For circuits of larger depth, we have the following general area-based

lower bounds. Recall that OR(A) > |A|/r(A) is a trivial lower bound,

and this bound is 6 n for every n × n matrix, because r(A) is at least

the maximum number of 1s in a row.

Theorem 3.12. For every n × m boolean matrix A, and every integer

d > 1, we have

OR(A) >
3|A|
r(A)

log3
|A|
n

and ORd(A) >
d|A|
r(A)

( |A|
n

)1/d

.

A similar lower bound was implicit in Grigoriev’s paper [38], where

he proved that every OR circuit for the Sylvester matrix H = Hn

requires at least 1
2n log n fanin-2 gates.

Theorem 3.12 itself is an easy consequence of the following two

graph-theoretic lemmas, versions of which are well-known and widely

used facts.

Let G = (V, E) be a directed acyclic graph. An r-regular weighting

of G is an assignment of non-negative weights le to the edges e such

that no edge can be seen by more than r/le output nodes. That is, at

most r/le output nodes are reachable from each edge e. The weight lu
of a node u ∈ V is the sum of weights of all edges seen by this node.

Lemma 3.13. Let G = (V, E) be a directed acyclic graph, and Y ⊂ V

be the set of its output nodes. Then for every r-regular weighting l :

E → R+,

|E| > 1

r

∑

u∈Y

lu .

Proof. Let L = {le : e ∈ E} be the set of all distinct weights assigned

to the edges of G. For every node u ∈ V and every weight l ∈ L, let

Eu ⊆ E be the set of all edges seen by the node u, and Wl ⊆ E be

the set of all edges of weight l. Thus,
∑

l∈L |Wl| is the total number of

edges. Our goal is to lower-bound this sum.
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Fix one weight l ∈ L. Since the weighting is r-regular, no edge in

Wl can be seen by more than r/l output nodes u ∈ Y . Thus,3 the sum∑
u∈Y |Eu ∩ Wl| cannot exceed r

l |Wl|. This gives us the lower bound

|Wl| >
l

r

∑

u∈Y

|Eu ∩ Wl| (3.2)

for every l ∈ L. On the other hand, by the definition of the weight of a

node, for every node u, we have that

lu =
∑

l∈L

l · |Eu ∩ Wl| . (3.3)

Thus,

|E| =
∑

l∈L

|Wl| >
∑

l∈L

l

r

∑

u∈Y

|Eu ∩ Wl|

=
1

r

∑

u∈Y

∑

l∈L

l · |Eu ∩ Wl| =
1

r

∑

u∈Y

lu .

Now, if G = (V, E) is an OR circuit implementing a matrix A, the

standard weighting, which assigns to each edge e = (w, v) the number

le of input nodes seen by its terminal endpoint v, is r-regular for every

r > r(A). This holds because at most r(A)/le output nodes can see e.

Thus, by Lemma 3.13, we only need to lower-bound the weights lu of

output nodes under this weighting.

Recall that lu is the sum of weights of all edges seen by u. We can

remove some edges seen by u until we obtain a (directed) tree Tu rooted

at u, whose leaves (fanin-0 nodes) are exactly the input nodes seen by

u in the original graph. Since the weights are non-negative, lu is at least

the weight of the tree Tu, defined as the sum of weights of all its edges.

Lemma 3.14. Under the standard weighting, every tree with m leaves

has weight at least 3m log3 m. If the tree has depth d, then its weight

is at least dm1+1/d.

Proof. Let f(m) denote the minimum weight of a tree with m leaves.

Our goal is to show that f(m) > 3m log3 m. We argue by induction on

3Here we use the trivial fact that, if no element belongs to more than d of the
sets S1, . . . , St, then

∑
i
|Si| 6 d| ∪i Si|.
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m. Take a tree with m leaves and minimal weight. Let k be the number

of edges entering the root, and let mi be the number of leaves in the

subtree of its i-th predecessor; hence,
∑k

i=1 mi = m. Then

f(m) = km +
k∑

i=1

f(mi) > km + 3
k∑

i=1

mi log3 mi

> km + 3
(∑

i

mi

)
log3

∑
i mi

k
= km + 3m log3

m

k

= 3m log3 m + m(k − 3 log3 k) > 3m log3 m .

The first inequality here follows by the induction hypothesis, and the

second from Jensen’s inequality (1.4), since the function x log x is con-

vex.

To prove the second claim, let fd(m) denote the minimum weight

of a tree of depth d with m leaves. We will prove fd(m) > dm1+1/d by

induction on d. The case d = 1 is obvious. For an arbitrary depth, take

a depth-(d + 1) tree with m leaves and minimal weight. Let k be the

number of edges entering the root, and let mi be the number of leaves

in the subtree of its i-th predecessor. Then

fd+1(m) = km +
k∑

i=1

fd(mi) > km + d
k∑

i=1

m
1+1/d
i

> km + kd
(m

k

)1+1/d
= m

[
k + d

(m

k

)1/d]

> m
[
(d + 1)m1/(d+1)

]
.

The first inequality here follows by the induction hypothesis, and the

second follows from Jensen’s inequality (1.4), since the function x1+1/d

is convex. The last inequality follows from the arithmetic–geometric

mean inequality (1.3) applied to the summand k and d summands

(m/k)1/d.

Proof of Theorem 3.12. Take a minimal OR circuit G = (V, E) for A,

and its standard weighting l : E → R+. As we observed above, the

weighting is r-regular for r = r(A), because A cannot have a rectangle
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of area larger than r. By Lemma 3.13, the circuit must have at least

1

r

n∑

i=1

li

edges, where li is the sum of weights of edges seen by the i-th output

node. On the other hand, Lemma 3.14 yields li > 3mi log3 mi, where

mi is the number of 1s in the i-th row of A. Since m1 + · · · + mn = |A|,
Lemma 3.13 and Jensen’s inequality (1.4) yield

OR(A) >
3

r

n∑

i=1

mi log3 mi >
3|A|

r
log3

|A|
n

.

In the case of depth-d circuits, Lemma 3.14 implies that li > dm
1+1/d
i

for all i = 1, . . . , n. Thus, Lemma 3.13 and Jensen’s inequality (1.4)

yield

ORd(A) >
d

r

n∑

i=1

m
1+1/d
i >

d

r
· n

( |A|
n

)1+1/d

.

If a matrix A has one large rectangle, then the fraction |A|/r(A) is

automatically small, even though the remaining 1-entries of A might be

hard to cover. To capture such situations, one can take some set X of

potentially “hard-to-cover” 1-entries of A such that the largest possible

number rA(X) of entries in X lying in a rectangle of A is much smaller

than |X|. Then we have:

OR(A) >
3|X|

rA(X)
log3

|X|
n

and ORd(A) >
d|X|

rA(X)

( |X|
n

)1/d

.

To show this, it is enough in the proof of Theorem 3.12 to let mi be

the number of input nodes corresponding to the 1-entries of X in the

i-th row of A, and to ignore output nodes seeing no entry in X.

In some cases, the bounds resulting from Theorem 3.12 can be

slightly improved by using more subtle definitions of tree-weights. The

resulting improvements are not substantial, but could help when try-

ing to find asymptotically tight bounds. To demonstrate this, let us

consider the n × n Sylvester matrix H.

By Lindsey’s Lemma, H contains no monochromatic a × b subma-

trix with ab > n. In fact, the area of rectangles (1-monochromatic

submatrices) in H is two times smaller.
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Observation 3.15. If Hn contains an s × t or t × s rectangle, then

s 6 n/21+⌈log t⌉.

In particular, r(Hn) = n/2.

Proof. Recall that n = 2r. Let a1, . . . , at ∈ F
r
2 be distinct labels of a set

of rows of H = Hn. All these rows can have a 1 in the x-th column only

if x satisfies the system of t linear equations: 〈a1, x〉 = 1, . . ., 〈at, x〉 = 1.

Let m be the rank of this system. Then, the number of solutions is at

most 2r−m. On the other hand, in a subspace of dimension m we can

choose at most t 6 2m−1 vectors ai such that the system above has

a solution. These are some m linearly independent vectors and sums

of odd numbers of these vectors. Hence, the number of solutions is at

most 2r−1−⌈log t⌉ = n/21+⌈log t⌉, as claimed.

Since H has |H| =
(n

2

)
ones, the area lower bound (Theorem 3.12)

implies that OR(H) > (3− o(1))n log3 n. We now show how to improve

this to OR(H) > (2 − o(1))n log n.

To prove this, we need an analogue of Lemma 3.14 for another

definition of the edge weight. Once again consider a rooted tree. If ℓ is

the number of leaves in the subtree Tv rooted at v, then we define the

rounded weight of an edge (u, v) to be 2q where q is the unique integer

such that 2q−1 < ℓ 6 2q. As before, the rounded weight of the tree is

the sum of rounded weights of all its edges.

Lemma 3.16. The rounded weight of every tree with n leaves is at

least 2n⌈log n⌉.

Proof. Let f(n) denote the minimum rounded weight of a tree with n

leaves. Our goal is to show that f(n) > 2n⌈log n⌉. For this, note first

that for all integers p 6 q the following inequality holds:

2q > 2p+1(q − p) .

Hence, for all m 6 2q:

2q > 2m(q − ⌈log m⌉). (3.4)

Now, we prove the statement of lemma by induction on n. Take a

tree with n leaves and minimal rounded weight. Let k be the number
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of edges entering the root, and let ni be the number of leaves in the

subtree of the i-th child; hence,
∑k

i=1 ni = n. Let q = ⌈log n⌉. Then

f(n) = k2q +
k∑

i=1

f(ni) >
k∑

i=1

(2ni⌈log ni⌉ + 2q) >
k∑

i=1

2niq = 2nq .

The second inequality here follows by the induction hypothesis, and

the third follows from (3.4).

Lemma 3.17. For the Sylvester n × n matrix H, we have

OR(H) > (2 − o(1))n log n .

Proof. We proceed along the lines of the proof of Theorem 3.12. First,

instead of (3.2), Observation 3.15 gives us the inequality

|Wl| >
2⌈log l⌉+1

n

∑

u∈Y

|Eu ∩ Wl| . (3.5)

Further, instead of using (3.3), we now have, by Lemma 3.16,

lu =
∑

l∈L

2⌈log l⌉|Eu ∩ Wl| > 2mu log mu , (3.6)

where lu stands for the rounded weight of the subtree rooted at u, and

mu is the number of 1s in the u-th row of A.

From (3.5) and (3.6) we now obtain:

OR(H) =
∑

l

|Wl| >
∑

l

2⌈log l⌉+1

n

∑

u

|Eu ∩ Wl| =

=
2

n

∑

u

∑

l

2⌈log l⌉|Eu ∩ Wl| >
4

n

∑

u

mu log mu

>
4

n
|H| log

|H|
n

= (2 − o(1))n log n .

There is still a gap between the lower bound given by Lemma 3.17

and the upper bound OR(H) 6 (4 + o(1))n log n given by Lemma 2.6.

3.5 Bounds for block-matrices

If a matrix M has the form

M =

[
A 0

B C

]
(3.7)
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then it is clear that L(M) > L(A) + L(C), where L(M) is the SUM or

OR complexity of M . In fact, we have stronger lower bounds in terms

of the corresponding rank of B.

Theorem 3.18. If a matrix M has the form (3.7), then

SUM(M) > SUM(A) + SUM(C) + rk+(B) , (i)

OR(M) > OR(A) + OR(C) + rk∨(B) , (ii)

OR2(M) > OR2(A) + OR2(C) + tr(B) . (iii)

A version of (i) for so-called “triangular” circuits was first proved by

Grigoriev [39]. For Kneser–Sierpinski matrices, the bound (i) was inde-

pendently proved by Boyar and Find [10], and Selezneva, and extended

to (ii) by Boyar and Find in [11].

Proof. We first prove item (ii). For simplicity, we assume that the ma-

trix C contains no zero rows; by an easy modification of the definition

of set of edges E3 below, the proof works also without this requirement.

Take an OR circuit computing M~x. It must compute ~y1 = A~x1 and

~y2 = B~x1 + C~x2 where (~x1, ~x2) = ~x and (~y1, ~y2) = ~y:

[ ~x1 ~x2

~y1 A 0

~y2 B C

]

Since the circuit is optimal, every its edge must see at least one input,

and must be seen by at least one output node. Consider the following

three sets of edges:

E1 = edges seen by some outputs in ~y1; it is clear that |E1| > OR(A).

E2 = edges seeing some inputs in ~x2; it is clear that |E2| > OR(C).

E3 = edges seeing only inputs ~x1 and entering nodes seeing

some inputs in ~x2.

It is not difficult to see, that these sets are disjoint. The sets E2

and E3 are disjoint by their definition. If E1 and E2 ∪ E3 shared an

edge, then we could set ~x1 = ~0, ~x2 6= ~0, and the circuit would wrongly

output ~y1 6= ~0.
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Observe that every path from ~x1 to ~y2 must contain exactly one edge

in E3 (thus, E3 forms a minimal ~x1 → ~y2 cut). This follows because

otherwise, no node along these paths—including the last node—could

see any input from ~x2. Thus, |E3| > rk∨(B). This gives item (ii).

In the case of SUM circuits, the set E3 gives a decomposition of B

into disjoint rectangles, implying that |E3| > rk+(B). Together with

|E1| > SUM(A) and |E2| > SUM(C), this yields item (i).

If the circuit has depth 2, then each rectangle corresponding to an

edge in E3 has either only one nonzero row or only one nonzero column.

Thus, in this case the 1s of B can be covered by at most |E3| lines

(rows and columns). By the König–Egerváry theorem, |E3| > tr(B).

This yields item (iii).

The proof works for every commutative semiring (S, +) with iden-

tity 0, in which x + y = 0 implies x = y = 0. This holds because then

setting to 0 one of the inputs of a gate (in the fanin-2 version of the

circuit) eliminates the need of that gate. This is no longer the case in,

say, the XOR group (S, ⊕), and no analogue of Theorem 3.18 is known

for XOR circuits, even in depth 2.

3.6 Bounds for Kronecker products

Recall that the Kronecker product A ⊗ B of an a × b matrix A and

an n × m matrix B is an an × bm block-matrix obtained by replacing

1-entries of A by copies of B. Let L ∈ {SUM, OR, XOR}.

Theorem 3.19 (Gál [32]). For every boolean matrices A and B,

L2(A ⊗ B) > tr(A) · L2(B) .

Proof. The proof is based on a fact that, in depth 2, we have

L2

[
X C

D Y

]
> L2

[
X 0

0 Y

]
= L2(X) + L2(Y ) . (3.8)

To verify this, just take for each node on the middle level two its copies,

and appropriately split the edges among these copies. Now take r =

tr(A) 1-entries of A, with no two on the same row or column, replace
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the remaining 1s by 0s, and let A′ be the resulting matrix. By (3.8),

L2(A ⊗ B) > L2(A′ ⊗ B) > r · L2(B), as desired.

In depths larger than 2, the fact (3.8) no longer holds. For example,

if A is an n × n matrix, then

OR

[
A A

A A

]
6 OR(A) + 4n but OR

[
A 0

0 A

]
= 2 · OR(A) .

To see the upper bound, take a circuit F for A, draw 2n edges from the

first and the second half of variables to input nodes of F , and draw 2n

edges from the output nodes to the first and the second part of output

variables.

The following lower bounds extend those in Nechiporuk’s Theo-

rem 3.9.

Theorem 3.20. Let A be a square matrix, and B a (k + 1, l + 1)-free

matrix. Then

SUM(A ⊗ B) > rk+(A) · |B|
k · l

, (i)

OR(A ⊗ B) > rk∨(A) · |B|
k · l

. (ii)

The lower bound (i) was recently proved by Find et al. [30] by

using ideas of Mehlhorn’s proof of Theorem 3.9 in [64]. Below we give

a different proof following the ideas of the Nechiporuk–Pippenger type

proof of this theorem given above. This proof is much simpler and,

more importantly, it directly applies to OR circuits as well.

Proof. Take a minimal SUM circuit for A ⊗ B. If A is an n × n matrix,

then by the type of the m-th row (column) of A ⊗ B we will mean the

number m mod n. Note that the rows of type s and columns of type t

correspond to one and the same entry bs,t of B = (bij) (see Figure 3.1).

Let τv denote the number of different types among the input nodes

seen by the node v. Let also E be the set of edges e = (u, v) in our

circuit such that

(a) either v is an output node and τv 6 l,

(b) or τu 6 l and τv > l + 1.
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B =

0 0

0

0

0

0 0

01 1
1 1 1

1 1
1 1

0
0
00

0 0

s
t

s
t

s

t

A Bx = A =

Figure 3.1: The rows of type s and columns of type t in A ⊗ B correspond to one
and the same entry of B.

Let Es,t ⊆ E consist of all edges e ∈ E such that e can see at least one

input of type t, and is seen by at least one output of type s.

Due to the (k + 1, l + 1)-freeness of B, no edge e = (u, v) in E can

be seen by outputs of more than k different types, because τv > l + 1

(or the edge enters an output node). Moreover, no such edge e can see

inputs of more than l different types. Thus, no edge e ∈ E can belong

to more than k · l of the sets Es,t, implying that

|E| > 1

k · l

∑

s,t

|Es,t| =
1

k · l

∑

(s,t) : bs,t=1

|Es,t| .

It remains, therefore, to show that, for every s, t,

|Es,t| > rk+(A) .

This follows by observing that every path P from an input xj of type

t to an output yi of type s must contain an edge in Es,t. If yi is seen

by inputs of fewer than l types (τyi 6 l), then already the last edge of

P entering yi belongs to Es,t by (a). Otherwise, there must be an edge

e = (u, v) in P such that τu 6 l and τv > l + 1. In this case, e is in Es,t

by (b).

So, Es,t forms a cut in a subcircuit connecting inputs of type t with

outputs of type s (and hence implementing matrix A) . In fact, this is

a minimal cut, because no two edges in E can lie on the same path.

Since we have a SUM circuit, the rectangles Re induced by the edges

e ∈ Es,t form a decomposition of A, implying that the number |Es,t| of

rectangles in this decomposition must be at least rk+(A).



3.7. Graph-theoretic bounds 45

The proof in the case of OR circuit is the same with the exception

that now the rectangles Re need not be disjoint.

3.7 Graph-theoretic bounds

SUM and OR circuits are monotone models: the presence of any input-

output path forces the corresponding entry of the matrix to be non-zero.

This is why we can use various rectangle arguments to lower-bound

their size. The model of XOR circuits is non-monotone: an additional

path can switch the entry from 1 to 0. This model is much harder

to deal with, and only few general lower bound arguments are known

for them. Most of them use the following “graph-theoretic” approach

proposed by Valiant [106] and independently by Grigoriev [37].

(i) For some property P of graphs, show that every XOR circuit

computing Ax must have this property.

(ii) Show that every graph with property P must have many edges.

As P one usually takes some connectivity property like “it is not pos-

sible to disconnect all (or almost all) input-output pairs by removing

a small number of nodes”. This has led to notions of a “concentrator”,

“superconcentrator”, “grate”, “meander”, etc. The basic observation

here is that already the rank of A determines the size of node-cuts in

any XOR circuit computing Ax.

A node-cut in a circuit is a set of nodes, whose removal destroys all

input-output paths. By Menger’s theorem, the minimal size of such a

cut is equal to the largest number of node-disjoint input-output paths.

Observation 3.21. If a circuit F computes Ax over F2, then every

node-cut of F must have at least rk(A) nodes.

Proof. If the circuit F has a node-cut of size t, then the operator x 7→
Ax can take at most 2t distinct values, since the output is determined

by the values of nodes in the cut. On the other hand, if A has rank

r, then the operator takes at least 2r distinct values, implying that

t > r.

The same also holds for the submatrices of A: if a submatrix has

rank r, then there must be at least r node-disjoint paths between the
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corresponding subsets of input and output nodes. Note that the obser-

vation holds for general circuits where arbitrary boolean functions, not

just XORs, are allowed as gates.

Suppose now that every m × m submatrix of A has rank at least r.

Then the Observation 3.21 implies that for every circuit F comput-

ing Ax over F2, the associated digraph of F must have the following

property:

for every subset S of input nodes, and for every subset T of

output nodes such that |S|, |T | > m, there must be at least r

node-disjoint paths from S to T .

Such a digraph is called an (m, r)-superconcentrator.

In light of this relation between the rank of submatrices of A and the

purely graph-theoretic property of circuits computing Ax, several vari-

ants of the superconcentrator property were investigated. The strongest

version, called the superconcentrator property, requires the digraph to

be an (m, m)-superconcentrator for all m. Unfortunately, in the boolean

case, we do not know of any matrix all of whose large enough square sub-

matrices have full rank over F2. Moreover, Valiant [105] has shown that

superconcentrators of size O(n) exist. Pippenger [82] has then shown

that such small superconcentrators exist already in depth O(log n).

Dolev et al. [22] substantially decreased the depth to the inverse of

any primitive-recursive function. Still one can use superconcentrators

to prove superlinear lower bounds for constant-depth circuits.4

Let f : N → R
+ be a function, f(n) 6 log n. An f -superconcentrator

is an (m, r)-superconcentrator for m = n/2f(n) and r = f(n). It is clear

that depth-2 f -superconcentrators with O(n·f(n)) edges exist: just take

⌈f(n)⌉ nodes on the middle level, and join them with all input and all

output nodes. Using a Ramsey-type reasoning, Alon and Maass have

shown that this trivial upper bound is almost optimal.

Theorem 3.22 (Alon and Maass [4]). Every f -superconcentrator of

depth 2 has Ω(n · f(n)) edges.

We postpone the proof of this theorem to the end of this section,

and turn to its applications.

4We will give yet another application of superconcentrators in § 6.2.



3.7. Graph-theoretic bounds 47

Take an XOR circuit of depth 2 computing some linear form y = Ax

over F2. Suppose that every m×m submatrix of A with m = ⌈n/2f(n)⌉
has rank at least f(n). By Observation 3.21, the circuit must be an

f -superconcentrator, and hence, must have Ω(n · f(n)) edges.

Alon, Karchmer and Wigderson [3] combined this observation with

Theorem 3.22 to prove the first superlinear lower bound on the XOR

complexity (in depth 2). They have proved this bound for the Sylvester

matrix, but a closer look at their argument shows that it works for many

other matrices, as well.

Recall that a matrix A is (k, l)-Ramsey matrix if both the matrix

and its complement are (k, l)-free. Say that A is weakly Ramsey if it is

(n1−2c, n1−c)-Ramsey for some constant c > 0. Note that only relatively

large monochromatic submatrices are forbidden.

Theorem 3.23 (Alon, Karchmer and Wigderson [3]). For every weakly

Ramsey n × n matrix A, we have XOR2(A) = Ω(n log n).

Proof. We are going to apply Theorem 3.22 with f(n) = c log n − 1,

where the constant c > 0 comes from the definition of A being weakly

Ramsey. Set m = n/2f(n) = 2n1−c. It is enough to verify that every

m × m submatrix M of A has rank r > f(n).

Since the span of any r rows of M can have at most 2r distinct

vectors, some row must appear in M at least m/2r times, implying

that M must have a monochromatic (m/2r) × (m/2) submatrix. Since

A is weakly Ramsey and m/2 = n1−c, we have that m/2r < n1−2c must

hold, from which 2r > m/n1−2c = 2nc, and hence, r > f(n) follows.

By Lindsey’s Lemma, the n × n Sylvester matrix H = Hn has no

monochromatic a×b rectangle with ab > n. Thus, this matrix is weakly

Ramsey (where we may take any c < 1/3 in the definition). So, we have

that

XOR2(H) = Ω(n log n) . (3.9)

In § 6.1 we will give a simpler and direct proof of a weaker lower bound

XOR2(H) < n ln n/ ln ln n, also due to [3]. This latter bound holds for

any matrix whose every two columns differ in Ω(n) positions.

We already mentioned explicit constructions of maximal 2-free ma-

trices, that is, n × n matrices A that are 2-free and still have at least
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√
n ones in each row (see § 1.3).

Corollary 3.24. For every maximal 2-free n × n matrix A, we have

XOR2(A) = Ω(n log n) .

Proof. By Theorem 3.23, it is enough to show that every such matrix

A is weakly Ramsey.5 To see this, suppose that A has an a × b all-0

submatrix. Then A must have an a× (n−b) submatrix M with at least√
n ones in each row. By the upper bound (1.2) for the Zarankiewicz

problem, we have that

a · √
n 6 |M | 6 a(n − b)1/2 + n − b < a(n − b)1/2 + n

from which b 6 2n3/2/a follows. Now, if a = n1−2c, then b cannot

exceed 2n1/2+2c, which is smaller than n1−c, when c < 1/6.

Proof of Theorem 3.22 The theorem is an easy consequence of a

more general result about so-called “meanders”.

Let X be some alphabet, and A, B ⊆ X be two disjoint subsets

of size |A|, |B| > n. Given a string x over X, and subsets S ⊆ A and

T ⊆ B, a link between S and T in x is a substring of x whose first and

last symbols belong to different sets S and T , and such that none of

the remaining symbols lying in-between belongs to S ∪ T . Let x(S, T )

denote the number of links between S and T in x.

Note that x(S, T ) is just the number of alternations between 0 and

1 in the string obtained from x as follows: replace by 0 each occurrence

of a symbol from S, replace by 1 each occurrence of a symbol from

T , and remove all remaining symbols. Consider, for example, the case

when X = [6], S = {1, 3} and T = {2, 4}. Then the string

x = 1 6 2 3 2 6 4 1 5 3 1 2 4 6 5 1 3 2

0 1 0 1 1 0 0 0 1 1 0 0 1

has length 18, and the derived string has x(S, T ) = 7 alternations

between 0 and 1.

5This observation was inspired by Alon’s result in [2] that the Singer n×n matrix
(see § 1.3 for its definition) does not have all-0 submatrices of area larger than n3/2.
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A string x is an (n, s)-meander if x(S, T ) > s holds for all subsets

S ⊆ A and T ⊆ B of size |S| = |T | > n/2s. The question we are

interested is: how short can an (n, s)-meander be?

Let us first show that every depth-2 superconcentrator gives a me-

ander. Recall that a circuit is an f -superconcentrator if for every subset

S of |S| > n/2f(n) input nodes, and for every subset T of |T | > n/2f(n)

output nodes, there are at least f(n) node-disjoint paths from S to T .

Observation 3.25. Every f -superconcentrator of depth-2 with n input

nodes, n output nodes, and m edges gives an (n, f(n))-meander of

length m.

Proof. As our alphabet we take A ∪ B where A is the set of all input

nodes, and B is the set of all output nodes. Associate with each middle

node a string consisting of all input nodes seen by this node, followed

by all output nodes seeing that node. Let x be the concatenation of

these strings. Clearly, the string x has length m. We claim that x is an

(n, s)-meander with s = f(n).

To show this, take any two subsets S ⊆ A and T ⊆ B of size |S| =

|T | > n/2s. Since we have an s-superconcentrator, there must be s node-

disjoint paths between S and T . The segments of x, corresponding to

the middle nodes of these s paths, give us s distinct links between S

and T in x, implying that x(S, T ) > s, as desired.

By Observation 3.25, Theorem 3.22 is a direct consequence of the

following more general result.

Theorem 3.26 (Alon and Maass [4]). Every (n, s)-meander has length

Ω(n · s).

Proof. Our first goal is to show that every meander must contain many

symbols that appear often enough.

Claim 3.27. Let x be a string over X in which each a ∈ A appears at

most kA times and each b ∈ B appears at most kB times. Let k = kA +

kB . Then there exist subsets S ⊆ A and T ⊆ B of size |S|, |T | > n/2k

such that x(S, T ) < k.
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Proof. We apply induction on k. If k = 1, then either kA or kB is 0,

and we have x(A, B) = 0. For the induction step, assume w.l.o.g. that

each symbol appears in x at least once (otherwise, extend x with the

missing symbols in an arbitrary way).

Now examine the symbols of x one by one until we reach a location

where we already have seen n/2 symbols of one of A and B but fewer

than n/2 of the other; such a location must exist since A∩B = ∅. Denote

the prefix by y and the rest of x by z; hence, x = yz. Assume that n/2

symbols of A appear in y (the other case is handled identically). Let

A′ ⊆ A be the set of symbols of A that appear in y, and B′ ⊆ B the set

of symbols of B that do not appear in y. It follows that |A′|, |B′| > n/2.

Since every symbol of A′ appeared in y, it can appear in z at most

kA−1 times. So, by the induction hypothesis, there exist subsets S ⊆ A′

and T ⊆ B′ of size |S|, |T | > (n/2)/2k−1 = n/2k such that z(S, T ) <

k − 1. Since the prefix y of x can only contain symbols of A′ but none

of B′, the entire string x = yz can have at most one more link between

S and T , implying that x(S, T ) < k, as desired.

Now we can finish the proof of Theorem 3.26 as follows. Let A, B

be disjoint alphabets of size n, and let x be an (n, s)-meander of length

m over A ∪ B. Set p = ⌈m/n⌉. If 4p + 1 > s, then m > n(s − 5)/4, and

we are done. So, assume that 4p + 1 < s.

Let A′ ⊆ A be the set of all symbols a ∈ A that appear at most

2p times in x, and let B′ ⊆ B be the set of all symbols b ∈ B that

appear at most 2p times in x. Clearly, |A′|, |B′| > n/2. Remove from

x all symbols that are not in A′ ∪ B′, and consider the resulting string

x′. When applied with kA′ = kB′ = 2p, Claim 3.27 gives us two subsets

S ⊆ A′ and T ⊆ B′ of size |S|, |T | > (n/2)/24p = n/24p+1 > n/2s

such that the number x′(S, T ) of links between S and T in x′ (and

hence, also in x) is at most 4p < s. But this is impossible since x is an

(n, s)-meander.

3.8 Rigidity lower bounds

Superconcentrator type arguments aim to show that any XOR circuit

for a matrix A must have many edges, if submatrices of A have large
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rank. One can, however, take a different route, and ask: how many edges

must one remove from a circuit implementing A in order to reduce the

rank of the computed transformation down to some given threshold r?

This approach leads to the following notion of “matrix rigidity”.

The rigidity of a matrix A over some field F is defined as the func-

tion RA (r) which, for each r, gives the minimum number of entries of

A that one has to change in order to reduce the rank of A over F to r

or less. We will consider the rigidity of boolean matrices over the field

F = F2; hence,

RA (r) = min{|B| : rk(A ⊕ B) 6 r} .

It is easy to show that RA (r) 6 (n − r)2 holds for every n × n matrix

A. To see this, let B be the bottom-left r × r submatrix of A of full

rank r (up to permutation of rows and columns, there must be one, if

A has rank larger than r); hence, A =
[

B C
D E

]
where rk(B) = r. The

i-th column of C is a linear combination Bx of the columns of B for

some vector x. Replace the i-th column of E by Dx (using the same

vector x). This way, every column of the obtained matrix A′ is a linear

combination of the first r columns. Since we have only changed the

entries of E, the upper bound (n − r)2 on the rigidity follows.

Valiant [106] has shown that boolean n × n matrices with

RA (r) >
(n − r)2 − 2n − log n

log(2n2)

for all r < n − √
2n + log n, exist.

The concept of the rigidity of matrices itself was proposed by

Valiant [106]. A similar notion of “separability” was independently pro-

posed by Grigoriev [37]; as explained in [40, Section 15], the separability

property is similar to being a “grate” in a sense of [106]. A comprehen-

sive survey about the rigidity over large fields, its variants and applica-

tions can be found in the book by Lokam [61]. Here we restrict ourselves

with applications of the rigidity over F2 for XOR circuits.

A directed acyclic graph is an f(r)-grate if no matter which r nodes

are removed, at least f(r) distinct input-output pairs will remain con-

nected by paths. The faster f(r) grows, the better the grate is.
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Lemma 3.28 (Valiant [106]). For every matrix A, every XOR circuit

computing Ax is an RA (r)-grate.

Proof. Assume for the sake of contradiction that for some 1 6 r 6 n

it is possible to remove r nodes so that fewer than RA (r) distinct

input-output pairs remain connected. This means that the matrix B

implemented by the resulting circuit has |B| < RA (r) ones. However,

the rows of B differ from the corresponding rows of A only by linear

combinations of linear forms computed by the original circuit at the

removed nodes. It follows that A = B ⊕ C for some matrix C of rank

6 r. Since C = A ⊕ B, by the definition of rigidity, we have that

RA (r) 6 |B| < RA (r), a contradiction.

The next task is to show that “good” grates (those with f(r) grow-

ing fast enough) must have a superlinear number of edges. That f(r)

must grow indeed fast was shown by Schnitger in [96], where he con-

structed a sequence of f(r)-grates with a linear number of edges such

that f(r) > cn1/3 for all r 6 cn and an absolute constant c > 0.

Klawe [54] showed the existence of graphs with similar properties and

additionally having only logarithmic depth.

On the other hand, Valiant [106] has earlier shown that f(r)-grates

with f(n/2) > n1+c for a constant c > 0 must already have superlin-

ear number of edges. He obtains this as a consequence of the follow-

ing “depth-reduction” lemma, which itself generalizes and simplifies an

analogous result of Erdős, Graham and Szemerédi [26].

A labeling of a directed acyclic graph G is an assignment of a pos-

itive integer to each its non-input node. Such a labeling is legal if, for

each edge, the label of its second node is strictly greater than the label

of the first mode. The canonical labeling is to assign each node the

length of a longest directed path that terminates at that node.

Observation 3.29. The depth of G is the smallest number of distinct

labels used by a legal labeling of G.

Proof. If the graph has depth d then the canonical labeling gives us a

labeling using only d labels 1, . . . , d. On the other hand, since in any

legal labeling, all labels along a directed path must be distinct, we have
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that the depth of a graph does not exceed the number of labels used

by any legal labeling.

Lemma 3.30 (Valiant [106]). Let D = 2p and 1 6 q 6 p be integers. In

any directed graph with M edges and depth D it is possible to remove

at most (q/p)M edges so that the depth of the resulting graph does

not exceed D/2q.

Schnitger in [95] has shown that this lemma cannot be substantially

improved. Namely, he presented a sequence of amazingly simple n-node

graphs with n log n edges such that, for every constant 0 6 c < 1, a

constant fraction of edges must be removed in order to reduce the depth

till nc. In [96] he proved the existence of graphs with a linear number

of edges and with the same property.

Proof of Lemma 3.30. Consider any directed graph with M edges and

depth D, and consider the canonical labeling using labels 1, . . . , D. For

i = 1, . . . , p, let Ei be the set of all edges, the binary representations of

labels of whose endpoints differ in the i-th position (from the left) for

the first time.

If edges in Ei are removed from the graph, then we can relabel the

nodes using integers 1, . . . , D/2 by simply deleting the i-th bit in the

binary representations of labels. It is not difficult to see that this is a

legal labeling (of the new graph): if an edge (u, v) survived, then the first

difference between the binary representations of the old labels of u and

v was not in the i-th position; hence, the new label of u remains strictly

smaller than that of v. Consequently, if any q 6 p of the smallest sets

Ei are removed, then at most qM/p edges are removed, and a graph of

depth at most D/2q remains.

Valiant used his depth-reduction to relate the XOR complexity of

matrices with their rigidity.

Theorem 3.31 (Valiant [106]). Let ǫ, c, k > 0 be constants, and A be a

boolean n × n matrix with RA (n/2) > ǫn1+c. Then every XOR circuit

of fanin two and depth k log n computing Ax has at least np/3 log p

gates, where p = log log n.
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Proof. Assume we have fewer than np/3 log p nodes. By applying

Lemma 3.30 with q about log p, we obtain that some set of n/2 nodes

can be removed so as to leave no paths longer than d = k log n/ log log n.

Hence, each of the n output nodes will be connected to at most

2d = nk/ ln ln n = o(nc) inputs after the deletion, implying that at most

o(n1+c) input-output pairs will remain connected. This implies that the

circuit is not an RA (n/2)-grate, contradicting Lemma 3.28.

For small-depth circuits, we have the following relation with the

rigidity.

Theorem 3.32 (Pudlák [86]). For every n × m matrix A, every integer

d > 1, and every r,

XORd(A) > r ·
(

RA (r)

n

)1/d

.

Proof. Take an XOR circuit of depth d for A, and let S be the number

of edges in it. A node is large if its out-degree is > S/r; otherwise,

the node is small. Note that there cannot be more than r large nodes.

Let L be the n × m matrix where L[i, j] is the parity of the number

of paths from i to j that hit at least one large node. Thus rk(L) 6 r.

The matrix B := A ⊕ L is computed by a subcircuit formed by paths

that go through only small nodes. As there are at most n(S/r)d such

paths, we have |B| 6 n(S/r)d. On the other hand, |B| > RA (r), and

the desired lower bound on S follows.

Unfortunately, the largest known lower bound on the rigidity of

explicit boolean matrices are only of the form RA (r) < n2/r; some

of them have an additional ln(n/r) factor. However, Pudlák [86] has

shown that even already existing lower bounds on the rigidity can yield

superlinear lower bounds for depth-2 circuits.

When dealing with circuits of depth 2, the following particular case

of the Karamata inequality (see e. g., [45, p. 89]) turned out to be very

useful: If p1 > . . . > pm > 0 and q1 > . . . > qm > 0 satisfy

p2
r + · · · + p2

m > q2
r + · · · + q2

m for all r = 1, 2, . . . , m,

then

p1 + · · · + pm > q1 + · · · + qm .
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This, in particular, yields the following

Lemma 3.33. If a sequence of numbers p1 > . . . > pm > 0 satisfies

m∑

i=r+1

p2
i >

1

r
· ∆2

for all s 6 r 6 t < m, then

m∑

i=1

pi > ∆ · ln
t

s
.

Proof. Set qi = ∆/i for i = s, s + 1, . . . , t, and qi = 0 for i > t. For

every r between s and t, we have

m∑

i=r+1

p2
i >

1

r
· ∆2 > ∆2

∞∑

i=r+1

1

i2
>

m∑

i=r+1

q2
i .

The Karamata inequality yields

m∑

i=1

pi >

t∑

i=s

qi = ∆
t∑

i=s

1

i
> ∆ · ln

t

s
.

Theorem 3.34 (Pudlák [86]). Let A be an n × n matrix, f : N → R
+ a

non-decreasing function, 1 6 s 6 t 6 n be integers. If

RA (r) >
1

r
· f(n)2

holds for all for all r between s and t, then

XOR2(A) > 2f(n) ln
t

s
.

Proof. For arbitrary factorization A = BC over F2, we will prove the

desired lower bound on |B| + |C|. Let B be an n × m matrix and C be

an m × n matrix. Notice that m > t, since rk(A) > t by the condition

on rigidity.

Let bi be the number of 1s in the i-th column of B and ci be the

number of 1s in the i-th row of C. Thus, by setting the i-th column

of B (alternatively, the i-th row of C) to zero we affect at most bici

entries of A.
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We may assume that b1 > . . . > bm and c1 > . . . > cm. If not,

consider the corresponding permutation of columns of B and rows of

C, and note that it does not affect rigidity properties of A.

By setting any m − r columns of the matrix B to zero we decrease

its rank, and hence, the rank of the product BC to at most r. With the

choice of the m − r rightmost columns and by the condition on rigidity

we have
m∑

i=r+1

bici > f(n)2/r

for all r 6 t. Together with the arithmetic-geometric mean inequality

(x + y)2/4 > xy, this yields

m∑

i=r+1

(
bi + ci

2f(n)

)2

>

m∑

i=r+1

bici

f(n)2
>

1

r
.

Lemma 3.33 applied with ∆ = f(n) and pi = (bi + ci)/2f(n) yields

|B| + |C| =
m∑

i=1

(bi + ci) > 2f(n) ln
t

s
.

Pudlák and Vavrín [90] have shown that the full triangular ma-

trix Tn satisfies the condition of Theorem 3.34 with both f(n) and

t/s at least cn for a constant c > 0. In fact, they have even found

an exact expression for RTn (r). Actually, when combined with The-

orem 3.34, even non-exact bound yields almost asymptotically tight

bound on XOR2(Tn).

By (1.6), we have that XOR2(Tn) 6 SUM2(Tn) 6 n log n + n.

Lemma 3.35 (Pudlák and Vavrín [90], Pudlák [86]). For every suffi-

ciently large n,

XOR2(Tn) > (1 − o(1))n ln n .

Proof. We first prove a lower bound on the rigidity of Tn, and then

apply Theorem 3.34. Let B be any matrix such that rk(Tn ⊕ B) 6 r.

We will prove that |B| > (1 − o(1))n2/4r holds for all values of r in a

sufficiently large interval. For this, let the rows of Tn be numbered by

the number of 1s in them. Consider some s rows of Tn with numbers li
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satisfying l1 < . . . < ls. It is easy to verify that the sum of these rows

has at least

(ls − ls−1) + (ls−2 − ls−3) + · · · > s

2
min

i
{li+1 − li} (3.10)

ones. (Here and below, under a “sum” we understand a sum modulo 2.)

Our first goal is to show that B must contain a row with at least

⌊n/(2r + 2)⌋ ones. Set k = ⌊n/(r + 1)⌋, and consider rows of matrices

Tn, B and Tn⊕B with numbers k, 2k, . . . , (r+1)k. Since rk(Tn⊕B) 6 r

some s of these rows have zero sum in Tn ⊕ B. By (3.10), the sum of

these rows in Tn as well as in B has weight at least sk/2, so B contains

a row with at least k/2 ones, as desired.

After removing the latter row and a column with the same number

from all three matrices, we still have rk(Tn−1 ⊕ B′) 6 r, where B′ is a

matrix obtained from B. We continue the above procedure of reducing

matrices until possible. At the end, the total number of 1s in removed

rows of B is at least

n∑

i=1

⌊
i

2r + 2

⌋
>

n(n + 1)

4(r + 1)
− n >

1

r
· f(n)2

with f(n)2 = (1 − o(1))n2/4 when ω(1) 6 r 6 o(n), and the desired

lower bound on XOR2(Tn) follows from Theorem 3.34.

Slightly larger than n log n lower bounds were proved for generator

matrices of asymptotically good linear codes. Every m × n matrix A

generates a linear code {Ax : x ∈ F
n
2 } ⊆ F

m
2 . The distance d of the code

is the smallest Hamming distance |y ⊕ z| between any two codewords,

that is,

d = min{|Ax| : x 6= ~0} .

The relative distance is δ = d/m. The smaller the length m of code-

words is, and the larger the relative distance is, the better is the code.

A code is called asymptotically good, if δ > 0 is a constant and m is at

most constant times larger than the message length n. Such linear codes

can be explicitly constructed; for instance, Spielman [101] constructed

explicit good code matrices A with XOR(A) 4 n.
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Theorem 3.36 (Pudlák and Rödl [88]). Let A be an m × n generator

matrix of a code with the relative distance δ > 0. Then for r 6 n/16,

the rigidity of A satisfies

RA (r) >
δ

8
· mn

r + log(n/r)
· log

n

r
.

A similar result was proved earlier by Friedman [31].

Proof. Let r 6 n/16, and fix an even integer k such that

2r

log(n/r)
6 k <

2r

log(n/r)
+ 2 .

With this choice of k, it is enough to show that

RA (r) >
δmn

4k
. (3.11)

Suppose we change fewer than δmn/4k entries in the matrix. Then

there will be at least n/2 columns with t 6 δm/2k entries changed in

each of them. Let M be the corresponding n × (n/2) submatrix of A.

The choice of k implies that

r 6
k

2
log

n

k
< log

(
n/2

k/2

)
.

On the other hand, the condition on A implies that |Mx| > δm−k ·t >
δm/2 6= 0 must hold for every nonzero vector x ∈ {0, 1}n/2 with at

most k/4 ones. This, in particular, means that all
(n/2

k/2

)
sums over all

k/2-tuples of columns of M must be distinct, implying that

rk(M) > log

(
n/2

k/2

)
> r .

Thus, at least δmn/4k entries of the matrix A should have been changed

to reduce its rank until r or fewer. This gives the desired lower bound

(3.11) on the rigidity, proving the theorem.

By adding zero columns to matrices from Theorem 3.36, we obtain

n × n matrices A with rigidity

RA (r) <
n2

r
log

n

r
,
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Table 3.1: Summary of general lower bounds.

Bound Property of A

SUM(A) > 3 log
3

| det(A)|
SUMd(A) > dn| det(A)|2/dn

OR2(A) > n log
n

k − 1
zero diagonal and no k × k

all-0 principal minor

OR(A) >
|A|
k2

k-free

OR2(A) >
|A|
k

k-free

OR(A) >
3|A|

r
log

3

|A|
n

no a × b rectangle with ab > r

ORd(A) >
d|A|

r

( |A|
n

)1/d

no a × b rectangle with ab > r

XOR2(A) > ǫn log n weakly Ramsey

XOR2(A) > 2f(n) ln
t

s
RA (r) >

1

r
f(n)2 for all s 6 r 6 t

XOR2(A) > ǫk · ln n

ln ln n
(2, n − k)-Ramsey (Theorem 6.1)

for all ln n ≪ r 6 n/c and a constant c > 1. By taking f(n) =

Θ(n
√

ln n) in Theorem 3.34, we obtain that

XOR2(A) < n ln3/2 n

holds for every such matrix. This remained the strongest known lower

bound for XOR circuits of depth 2 for many years. Recently, Gál et

al. [33] improved this to Ω(n(ln n/ ln ln n)2), and showed that no larger

lower bound can be obtained by only using the goodness of the code.

We will describe their argument in § 6.2.
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Complexity of Some Basic Matrices

Here we give applications of the general lower bound techniques de-

scribed in the previous chapter to some basic matrices defined in § 1.3.

Besides being important objects, these matrices demonstrate the limi-

tations of these techniques.

4.1 Full triangular matrices

Complexity of full triangular matrices Tn was considered by many au-

thors. In particular, tight (up to constant factors) bounds on the depth-

d OR complexity and XOR complexity of these matrices for all d > 1

are already known. For depth-2 OR circuits, Corollary 3.8 and (1.6)

yield an asymptotically tight estimate

OR2(Tn) ∼ n log n . (4.1)

For depth-2 XOR circuits, Lemma 3.35 and (1.6) also yield an estimate

XOR2(Tn) ≍ n log n .

The bound OR2(Tn) ≍ n log n was proved earlier by Tarjan [103]. To

state known results about the complexity of Tn for larger depths, we

60
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introduce a sequence of nondecreasing functions λd(n) taking natural

values as follows: λ1(n) := n, λ2(n) := ⌊log n⌋, λ3(n) := 1 + ⌊log log n⌋,

and for d > 3, λd(n) is the smallest k such that the k-fold superposition

of λd−2(n) is 6 1.

Theorem 4.1. For every integer d > 1,

ORd(Tn) ≍ n · λd(n) and XORd(Tn) ≍ n · λd(n) .

The multiplicative constants in these estimates depend only on the

depth.In particular, we have that

OR3(Tn), XOR3(Tn) ≍ n ln ln n .

Bounds on the OR complexity of Tn were independently proved by

Chandra, Fortune and Lipton [15, 14], and Grinchuk [41]. Bounds on

the XOR complexity of Tn were proved by Pudlák [86] using some tech-

niques for superconcentrators developed by Dolev, Dwork, Pippenger,

and Wigderson [22], and by Alon and Pudlák [5].

4.2 Intersection matrices

By (1.9), we have that OR2(Ð) 6 n log n. Moreover, Lemma 2.5 yields

OR3(Ð) 4 n. On the other hand, Corollary 3.8 yields OR2(Ð) > n log n.

Thus,

OR2(Ð) = n log n and OR3(Ð) ≍ n . (4.2)

4.3 Kneser–Sierpinski matrices

The Kneser–Sierpinski n×n matrix (or the disjointness matrix) D = Dn

is the complement of the intersection matrix. For this matrix, we have

OR(D) ∼ 1
2n log n . (4.3)

The upper bound OR(D) 6 SUM(D) 4 n log n follows from Lemma 2.6.

Actually, when applied to this specific matrix, Lemma 2.6 is a bit too

slack to provide best possible bounds. Next we give a simple construc-

tion showing that OR(D) 6 1
2n log n + 2n.
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Consider a directed graph G on n = 2r nodes vS corresponding to

distinct subsets S ⊆ [r]. The graph contains an edge (vS , vT ) if and only

if S ⊂ T and |T | = |S| + 1. (It is easy to see that G is a boolean cube.)

By definition, G contains a path from vS to vT if and only if S ⊂ T .

To complete G to an OR circuit implementing D we add n input nodes

xS and n output nodes yS and also edges (xS , vS) and (vS , yS) for each

subset S, where S = [r] \ S. Clearly, an input xS is connected with an

output yT via oriented path if and only if S is a subset of T , that is, if

S and T are disjoint, as required. By the construction, the circuit has
1
2n log n + 2n edges.

On the other hand, since D is a full triangular matrix with some 1s

below the diagonal switched to 0ss, we have rk∨(D) = n. Theorem 3.18,

together with the recursive definition (1.8) of Dn, yields the recursion

OR(D2n) > 2 · OR(Dn) + n, which results in OR(D) > 1
2n log n + n.

The lower bound SUM(D) > 1
2n log n was proved independently by

Boyar and Find [10], and Selezneva [98]. The bound was extended to

OR circuits in [11] (though it was implicit already in [10, 98]).

In depth 2, we have the following bounds.

Lemma 4.2.

OR2(D) < n1.16 and SUM2(D) 4 nlog2(1+
√

2) < n1.28.

Proof. To show the lower bound, consider the submatrix Dα of D whose

rows and columns correspond to subsets u ⊆ [r] of size |u| = αr.

The submatrix has |Dα| =
( r

αr

)(r−αr
αr

)
ones, and is obviously k-free

for k =
(r/2

αr

)
+ 1. Using the bound

( n
αn

)
= 1

Θ(
√

n)
2nH(α) where

H(α) = log
(

1
α

)α( 1
1−α

)1−α
is the binary entropy function, and using

Theorem 3.9, we obtain:

OR2(D) > OR2(Dα) >
|Dα|

k
> 2r·h(α)−o(r) ,

where h(α) = H(α) + (1 − α)H( α
1−α ) − 1

2H(2α) . By taking α = 0.4,

we have OR2(D) < n1.16.

To show the upper bound, we use the recursive definition of the

disjointness n × n matrices Dn with n = 2r, r = 1, 2, . . .

D2n =

[
Dn 0

Dn Dn

]
with D2 =

[
1 0

1 1

]
.
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The desired decomposition of Dn will consist of “squares” (all-1 sub-

matrices with equal side lengths) and “rectangles” whose side lengths

have the ratio 1 : 2. To decompose the matrix D2n, we use the decom-

positions of its three submatrices Dn, as shown above. In every triple

of rectangles, we merge two of them along their longer side as depicted

below (of course, squares and rectangles need not to consist of adjacent

columns):

v

u

u

2v

In this way, a u × u square from the decomposition of Dn generates

one square of the same dimension, and one u × 2u rectangle in the

decomposition of D2n. One v × 2v rectangle generates one rectangle of

the same dimensions, and a 2v × 2v square. Thus, if we let un be the

sum of lengths of the sides of squares, and vn the sum of lengths of

the shorter sides of the rectangles in the decomposition of Dn, then we

obtain the recursion
[
u2n

v2n

]
=

[
1 2

1 1

]
·
[
un

vn

]
=

[
1 2

1 1

]r

·
[
u2

v2

]
=

[
1 2

1 1

]r

·
[
1

1

]

The eigenvalues of the matrix A =

[
1 2

1 1

]
are 1 ±

√
2. So,

[
un

vn

]
= P ·

[
1 +

√
2 0

0 1 −
√

2

]r

· P −1 ·
[
1

1

]

for an invertible 2 × 2 matrix P . Thus, both ur and vr are at most a

constant times (1 +
√

2)r, as desired.

Since no rectangle in Dα can have area larger than
(r/2

αr

)2
, Theo-

rem 3.12 yields that

ORd(D) < n1+cd
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for a constant cd > 0 depending only on the depth d. Routine compu-

tations give, for example, OR3(D) < n1.03, OR4(D) < n1.01, etc.

4.4 Sylvester matrices

For the Sylvester n × n matrices H = Hn with n = 2r, (1.11) and (3.9)

yield

n log n 4 XOR2(H) 6 n log n .

For circuits of larger depths, Lemma 2.5 gives XOR3(H) 4 n. For

OR circuits, Lemma 3.17 and Lemma 2.6 yield

(2 − o(1))n log n 6 OR(H) 6 (4 + o(1))n log n .

In the class of bounded-depth OR circuits, we have lower bounds

ORd(H) > (cd − o(1))n1+1/d (4.4)

with cd = d/21/d. This follows from the area lower bound (Theo-

rem 3.12) because H has |H| =
(n

2

)
ones, and since the maximum

area of a rectangle in H is n/2 (see Observation 3.15). These bounds

extend the lower bounds of Corollary 3.4 to OR circuits. The lower

bound OR2(H) < n1.5 was also proved by Tarjan [103].

Let us now show that the order of magnitude of the lower bound

(4.4) is correct.

Theorem 4.3. Let d > 2, and n be a power of 2d. Then

SUMd(H) 6 2(d − 1)n1+1/d .

In particular, in depth 2 we have

(
√

2 − o(1))n1.5 6 OR2(H) 6 SUM2(H) 6 2n1.5 .

Proof. For simplicity, we give a full proof only for the case d = 2. The

proof for larger depths goes along the same lines. The idea is to simul-

taneously implement both the matrix H = Hn and its complement H

using the recursive definition (1.10) of H. To visualize the construc-

tion, we will treat each edge leaving an input node as either positive or

negative; the remaining edges are ordinary. We then say that a circuit

implements a boolean matrix A = (aij) if:
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1. for any i and j there exists unique path connecting j-th input

with the i-th output;

2. if aij = 1 then this path goes through a positive edge;

3. if aij = 0 then this path goes through a negative edge.

Note that we can obtain an ordinary SUM circuit for matrix A

by just removing all negative edges, as well a SUM circuit for A by

removing all positive edges. If we invert the “polarities” of the edges

(that is, make positive edges negative and negative edges positive) in a

circuit for A, then we obtain a circuit for the A.

Let Ĥn =
[

Hn
Hn

]
stand for a (2n, n)-matrix composed of matrices Hn

and Hn. To prove the theorem we will show that depth-2 circuit for

matrix Ĥ4n can be derived as a union of eight circuits for matrix Ĥn

(some of the circuits may be inverted).

Let us rewrite the recursive definition of Ĥn. For convenience we

split rows and columns of the matrix into groups denoted by Yi’s and

Xj ’s:

Ĥ1 =

[x

y1 0

y2 1

]
Ĥ4n =




X1 X2 X3 X4

Y1 H H H H

Y2 H H H H

Y3 H H H H

Y4 H H H H

Y5 H H H H

Y6 H H H H

Y7 H H H H

Y8 H H H H




with H = Hn .

Circuits for n = 1 and n = 4 are shown in Figure 4.1. Thick lines on

the first level are used to represent positive edges and thin dashed lines

represent negative edges. The second circuit will also serve as a circuit

for the general case (for n = 4, groups Xi and Yj are single inputs and

outputs).

To jump from n to 4n we introduce a procedure of merging of

circuits. Figure 4.2(a) shows symbolically a circuit for Ĥn. We denote

by h a matrix implemented at the nodes of the middle level in a circuit.
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Y1 Y2 Y3 Y5 Y6 Y7 Y8Y4

X1 X 2 X 3 X4

1 2y y

x

Figure 4.1: Circuits for Ĥ1 and Ĥ4.

X X’ X’X

H H HH HH HH HHHH

X

HH HHHH
(b)

h h h hh

(a) (c)

Figure 4.2: Superposition of circuits.

Consider two groups of inputs X and X ′ and combine the circuits

implementing the matrix Ĥn for each of the groups via merging of

corresponding nodes on the middle level. The obtained circuit is shown

in Figure 4.2(b). Its middle level implements the matrix [h|h], hence

the circuit itself implements two pairs of matrices [H|H] and [H|H ],

where H = Hn.

If in the circuit from Figure 4.2(b) we invert the (polarities of) edges

connected with inputs in X ′, then we obtain a circuit with middle level

implementing the matrix [h|h], and two pairs of matrices [H|H ] and

[H |H] being implemented at the outputs (Figure 4.2(c)).

Finally, a circuit for Ĥ4n can be derived as a union of two cir-

cuits from Figure 4.2(b) and two circuits from Figure 4.2(c). Inputs of

these circuits are connected to groups Xi and outputs are connected to
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Table 4.1: Matrices witnessing the optimality of lower bounds.

Result Witness Reference

Thms 3.1, 3.2 and 3.3 Sylvester matrix Hn Thm 4.3

Thms 3.34 and 3.5 full triangular matrix Tn Sect. 4.1

Thm 3.9 Obs. 3.10, random matrix

Thm 3.12 Sylvester matrix Hn Thm 4.3

Thm 3.18(i),(ii) Kneser–Sierpinski matrix Dn Eq. (4.3)

Thm 3.18(iii) full triangular matrix Tn Eq. (4.1)

Thms 3.19 and 3.20 In ⊗ A, A dense k-free Obs. 3.10

groups Yj in a way shown in Figure 4.1, where middle levels of merged

subcircuits are depicted.

It is not difficult to verify (by induction) that the circuit for Ĥn

contains n1.5 positive and n1.5 negative edges at the first level, n1.5

edges connected with outputs implementing the matrix Hn and n1.5

edges connected with outputs implementing its complement Hn. Thus,

the claim of the theorem in the case of depth d = 2 follows.

In the general case, we start from the trivial depth-d circuit (with

polarities) for Ĥ2d provided by Lemma 2.6. Next, in the proof of induc-

tion step from n to 2dn we use the former circuit as a guide for merging

subcircuits. Finally, we have an implementation of Ĥn via depth-d cir-

cuit with 2n1+1/d edges on each level: half of edges on the first and on

the last levels are to be eliminated after reduction to the SUM circuit

implementing the matrix Hn alone.

Table 4.1 shows that, with two exceptions, all the general lower

bounds proved in § 3 are provably optimal (or almost optimal). The

only exceptions are Theorems 3.31 and 3.32 whose optimality we do

not know.
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Complexity Gaps

For the maximum OR(n), XOR(n) and SUM(n) over all n × n matrices,

Theorem 2.4 yields

SUM(n) ∼ OR(n) ∼ XOR(n) ∼ n2

2 log n
.

Thus the “worst-case” behavior of all three measures is essentially the

same. But the situation changes drastically, if we compare the complex-

ities of a fixed matrix A: here we may have growing gaps. Note that

the largest possible gap cannot exceed n/2 log n.

5.1 SUM/OR gaps

Although non-trivial OR/XOR-gaps were long known, the SUM/OR-

gaps were apparently not known until recently. Lemma 2.10 and The-

orem 3.20(i) suggest that a possible gap could appear on Kronecker

products B ⊗ A of particular m × m matrices: Lemma 2.10 gives an

upper bound

OR(B ⊗ A) 4 rk∨(B) · m2

log m
,

68
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and Theorem 3.20(i) gives a lower bound

SUM(B ⊗ A) > rk+(B) · |A|
k2

,

if A is k-free. So, we only need to take a matrix B whose SUM-rank is

much larger than the OR-rank, and a matrix A which has Ω(m2) ones

but is still k-free for some small enough k.

A standard example of a matrix whose SUM-rank is exponentially

larger than the OR-rank is the complement Im of the identity m × m

matrix Im. For A, we can take a random m × m matrix: this matrix is

k-free for k 4 log m and has |A| < m2 ones. So, fix such a matrix.

Theorem 5.1 (Find et al. [30]). Let n = m2. For the n × n matrix

F = Im ⊗ A, we have

SUM(F )/OR6(F ) <

√
n

log2 n
and SUM(F )/OR3(F ) <

√
n

log3 n
.

Proof. By (1.7), we know that rk∨(Im) 4 log m. Lemma 2.10 gives

OR6(Im ⊗ A) 4 m2 = n.

On the other hand, the matrix A is k-free for k 4 log m and has

|A| < m2 ones. Since the integer (and even real) rank r = rk+(Im) of

Im is Ω(m), Theorem 3.20 implies that

SUM(F ) >
r|A|
k2

<
m3

log2 m
<

n3/2

log2 n
,

and the desired gap follows. The gap in depth 3 also follows, since

OR3(F ) 4 n log n by Lemma 2.10.

Instead of using a random matrix A in Theorem 5.1, one can also

take an explicit dense matrix without large rectangles, for example, the

norm-matrix (see § 1.3). The resulting gap will be almost the same.

5.2 SUM/OR gap in depth two

In the proof of Theorem 5.1, it was important that OR circuits of

depth d > 2 were allowed. We first show that particular matrices F

analyzed in this theorem cannot exhibit any non-constant SUM/OR
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gap in depth 2. We then will show that a particular submatrix of the

intersection matrix exhibits a logarithmic gap.

Theorem 5.2. For F as in Theorem 5.1,

SUM2(F ) ≍ OR2(F ) ≍ n3/2

log n
.

Proof. Since A has |A| < m2 ones, and is k-free for k 4 log m, Theo-

rem 3.9 yields OR2(A) < m2/ log m. Since the term-rank of Im is m,

Theorem 3.19 yields

OR2(F ) > tr(Im) · OR2(A) <
m3

log m
.

On the other hand, since SUM2(Tm) 6 m log m + m holds for the full

triangular m × m matrix Tm (see (1.6)), we have that SUM2(Im) 4

m log m. Since SUM2(A) 4 m2/ log m (by Theorem 2.2), Lemma 2.7

implies that SUM2(F ) 4 m3. To improve this upper bound by a log-

arithmic factor, we will use Lemma 2.9 together with the following

fact.

Recall that the smaller weight s of a covering is the sum of the

lengths of the shorter sides, and its larger weight ℓ is the sum of the

length of the longer sides of its rectangles.

Lemma 5.3. For every 1 < k 6 n, the full lower triangular matrix

Tm admits a decomposition with parameters s 4 m log m/ log k and

ℓ 6 s · k.

By taking k =
√

m, we have that Im admits a decomposition with

parameters s 4 m and ℓ 4 m3/2. Lemma 2.9 gives

SUM2(Im ⊗ A) 4
m3

log m
+

sm2

log(m2/ℓ)
4

m3

log m
.

So, it remains to prove Lemma 5.3.

To avoid floors and ceilings, let us assume that k divides m. Call

an a × b rectangle k-balanced if max{a, b} 6 k · min{a, b}. Let f(m) =

fk(m) be the minimum possible sum of the shorter sides in a k-balanced

decomposition of Tm. It is enough to show that f(m) 6 2m log m/ log k

for m > k. We do this by induction on m.
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For the induction basis, assume that m 6 k2. In this case we take

m/k vertical “stripes” of width k each. The i-th of these stripes, for

i = 1, . . . , m/k, is an (m − ik) × k submatrix consisting of consecutive

columns. Then cover the remaining 1s by stripes of width 1. The re-

sulting covering is k-balanced, and we obtain f(m) 6 k · (m/k) + m =

2m 6 2m log m/ log k.

For the induction step, take k vertical stripes of width m/k each.

The covering is k-balanced, since the height of such a rectangle is at

most m − m/k < m = k · (m/k). This gives the recurrence

f(m) 6 k(m/k) + k · f(m/k) .

Using the induction hypothesis f(p) 6 2p log p/ log k, this yields

f(m) 6 m + k · 2(m/k) log(m/k)/ log k

= m + 2m log m/ log k − 2m 6 2m log m/ log k .

This concludes the proof of Lemma 5.3, and hence, the proof of the

theorem.

To exhibit a growing SUM/OR gap in depth 2, we use another

matrix. Namely, let M = Mn be an n × n matrix with n =
(m

2

)
whose

rows and columns are labeled by 2-element subsets of [m], and M [a, b] =

1 if and only if a ∩ b 6= ∅. That is, M is a submatrix of the intersection

2m × 2m matrix Ð formed by rows and columns whose label-sets have

exactly two elements.

Theorem 5.4.

OR2(Mn) 6 4n but SUM2(Mn) < n log n .

This theorem (as well as its proof) was inspired by a recent result

of Pinto [80] concerning the “replication number” of coverings and par-

titions of the edges of graphs by bicliques; this is the maximal number

of bicliques in the covering/partition sharing a vertex in common. He

constructed an n-vertex graph which admits a covering with replication

2 such that every partition must have replication Ω(log n).

Proof. The bound OR2(Mn) 6 4n is obvious, since the matrix has a

trivial covering by m rectangles Qx, where each Qx consists of all rows
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and columns whose labels contain element x ∈ [m]. The weight of each

Qx is 2m − 2.

To prove the lower bound on SUM2(Mn), fix an optimal decompo-

sition R of M = Mn into pairwise disjoint rectangles. Based on this

decomposition, our strategy is to select submatrices of M such that: (i)

the submatrices are row- and column-disjoint, that is, no two of them

share a row or a column in common, and (ii) the weight of the induced

decomposition of each submatrix is large.

When doing this, we concentrate on the “diagonal” entries of M .

An entry is diagonal if its row and column are labeled by the same 2-

element subset of [m]. To show (ii), we will use the Hansel–Krichevski

argument for matrices with the zero diagonal (Theorem 3.5).

An s × t rectangle is thin if either s = t = 2 or s = 1 or t = 1.

Claim 5.5. Let R be a rectangle covering a given diagonal entry cor-

responding to a subset {x, y}. Then at least one of the sub-rectangles

R ∩ Qx and R ∩ Qy is thin.

Proof. If at least one of the sub-rectangles R ∩ Qx and R ∩ Qy contains

only one row or only one column, then we are done. So, assume that

both sub-rectangles have at least two rows an at least two columns.

Since R ∩ Qy must contain at least two rows and at least two

columns, R must contain at least one row and at least one column

without x. Since the labels must intersect, this implies that at most

two rows and at most two columns of R can contain element x. There-

fore, R ∩ Qx (and, by symmetry, R ∩ Qy) is a 2 × 2 rectangle.

Now fix in each 2-element subset {x, y} of [m] any one of its elements

x or y for which the conclusion of Claim 5.5 holds, and call this element

the type of the corresponding to {x, y} diagonal entry of our matrix M .

This is the only place where the disjointness of the rectangles in R is

used: the type x of a diagonal entry alone ensures that the restriction

R ∩ Qx of the unique rectangle R covering this entry has small density.

Since we have n =
(m

2

)
diagonal entries and only m possible types,

some set of k := n/m = (m − 1)/2 diagonal entries must have the

same type x1 ∈ [m]. Consider the submatrix A1 of M consisting of

rows and columns covering exactly these entries. Note that A1 is a
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k ×k all-1 matrix contained in the rectangle Qx1 . Consider the induced

decomposition of A1 by sub-rectangles R ∩ Qx1 with R ∈ R. Let w(A1)

be the weight of this decomposition, and D1 be the set of diagonal

entries of A1.

By Claim 5.5, we know that every rectangle R ∩ Qx1 intersecting

D1 is thin. Let A′
1 be the k × k matrix obtained from A1 by switch-

ing to 0 all diagonal entries of A1. Let also w(A′
1) be the weight of

the induced decomposition of A′
1, where we remove rectangles cover-

ing switched entries and cover remaining 1s optimally. It is easy to

see that w(A′
1) 6 w(A1) + k: only 2 × 2 rectangles covering only

one entry of D1 contribute +1 to w(A′
1). On the other hand, since

α(A′
1) = 1, the Hansel–Krichevski argument (Theorem 3.5) implies

that w(A′
1) > OR2(A′

1) > k log k. Thus,

w(A1) > w(A′
1) − k = k log

k

2
=

m − 1

2
log

m − 1

4
.

Next, remove from M all rows and columns containing the element

x1 among its labels, take an element x2 ∈ [m] such that at least (m −
2)/2 of the remaining diagonal entries are of type x2, build the next

submatrix A2, and argue in the same way to show that

w(A2) >
m − 2

2
log

m − 2

4
.

Proceeding in this way, we construct row- and column-disjoint subma-

trices A1, . . . , Am−1 of M such that

SUM2(M) >
m−1∑

i=1

w(Ai) >
m−1∑

i=1

i

2
log

i

4

>
m(m − 1)

4
log

m

8
< n log n ,

where the first inequality follows because the submatrices Ai do not

share common rows or columns, the third inequality follows from (1.5),

and the last inequality follows because n =
(m

2

)
.

Note that the lower bound also holds for the weight of the coverings

of M under the restriction that no diagonal entry can be covered more

than once.
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5.3 OR/XOR gaps

Known bounds for the Sylvester n × n matrix H = Hn (see § 4.4) give

the gap

OR2(H)/XOR2(H) ≍
√

n

log n
.

This remains the strongest known explicit OR/XOR gap in depth 2.

(As before, by “explicit gaps” we mean gaps established on explicit ma-

trices.) For larger depths, we have larger explicit gaps; we will mention

them in the next section. Here we show that random submatrices of H

exhibit almost maximal non-explicit gaps.

For this, we exploit some Ramseyean properties of submatrices of

the Sylvester matrix. A boolean matrix A is k-Ramsey matrix if it

contains no monochromatic k × k submatrices, that is, if both A and

its complement A are k-free.

Let Hn2 be the n2 × n2 Sylvester matrix with n = 2r. Each subset

S ⊆ {0, 1}2r gives us an |S| × |S| submatrix HS of H whose rows and

columns correspond to vectors in S.

Lemma 5.6 (Pudlák and Rödl [88]). If |S ∩ V | < t holds for every

subspace V ⊆ F
2r
2 of dimension 6 r, then HS is a t-Ramsey matrix.

Proof. Suppose that HS contains a monochromatic t × t submatrix T .

Our goal is to show that then there is a subspace V ⊆ F
2r
2 of dimension

r such that |S ∩ V | > t. The submatrix T corresponds to two subsets

of vectors X, Y ⊆ S such that 〈u, v〉 = a for some a ∈ {0, 1} and all

u ∈ X and v ∈ Y . Viewing the vectors in X as the rows of the coefficient

matrix and the vectors in Y as (columns of) unknowns, we obtain that

the sum dim(X ′) + dim(Y ′) of the dimensions of vector spaces X ′ and

Y ′, spanned by X and by Y , cannot exceed 2r + a 6 2r + 1. Hence,

at least one of these dimensions, say dim(X ′) must be 6 r. So, we can

take V = X ′, and obtain that |S ∩ V | > |X| = t, as claimed.

It is difficult to explicitly construct large sets S satisfying the con-

dition of Lemma 5.6, but one can show their existence by a simple

probabilistic argument, as one used by Jukna in [47].
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Lemma 5.7. For almost all subsets S ⊆ {0, 1}2r of size |S| = 2r, the

submatrix HS is a 2r-Ramsey matrix.

Proof. We will use the following versions of Chernoff’s inequality (see,

e.g., [69], § 4.1): if X is the sum of n independent Bernoulli random

variables with the success probability p, and µ = E [X], then

Pr[X 6 a] 6 e−(µ−a)2/2n (5.1)

for 0 6 a < µ, and Pr[X > cµ] 6 2−cµ for c > 2e.

Now pick a subset S ⊆ F
2r
2 at random, by including each vector

in S independently with probability p = 21−r = 2/n. By Chernoff’s

inequality, |S| > pn/2 = 2r holds with probability at least 1 − o(1).

Let V ⊆ F
2r
2 be a fixed subspace of dimension r. Then |V | = 2r,

hence, cp|V | = 2c. By Chernoff’s inequality, Pr[|S ∩ V | > 2c] 6 2−2c

holds for any c > 2e. The number of vector spaces in F
2r
2 of dimension

r does not exceed
(2r

r

)
6 22r/

√
2r. We can therefore take c = r and

conclude that the set S intersects some r-dimensional vector space V in

2c = 2r or more elements with probability at most
(2r

r

)
2−2c 6 1/

√
2r =

o(1). Hence, with probability 1 − o(1), both |S| > pn/2 = 2r = n

and |S ∩ V | < 2r hold for every r-dimensional subspace V . Lemma 5.6

implies that almost all n × n submatrices HS of Hn2 are t-Ramsey for

t 6 2r = 2 log n.

Theorem 5.8. For almost all n×n submatrices A of Hn2, we have that

XOR2(A) 4 n log n and XOR3(A) 4 n, but

OR2(A) <
n2

log n
and OR(A) <

n2

log2 n
.

Thus,

OR2(A)/XOR2(A) <
n

log2 n
and OR(A)/XOR3(A) <

n

log2 n
.

Proof. Every n × n submatrix A of Hn2 can be written as the product

A = P ·Q⊤ over F2 of two n×2r matrices P and Q. Hence, XOR2(A) 6

n log n, and Lemma 2.5 gives XOR3(A) 4 n.

To show the lower bounds, take any of the submatrices HS guar-

anteed by Lemma 5.7. Let A be HS or its complement (depending on
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which of the matrices has more 1s). Thus, A has |A| < n2 ones, and

is k-free for k = 2 log n. Theorem 3.9 implies that OR2(A) > |A|/k <

n2/ log n and OR(A) > |A|/k2 < n2/ log2 n, as desired.

The same OR/XOR-gap was recently established by Find et al. [30].

They showed that the gap is achieved on matrices of the form A =

P ⊤BP , where B is a random m × m matrix with m ≍ √
n, and P

is an m × m matrix whose each k-columns are linearly independent,

for an appropriate value of k. Their proof uses the concept of “local

independence” in random matrices, as well as some non-trivial results

in the spirit of Theorem 6.9 below.

Yet another proof of the same gap was recently given by Boyar and

Find [11]. They show this for a matrix A of the form A = P ·Q⊤, where

P and Q are random n × 24 log n matrices. Using a result of Chor and

Goldreich [20] about the randomized communication complexity of the

inner product function, they show that such a matrix is (3 log n)-free.

5.4 Explicit gaps

As observed already by Mitiagin and Sadovskiy [66], circulant matrices

are easy for XOR circuits. To see why this is true, consider a product

of two binary polynomials of degree < n modulo (xn + 1):

n−1∑

i=0

cix
i =

(
n−1∑

i=0

aix
i

)(
n−1∑

i=0

bix
i

)
mod (xn + 1) .

It is easy to see that coefficients ck satisfy

ck =
⊕

i+j ≡ k mod n

aibj . (5.2)

Vector (c0, . . . , cn−1) is called a cyclic convolution of order n of vectors

(a0, . . . , an−1) and (b0, . . . , bn−1).

Eq. (5.2) implies that the operator of cyclic convolution of constant

vector a and a vector x of variables is a linear operator with circulant

matrix having first column a. On the other hand, any circulant matrix

is a matrix of a cyclic convolution operator.

Small bilinear (XOR, AND)-circuits computing cyclic convolution

are known. Bilinear means that the circuit is linear in any of the two
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input vectors. Thus, if we set one vector to be a constant vector, then an

(XOR, AND)-circuit reduces to an XOR circuit. So, we can reformulate

the best known complexity result for convolution as follows.

Theorem 5.9 (Schönhage [97]). For any circulant n × n matrix A:

XOR(A) 4 n ln n ln ln n .

In fact, there is also a bounded-depth analogue:

Theorem 5.10 (Sergeev [99]). For every integer constant t > 1 there is

a constant c = c(t) such that, for every circulant n × n matrix A:

(i) XOR2t−1(A) 6 cn1+1/t,

(ii) XOR2t(A) 6 cn1+1/t/ log1/t n.

Some explicit circulant matrices that are hard for OR circuits are

long known. One example is the point-line incidence matrix P of a

finite projective plane which is 2-free matrix with |P | > n3/2 ones. By

Theorem 3.9, we have OR(P ) = OR1(P ) > n3/2, and hence,

OR(P )/XOR(P ) <

√
n

ln n ln ln n
. (5.3)

In the case of bounded-depth circuits we have

OR(P )/XOR4(P ) <
√

log n and OR(P )/XOR2t−1(P ) < n1/2−1/t

for any t > 3. The bound (5.3) was proved by Gashkov and Sergeev [34]

and is the strongest known gap for 2-free matrices (in either explicit

and non-explicit cases). An obvious upper bound is O(
√

n). To the best

of our knowledge, d = 4 is the minimal depth known to separate XOR-

and OR-complexities of 2-free matrices.

As observed in [34], under appropriate choice of parameters, the

n × n norm-matrix N constructed in § 1.3 is ∆-free and has about

n2/∆ ones, where

∆ = 2−Θ(
√

ln n ln ln n) .

Thus, Theorem 3.9 implies that OR(N) < n2/∆. Using fast multi-

dimensional convolution, the gap

OR(N)/XOR(N) <
n

∆
(5.4)
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was shown by Gashkov and Sergeev in [34]. Alternatively, as they

explained in [35], the norm-matrix can be converted into a circulant

matrix which is also ∆-free and has about n2/∆ ones. Then (5.4) follows

from Schönhage’s theorem.

Concerning bounded-depth circuits, the circulant analogue of the

norm-matrix N provides separation

OR(N)/XOR2t−1(N) <
n1−1/t

∆

for any t > 1.

For completeness, we mention that, as shown by Grinchuk and

Sergeev in [43], a certain randomized construction of an ×n matrix

Z is with high probability O(log n)-free and has |Z| < n2/ log3 n ones.

Thus, for such a matrix we have the gaps

OR(Z)/XOR(Z) <
n

ln6 n ln ln n
and OR(Z)/XOR2t−1(Z) <

n1−1/t

ln5 n

for any t ≥ 1. It is a slight improvement over the result due to

Grinchuk [42] who showed the existence of log2 n-free circulant ma-

trices with about n2/ log8 n ones.

It is worth to mention that OR/XOR gaps may be much larger than

SUM/OR gaps. Namely, Theorem 3.9 implies that SUM(A)/OR(A) 6

k2 holds for every k-free matrix. On the other hand, as we men-

tioned above, there are explicit k-free matrices A such that the gap

OR(A)/XOR(A) is at least n1/2−ǫ, for constant k, and even n1−o(1) for

k 4 log n.

5.5 XOR/OR gap in depth two

Unlike for SUM/OR and OR/XOR gaps, no non-trivial XOR/OR gaps

were known. In this section we present the first such gap. Our starting

object is the k-intersection matrix Ðn,k which is defined as follows. Fix

an n-element set X, and label the rows and columns by distinct non-

empty subsets S ⊆ X of size |S| 6 k. Thus, the matrix has

N(n, k) :=
k∑

i=1

(
n

i

)
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rows and N(n, k) columns. The (S, S′)-th entry is 1 if and only if S

and S′ have a non-empty intersection.

To show a growing gap, we use Kronecker product matrices of the

form A = Ðn,k ⊗ Ðm,p. That is, we now have two fixed disjoint sets

X and Y of sizes |X| = n and |Y | = m. Rows and columns of A are

labeled by pairs (S, T ) of subsets S ⊂ X and T ⊂ Y of sizes |S| 6 k

and |T | 6 p, and

A[(S, T ), (S′, T ′)] = 1 iff S ∩ S′ 6= ∅ and T ∩ T ′ 6= ∅.

Important property of such matrices is that they have full rank over

F2. The following lemma is an extension of a well-known fact that Ðn,k

itself has full rank (see e.g. [50, Lemma 4.11]).

Lemma 5.11. The matrix A = Ðn,k ⊗ Ðm,p has full rank over F2.

Proof. As in [50, Lemma 4.11], we follow Razborov’s short argument for

Ðn,k given in [93]. The matrix A has NM rows and as many columns,

where N = N(n, k) and M = N(m, p). We have to show that the rows

of A are linearly independent over F2, i.e., that for any nonzero vector

λ = (λI1,J1, λI1,J2, . . . , λIN ,JM
)

in F
NM
2 indexed by pairs of subsets I ⊂ [n] and J ⊂ [m] of sizes

1 6 |I| 6 k and 1 6 |J | 6 p, we have λ⊤A 6= 0; the sets I and J are

sets of indices of the corresponding subsets S ⊂ X and T ⊂ Y . For

this, consider the following boolean function

f(x1, . . . , xn, y1, . . . , ym) :=
⊕

1≤|I|6k
1≤|J |6p

λI,J

( ∨

i∈I

xi

)
·
( ∨

j∈J

yj

)

on n + m boolean variables corresponding to the elements of X and Y .

Since λ 6= 0, at least one of the coefficients λI,J is nonzero, and we

can find some pair (I0, J0) such that λI0,J0 6= 0 and λI,J = 0 for all

other pairs (I, J) satisfying I ⊃ I0 and J ⊃ J0. So, the pair (I0, J0)

is maximal. Assume w.l.o.g. that I0 = {1, . . . , t} and J0 = {1, . . . , u},

and make in the function f the substitution xi = 0 for all i /∈ I0 and

yj = 0 for all j /∈ J0.
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After this substitution has been made, a nonzero polynomial over

the variables x1, . . . , xt, y1, . . . , yu remains with the leading-degree term

x1 · · · xt · y1 · · · yu; here we use the maximality of (I0, J0) and the fact

that the polynomial for the OR function has maximal degree. Hence,

after the substitution we obtain a polynomial which is 1 for some as-

signment (a1, . . . , at, b1, . . . , bu) to its variables. But this means that

the polynomial f itself takes the value 1 on the assignment

c = (a1, . . . , at, 0, . . . , 0, b1, . . . , bu, 0, . . . , 0) .

Hence,

1 = f(c) =
⊕

I,J

λI,J

( ∨

i∈I

ci

)
·
( ∨

j∈J

cj+n

)

Let I ′ := {i : ai = 1} and J ′ := {j : bj = 1}. Then |I ′| 6 k and |J ′| 6 p.

Moreover,
(∨

i∈I ci
) · (∨j∈J cj+n

)
= 1 if and only if I ∩ I ′ 6= ∅ and

J ∩ J ′ 6= ∅, which is equivalent to A[(I, J), (I ′ , J ′)] = 1. Thus,
⊕

I,J

λI,JA[(I, J), (I ′, J ′)] = 1 ,

meaning that the (I ′, J ′)-th coordinate of the vector λ⊤A is nonzero.

Next, consider the n × n matrix Kn = Ðk2,k ⊗ Ðp2,p with

k2 ≍ 1

p
N(p2, p) and n = N(p2, p) · N(k2, k) . (5.5)

Hence,

k ≍ ln n

ln ln n
and p ≍ ln ln n

ln ln ln n
.

That is, we have two fixed disjoint sets X and Y of sizes |X| = k2 and

|Y | = p2. Rows and columns of the matrix K = Kn are labeled by

pairs (S, T ) of non-empty subsets S ⊂ X and T ⊂ Y of sizes |S| 6 k

and |T | 6 p, and

K[(S, T ), (S′, T ′)] = 1 iff S ∩ S′ 6= ∅ and T ∩ T ′ 6= ∅.

Theorem 5.12.

OR2(Kn) 4 n · ln n

ln ln n
but XOR2(Kn) < n · ln n · ln ln ln n

ln ln n
.



5.5. XOR/OR gap in depth two 81

Proof. The upper bound for OR2 complexity is straightforward. It is

derived from the representation of the matrix Kn as a product B · B⊤

(over the boolean semiring), where B is an n×(|X|+|Y |) matrix defined

by

B[(S, T ), q] = 1 iff q ∈ S ∪ T

(cf. representation of Ðn in § 1.3). Since |S| 6 k and |T | 6 p, each row

of B contains at most k + p 1s, hence, the weight of B does not exceed

(k + p)n ≍ n · ln n

ln ln n
.

To prove the desired lower bound on the XOR2 complexity of

Kn, we exploit the rigidity argument, as given by Pudlák’s theorem

(Theorem 3.34). Recall that according to this theorem, XOR2(A) >

2f(n) ln(b/a) holds as long as RA (r) > f(n)2/r holds for all integers

r between a and b.

First, we will prove that there exist constants c1, c2 > 0 such that

RKn (c1r) >
c2n2

r
(5.6)

holds for a sequence of integers r of the form

r = r(t, u) := N(k2, t) · N(p2, u)

with t ∈ [k] and u ∈ [p]. However, to fulfil conditions of Theorem 3.34,

we need bounds not just for “rank thresholds” of the form r = c1r(t, u)

but also for all other intermediate1 r’s between c1r(1, 1) and c1r(k, p).

For this, we use simple estimates

r(t, u + 1)

r(t, u)
=

N(p2, u + 1)

N(p2, u)
6 1 +

( p2

u+1

)
(p2

u

) 6 p2

and, by (5.5),

r(t + 1, 1)

r(t, p)
=

N(k2, t + 1) · N(p2, 1)

N(k2, t) · N(p2, p)
6

k2p2

N(p2, p)
≍ p .

1To “fill in” these intervals was the only reason to consider a more complicated
case of Kronecker products instead of intersection matrices themselves.
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Now, these estimates ensure that, for every integer r between c1r(1, 1)

and c1r(k, p), there must be t and u such that r 6 c1r(t, u) 6 p2r.

Therefore,

RKn (r) > RKn (c1r(t, u)) >
c2n2

r(t, u)
>

c2(n/p)2

r
.

When applied with f(n) =
√

c2 n/p, a = c1r(1, 1) and b = c1r(k, p),

Theorem 3.34 yields

XOR2(Kn) < (n/p) ln n ≍ n · ln n · ln ln ln n

ln ln n
.

So, it remains to prove (5.6). In what follows, we will use inequalities
(

k2

t

)
6 N(k2, t) 6

(
1 + t · t

k2 − t

)(
k2

t

)
6 6 ·

(
k2

t

)

holding for all t 6 2k and k > 10, as well as
(

k2

t

)
>

(
k2 − 2k

t

)
> e−32

(
k2

t

)

holding for all t 6 2k and k > 4. Hence,

N(k2, t) > N(k2 − 2k, t) > e−32N(k2, t) .

Fix some t ∈ [k], u ∈ [p], and mark a minimal set of entries in Kn one

has to change in order to reduce the rank until c1r(t, u).

We define a (t, u)-submatrix of Kn by fixing a pair I, I ′ of disjoint

(k − t)-element subsets of X, a pair J, J ′ of disjoint (p − u)-element

subsets of Y . The submatrix then consists of all rows (S, T ) and all

columns (S′, T ′) such that I ⊂ S, I ′ ⊂ S′, J ⊂ T , and J ′ ⊂ T ′ (proper

inclusions). A restriction of such a (t, u)-submatrix A is the subma-

trix B of A whose labels satisfy the following additional disjointness

condition I ∩ S′ = I ′ ∩ S = J ∩ T ′ = J ′ ∩ T = ∅.

By the construction, the submatrix B (up to a permutation of rows

and columns) is the intersection matrix

Ðk2−2(k−t),t ⊗ Ðp2−2(p−u),u .

This is because B[(S, S′), (T, T ′)] = 1 if and only if

(S \ I) ∩ (S′ \ I ′) 6= ∅ and (T \ J) ∩ (T ′ \ J ′) 6= ∅.
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By Lemma 5.11, each such submatrix has full rank

rk(B) = N(k2 − 2(k − t), t) · N(p2 − 2(p − u), u) .

Thus, rk(B) > c3r(t, u) for a constant c3 > 0. Now set c1 := c3/2. Since

the rank of B cannot be halved by flipping fewer than rk(B)/2 entries

of B, the matrix B (and hence the (t, u)-submatrix A) must have at

least c1r(t, u) marked entries.

Now, we will bound the total number of marked entries in Kn. We

have at least c1r(t, u) such entries in each (t, u)-submatrix A. On the

other hand, each single entry of Kn can belong to at most
(k

t

)2 · (p
u

)2

such submatrices. To see this, fix an arbitrary entry [(S, T ), (S′, T ′)] of

Kn; hence, S, S′ ⊆ X, T, T ′ ⊆ Y , |S|, |S′| 6 k, and |T |, |T ′| 6 p. If a

(t, u)-submatrix A is defined by pairs (I, J) and (I ′, J ′), then this entry

can belong to A only if I ⊂ S, I ′ ⊂ S′, J ⊂ T , and J ′ ⊂ T ′. Since

|I| = |I ′| = k − t and |J | = |J ′| = p − u, we have at most
( |S|

k−t

)
6
(k

t

)

choices for I (and for I ′), and at most
( |T |

p−u

)
6
(p

u

)
choices for J (and

for J ′).
Since there are

( k2

k−t

) · (k2−(k−t)
k−t

)
disjoint pairs (I, J) and

( p2

p−u

) ·
(p2−(p−u)

p−u

)
disjoint pairs (I ′, J ′), the multiplied by r(t, u) total number

of marked entries is bounded from below as

c1r2(t, u)

( k2

k−t

)(k2−(k−t)
k−t

)( p2

p−u

)(p2−(p−u)
p−u

)

(k
t

)2(p
u

)2

> c4



(k2

t

)( k2

k−t

)(p2

u

)( p2

p−u

)
(k

t

)(p
u

)




2

> c4

[
(k2 − k)k(p2 − p)p

k!p!

]2

> c5n2 ,

where c4 and c5 are some positive constants. Therefore, the desired

inequality RKn (c1r) > c2n2/r holds with c2 := c5 for all r = r(t, u).

This completes the proof of (5.6), and thus, the proof of the theorem.
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5.6 Gaps for matrices and their complements

If a matrix A has a small circuit, can then its complement A require

large circuits? In the case of XOR circuits, the gap XOR(A)/XOR(A)

cannot be ω(1). This is because we always have that XOR(A) 6

XOR(A) + 2n: given a circuit for A, just add one new node connected

with all inputs and all outputs to get a circuit for A. In the case of OR

circuits, however, the situation is completely different: here the gaps

OR(A)/OR(A) may be large.

Let D = Dn be the n × n Kneser–Sierpinski matrix. Since D is

the complement of the intersection matrix, (4.2) and Lemma 4.2 yields

the following trade-offs between the complexities of D and D (see also

Section 4.3):

OR(D) = n but OR(D) ∼ 1
2n log n,

and

OR2(D) = n log n but OR2(D) < n1+c for c > 0.16.

This yields the gaps

OR(D)/OR(D) = 1
2 log n and OR2(D)/OR2(D) < n0.16 .

In fact, submatrices of D give even larger gaps. Say, for α = 0.27,

the submatrix Dα of D (as defined in the proof of Lemma 4.2) gives

the depth-2 gap of about n0.23.

We are now going to show that there exist matrices A almost achiev-

ing the maximal possible gap of n/ ln n.

To show this, we will use probabilistic arguments. In particular, we

will use following simple consequence of the Chebyshev inequality for

sums of weakly dependent random 0/1 variables.

Recall that the Chebyshev inequality states that, for every random

variable X and every real number a > 0, Pr[|X − E [X] | > a] is at most

Var [X] /a2. Now let X =
∑n

i=1 xi be the sum of random 0/1 variables,

and µ = E [X]. For an index i, let J(i) be the set of indices j such that

xi and xj are not independent. If |J(i)| 6 K holds for all i, then for

every real number α > 0,

Pr[|X − µ| > αµ] 6
K

α2µ
. (5.7)
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Indeed, one can easily show that, the variance of X cannot exceed µK:

by the linearity of expectation, we have

Var [X] = E
[
X2
]

− µ2 =
∑

i,j

E [xixj] − µ2 .

Using the inequality E [xixj ] 6 E [xi] holding for all pairs of 0/1 vari-

ables, and E [xixj] = E [xi] E [xj ] holding for independent pairs xi and

xj, we obtain

∑

i,j

E [xixj ] 6
∑

i

E [xi]
(
K +

∑

j 6∈J(i)

E [xj ]
)
6 µK + µ2 .

Thus, Var [X] 6 µK, and (5.7) follows from the Chebyshev inequality.

Theorem 5.13. For n sufficiently large, there exist n × n matrices A

(not necessarily the same for all three items) such that:

(i) A is 2-free and has Ω(n5/4) ones, but OR2(A) = O(n ln2 n).

(ii) A is 2-free and has Ω(n1.1) ones, but rk∨(A) = O(ln n).

(iii) A is (ln n)-free and has Θ(n2) ones, but OR3(A) = O(n ln n).

Moreover, the matrix from item (iii) also has OR2(A) 4 n ln2 n.

The second claim (ii) was earlier proved by Katz [53] (using slightly

different arguments) and inspired the extension (i) and (iii) above.

Proof. Consider a random depth-2 OR circuit F with n inputs, n out-

puts, and t = (3/4) ln3 n nodes on the middle level; t is assumed to

be integer for simplicity. Connect each input and each output node

with each node on the middle level independently with probability

p = 1/ ln n. Let B be the random n × n matrix implemented by the

entire circuit F . Let X be the number of 0s, Y the number 0-squares

(that is, 2 × 2 all-0 submatrices) in B, and Z the number of edges in

the circuit.

Since E [Z] = 2ptn = (3/2)n ln2 n, Markov’s inequality Pr[X > a] <

1/a implies that

Pr[Z > 6n ln2 n] < 1/4 . (5.8)

A given length-2 path is present in F with probability p2. So, the

probability that a given entry of B is 0 is the probability (1 − p2)t
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that none of the t length-2 paths between the corresponding input and

output nodes is present. Since p2t = (3/4) ln n and (1 − x) > e−x−x2

holds for 0 < x < 1/2, this yields

E [X] = n2(1 − p2)t > n2e−p2t−p4t > an5/4 ,

for a constant a > 1/e. The number X is the sum of n2 not necessarily

independent but identically distributed boolean variables (entries in

our matrix B). Two entries can be dependent only if they lie in the

same row or in the same column. Applying (5.7) with K = 2n and

α = n−1/8, we obtain that Pr[|X − an5/4| > an9/8] = O(n−1/2). Thus,

Pr[X < (a/2)n5/4] < 1/4 . (5.9)

To upper bound E [Y ], fix a 2-element subset I of input nodes,

and a 2-element subset J of output nodes. For each middle node v,

the probability that I and J are connected by a length-2 path going

through v is the probability 1 − (1 − p)2 = p(2 − p) that v is connected

to I times the same probability that v is connected to J . Thus, the

probability that the corresponding to I and J submatrix of B has no

1s is

(1 − p2(2 − p)2)t 6 e−p2(2−p)2t 6 e−4p2t+4p3t < (3/n)3 ,

because p2t = (3/4) ln n and p = 1/ ln n. Since there are only
(n

2

)2
< n4

squares in B, this gives E [Y ] 6 bn for a constant b 6 27. Markov’s

inequality yields

Pr[Y > 4bn] < 1/4 . (5.10)

Now fix a circuit avoiding all three events (5.8)-(5.10). The circuit

has Z 6 6n ln2 n edges, while the implemented by it matrix B has

X > (a/2)n5/4 zeroes and only Y 6 4bn zero-squares. For each of these

squares, pick one its entry, add a node on the middle level and join the

corresponding input and output nodes by a length-2 going through this

node. The resulting circuit has Z + 2Y = O(n ln2 n) edges, while the

complement A of the matrix A implemented by this circuit is 2-free

and still has at least X − Y = Ω(n5/4) ones. This completes the proof

of item (i).
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To prove item (ii), we argue similarly. In this case, set p to be a

very small positive constant, say p 6 1/37, and set t = 3.5
p2(2−p)2 ln n.

Now we expect

E [X] = n2(1 − p2)t = n2−3.5 ln(1−p2)/p2(2−p)2
> n1.1

zeros in B. On the other hand, we expect only

E [Y ] 6 n4(1 − p2(2 − p)2)t 6 n4e−p2(2−p)2t =
√

n

zero-squares in B. We can kill all these squares by picking one entry

in each of them, and joining the corresponding input and output node

by depth-2 paths going through just one new node on the middle level.

This reduces the total number of zeros in B by at most Y 2 6 n, and

the boolean rank of the resulting matrix is t + 1 = O(ln n), as desired.

To prove item (iii), let k be an integer nearest to ln n. Consider a

random depth-3 OR circuit F with n inputs, n outputs and t = 48k2

nodes on each of the two intermediate levels. As before, we connect

each input and each output node with every node on the neighboring

level independently with probability p = 1/k. We also connect nodes

of the two intermediate levels independently with probability q = 1/k2.

Hence, the middle layer of the circuit implements a random (though

non-uniform) boolean t×t matrix U . Let B be the random n×n matrix

implemented by the entire circuit F . As before, let X be the number

of 0s, Y the number of k × k all-0 submatrices in B, and Z the number

of edges in the circuit.

Since E [Z] = 2ptn + qt2 = O(kn) = O(n ln n), Markov’s inequality,

Pr[X > a] < 1/a implies that Z = O(n ln n) holds with an arbitrarily

large constant probability. Our goal is to show that also the event

“Y = O(1)” holds with an arbitrarily large constant probability, and

that the event “X = Ω(n2)” holds with some constant probability c > 0.

This will imply that a circuit F achieving these values of X, Y and Z

exist.

By adding a constant number of edges to the circuit F we can

then switch one entry in each k × k all-0 submatrix of the matrix A

implemented by F to make the complement A of the resulting matrix A

k-free. Since the number of edges in the resulting circuit for A remains

O(n ln n), we will be done. Moreover the construction also implies that
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rk∨(A) 6 t + O(1) = O(ln2 n), which gives OR2(A) = O(n ln2 n) in the

depth-2 case.

Let us now show that X = Ω(n2) holds with a constant probability

c > 0. The event that F has no paths connecting a given input node and

a given output node is that the rows and columns of U , corresponding

to the neighbors of these two nodes in F , form an all-0 submatrix of

U . Clearly, an input (or output) of the circuit F has degree 6 2pt

with probability at least 1/2. So, the probability that a given entry

of the matrix B is zero is at least the probability 1/4 that the input

and the output both have such small degrees times the probability

(1 − q)4p2t2
that the given 2pt × 2pt submatrix of the matrix U is an

all-0 submatrix. Since qp2t2 = Ω(1), this probability is also Ω(1). Thus,

there is a constant c > 0 such that E [X] > 2cn2. Since X 6 n2, this

implies Pr[X > cn2] > c, for otherwise we would have that

E [X] < c · n2 + 1 · cn2 = 2cn2 .

It remains to show that E [Y ] = O(1), i.e., that we can expect at

most a constant number of zero k × k submatrices in B. To show this,

set r = 10k2. Consider a fixed pair I, J of subsets of input and output

node of F , each of size k, and let BI,J be the corresponding submatrix

of B. Let PI (and PJ ) be the probability that the nodes in I (in J) have

fever than r neighbors, and let PU be the probability that the matrix

U contains some r × r all-0 submatrix.

If both I and J have at least r neighbors, and if U does not contain

any r × r all-0 submatrix, then there will be a path from I to J in the

circuit. Thus, Pr[BI,J is an all-0 submatrix] 6 PU + PI + PJ . Since U

has only
(t

r

)2
r × r submatrices, each of which is an all-0 submatrix

with probability (1 − q)r2
, we have that

PU 6

(
t

r

)2

(1 − q)r2
6 e2t−r2

= e−4k2
.

To upper-bound PI , we can view the number of neighbors of the input

nodes in I as the sum S = s1 + . . . + st of independent random 0/1

variables, where si = 1 if and only if the i-th inner node is connected

to some of the nodes in I. Hence,

E [si] = 1 − (1 − p)k > 1 − e−1 ,
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implying that µ := E [S] > t/2. By the Chernoff inequality (5.1),

PI = Pr[S < r] 6 e−(µ−r)2/2t 6 e−2k2
.

This implies that one fixed k × k submatrix BI,J of B can be an all-0

submatrix with probability at most PU + PI + PJ 6 3e−2k2
. Since the

total number of k × k submatrices in B is only
(n

k

)2
< n2k = e2k2

, the

expected number of all-0 k × k submatrices is constant, as desired. By

Markov’s inequality, Y = O(1) holds with an arbitrarily large constant

probability.

By Lemma 2.5, every matrix satisfying (i) has OR3(A) ≍ n, though

its complement is a rather dense 2-free matrix. For matrices from the

claim (iii) we have almost maximal gaps

OR2(A)/OR2(A) <
n

ln3 n
and OR(A)/OR3(A) <

n

ln3 n
. (5.11)

Finally, let us note that one can achieve also explicit gaps via de-

randomization of Theorem 5.13. To demonstrate how this can be done,

we show an explicit square root gap.

Let N =
(n

k

)
and n = 2r for an even r. Consider a depth-3 circuit

with N inputs and outputs labeled by distinct k-element subsets of [n].

The circuit also has n nodes associated with elements of [n] on each of

two middle levels. Connect each input and each output node a ∈ ([n]
k

)

with all k neighbor-level nodes corresponding to the elements of a. Let

the nodes on the middle levels be connected in a way to implement the

Sylvester matrix Hn on the middle layer; thus, we view these nodes as

vectors in F
r
2, and two nodes are connected if and only if their scalar

product over F2 is 1. Let A be an N × N matrix implemented by the

circuit.

Since rk∨(A) 6 n by the construction, we have OR2(A) 4 nN . On

the other hand, the number of zeroes in A is the number of k × k

all-0 submatrices in Hn. The later number is bounded from below by

the number
(n

k

)
= N of possibilities to choose a k-tuple {a1, . . . , ak}

of rows times the number
(n2−k

k

)
of possibilities to choose k of the

at least 2r−k = n2−k solutions x of the system of linear equations

〈a1, x〉 = . . . = 〈ak, x〉 = 0 over F2. Thus, |A| > N
(n2−k

k

)
.
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Table 5.1: Best known results for gaps.

Gap Explicit Non-explicit

OR(A)/XOR(A) n2−Θ(
√

ln n ln ln n) n/ ln2 n

OR2(A)/XOR2(A)
√

n / ln n n/ ln2 n

SUM(A)/OR(A)
√

n 2−Θ(
√

ln n ln ln n) √
n / ln2 n

SUM2(A)/OR2(A) ln n ln n

OR(A)/OR(A) ln n n/ ln3 n

OR2(A)/OR2(A)
√

n 2−Θ(ln2/3 n) n/ ln3 n

XOR2(A)/OR2(A) ln ln ln n ln ln ln n

Our next goal is to show that A is K-free for K =
(√n+1

k

)
. For this,

observe that, given a set S of m > k nodes on the first (or second) mid-

dle level (corresponding to rows/columns of Hn), exactly
(m

k

)
of input

(resp., output) nodes are connected to none of the middle nodes out-

side S: these are precisely the input/output nodes whose label-sets are

contained in S. Were A not K-free, this would mean that Hn contains

an all-0 m × m submatrix for m =
√

n + 1, contradicting the Lindsey

Lemma.

By Theorem 3.9, we have that

OR2(A) >
|A|
K

> N

(n2−k

k

)
(√n+1

k

) .

By taking k about ln1/3 N , and hence, n = 2Θ(ln2/3 N), we derive

OR2(A)/OR2(A) <
√

N2−Θ(ln2/3 N) .



6

Bounds for General Circuits

We now consider computation of linear operators y = Ax over F2 in the

class of general circuits, where not only XOR but arbitrary(!) boolean

functions are allowed as gates.

Let GENd(A) denote the smallest number of edges in a depth-d

circuit with arbitrary boolean functions as gates computing the linear

operator Ax over F2.

6.1 Column-distance lower bounds

The following “column-distance” lower bound for depth-2 XOR circuits

was first proved by Alon, Karchmer and Wigderson [3] via a very el-

egant argument, which we give below. Cherukhin [18] used different

arguments to prove a similar lower bound for general circuits. Jukna

[49] has shown that the argument of [3] also works for general circuits.

Moreover, it yields such a lower bound even when the circuit is only

required to correctly compute Ax on the unit vectors x ∈ {~e1, . . . , ~en};

it is also shown there that O(n log n) edges are already enough to com-

pute any linear operator in this weak sense.

Theorem 6.1. Let A be an m × n matrix each two columns of which

91
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differ in at least k positions. Then

GEN2(A) < k · ln n

ln ln n

even if the circuit is only required to correctly compute Ax on n unit

vectors x.

Note that, like Theorem 3.23, this lower bound is also based of

Ramseyan properties of A: the distance condition on A is equivalent to

A being a (2, m − k + 1)-Ramsey matrix.

Proof. We will need the well-known “Sunflower Lemma” of Erdős and

Rado [27]. A sunflower with k petals is a family of k sets, all pairwise

intersections of which give the same set; this common subset of the

intersection is the core of the sunflower. The Sunflower Lemma states

that every family of more than s!(k−1)s sets of size at most s must con-

tain a sunflower with k petals. This can be proved by an easy induction

on s.

Now take a depth-2 circuit with arbitrary boolean functions as gates

computing x 7→ Ax. For simplicity, we assume that all gates on the mid-

dle level are symmetric boolean functions; the case of non-symmetric

gates is the same with a bit more subtle reasoning at the point (6.1) be-

low (see [49]). For i ∈ [n] and j ∈ [m], let Si be the set of intermediate

nodes (on the second level) that are connected to the i-th input node,

and Tj the set of intermediate nodes connected to the j-th output node.

We may assume that k > 0 (since for k = 0 there is nothing to prove).

Hence, all sets S1, . . . , Sn must be distinct. Set

t = c · ln n

ln ln n

for a sufficiently small constant c > 0; for simplicity, assume that t is

integer. If
∑n

i=1 |Si| > nt, then we are done. So, assume that
∑n

i=1 |Si| 6
nt. Our goal is to show that then

∑m
j=1 |Tj | > kt.

Since
∑n

i=1 |Si| 6 nt, at least n/2 of the sets Si must be of size at

most 2t. By the Sunflower Lemma, these sets must contain a sunflower

with 2t petals. Having such a sunflower with a core C, we can pair its

members arbitrarily, (Sp1, Sq1), . . . , (Spt , Sqt). Important for us is that

ISS
Highlight
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all t symmetric differences Dl = Spl
⊕Sql

= (Spl
∪Sql

)\C are mutually

disjoint.

Let (Sp, Sq) be any of these pairs, and let fj be the function com-

puted at the j-th output gate. On input vector x, fj(x) must be the

j-th position of the vector Ax. Suppose that the p-th and the q-th

columns of A differ in the j-th row. Then fj(~ep) 6= fj(~eq), where ~ep is

the p-th unit vector. This implies that

(Sp ⊕ Sq) ∩ Tj 6= ∅ . (6.1)

To show this, let gv be a gate at a middle node v. If v 6∈ Sp ⊕ Sq,

then on both inputs ~ep and ~eq, the gate gv will receive either only 0s

(if v 6∈ Sp ∪ Sq) or exactly one 1 (if v ∈ Sp ∩ Sq). Since the gate gv is

symmetric, it must behave in the same manner on both inputs. But if

(6.1) does not hold, then the j-th output gate can see no other middle

gates, implying that fj(~ep) = fj(~eq), a contradiction.

Now, the distance property of A implies that, for every pair

(Spl
, Sql

), l = 1, . . . , t, there is a set Jl ⊆ [m] of |Jl| > k rows on

which the pl-th and the ql-th columns of A differ. By (6.1), we have

that

|Dl ∩ Tj | > 1 for all 1 6 l 6 t and all j ∈ Jl.

Since the sets D1, . . . , Dt are pairwise disjoint, the desired lower bound

follows:

m∑

j=1

|Tj | >
m∑

j=1

t∑

l=1

|Dl ∩ Tj| =
t∑

l=1

m∑

j=1

|Dl ∩ Tj | >
t∑

l=1

|Jl| > kt .

Since every two columns of the Sylvester n × n matrix H = Hn

differ in at least n/2 positions, Theorem 6.1 implies that

GEN2(H) < n · ln n

ln ln n
,

even if the circuit is only required to correctly compute Hx on n unit

vectors x.

On the other hand, large Hamming distance between columns alone

cannot lead to larger lower bounds. That is, the lower bound given by

Theorem 6.1 is, in fact, optimal.
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Theorem 6.2 (Drucker [23]). There are explicit n×n matrices A whose

every two columns differ in at least n/8 positions, but

SUM2(A) 4 n · ln n

ln ln n
.

Proof. Let n = ps where p is a prime power and 1 6 s 6 p an integer.

Set m := n/p, and fix a boolean p×m matrix M whose rows are labeled

by elements a ∈ Fp, columns by numbers i ∈ {1, . . . , m}, and every two

rows in M differ in at least 1/4 of their positions.1 For i ∈ [m], we

identify the i-th column of M with the set Si ⊆ Fp of its 1-positions.

Thus, we have m sets Si in Fp such that, for every two elements a 6=
b ∈ Fp, at least m/4 of the sets satisfy |Si ∩ {a, b}| = 1.

We now define the desired n × n matrix A as follows. The rows of

A are labeled by the pairs (a, i) with a ∈ Fp and i ∈ [m] (recall that

pm = n), and columns are labeled by polynomials f(z) of degree at

most s − 1 over Fp. The matrix A has a 1 in an entry ((a, i), f) if and

only if f(a) ∈ Si.

Claim 6.3. For every prime power p and every integer 1 6 s 6 p, every

two columns of A differ in at least n(p − s)/4p positions.

Proof. Let N(f) = {(a, i) : f(a) ∈ Si} be the set of 1-entries in the

f -column of A. Our goal is to show that |N(f) ⊕ N(g)| > n(p − s)/4p

holds for every two columns f and g of A. For a ∈ Fp, let

∆a := {(a, i) : f(a) ∈ Si �iff g(a) 6∈ Si} .

Note that (a, i) ∈ ∆a if and only if the i-th column of our “ambient”

matrix M has different values in the f(a)-th and g(a)-th rows. Since

every two distinct rows of M differ in at least 1/4 of their m = n/p

positions, we have that |∆a| > m/4 = n/4p holds for every a ∈ D :=

{a ∈ Fp : f(a) 6= g(a)}. On the other hand, since any polynomial of

degree s can have at most s roots, the set D has |D| > p − s elements.

Thus,

|N(f) ⊕ N(g)| =
∑

a∈Fp

|∆a| >
∑

a∈D

|∆a| > (p − s)
n

4p
.

1One can, for example, take p rows of a Sylvester N × N matrix, where N is a
smallest power of 2 such that N > ps.
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Claim 6.4.

SUM2(A) 6 2pn .

Proof. Take a depth-2 circuit with p2 nodes on the middle level, indexed

by the pairs (a, b) ∈ F
2
p. Input nodes (columns of A) correspond to

polynomials f(z), whereas output nodes correspond to pairs (a, i) with

a ∈ Fp and i ∈ [m]. Associate with each input node f and each output

node (a, i) the following subsets of nodes on the middle level:

Vf := {(a, b) ∈ F
2
p : f(a) = b} and W(a,i) := a × Si .

Join each input node f to all nodes in Vf , and each output node (a, i) to

all nodes in W(a,i). Since f is a (single-valued) function, the intersection

Vf ∩ Wa,i = Vf ∩ (a × Si)

can have at most one element: the element (a, f(a)) if f(a) ∈ Si, and

no elements otherwise. Thus, |Vf ∩ Wa,i| = 1 if the entry (f, (a, i)) of

A is 1, and |Vf ∩ Wa,i| = 0 otherwise. In other words, we have exactly

one input-output path for each 1-entry of A, and no paths for 0-entries.

Thus, we have a depth-2 SUM circuit for A. Since |Vf | = p for every

polynomial f , and |Si| 6 p for every i ∈ [m], the total number of edges

in this circuit is at most

∑

f

|Vf | +
∑

(a,i)

|Sx| 6 ps · p + p · m · p = 2pn ,

as desired.

By taking n = ps with s = ⌊p/2⌋ in Claims 6.3 and 6.4, we obtain

an explicit matrix A such that SUM2(A) 6 2pn 4 n ln n/ ln ln n and

every two columns of A differ in > n/8 positions, completing the proof

of the theorem.

Note that the column-distance argument cannot yield superlinear

lower bounds for circuits of depth d > 2 because, say, every two columns

of the Sylvester n × n matrix differ in at least n/2 positions, but

Lemma 2.5 implies that XOR3(H) 4 n.
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6.2 Lower bounds for code matrices

The distance of A is the smallest Hamming distance between the images

of the linear operator x 7→ Ax:

dist(A) = min{|Ax ⊕ Ay| : x 6= y} .

A good n-code matrix is an n × m matrix A such that n 4 m and

dist(A) < n. Such a matrix encodes 0/1 messages x of length m into

codewords y = Ax of length n such that codewords of any two distinct

messages differ in a constant fraction of positions. Thus, good code

matrices are the generator matrices of a linear self-correcting codes

with very good parameters: they have constant rate (codewords are

only constant times longer than messages) and nevertheless can correct

a constant fraction of errors.

We have proved in § 3.8 that XOR2(A) < n ln3/2 n holds for every

good n-code matrix A. Recently, Gál et. al. [33] improved this lower

bound to GEN2(A) < n(ln n/ ln ln n)2, and showed that this cannot be

further improved: there are good code matrices A such that XOR2(A) 4

n(ln n/ ln ln n)2. Currently, their lower bound is the strongest known

bound for depth-2 general, and even XOR circuits. Below we sketch

their proof ideas. Their proof goes by first showing that any general

circuit for a good code matrix must be a kind of a superconcentrator,

and then showing that every such superconcentrator must have many

edges.

Bounds on superconcentrators

A circuit with m inputs and n outputs is called a δ-superconcentrator

if, for every integer 0 < k 6 m, for every k-element subset X of inputs,

and for a random k-element subset Y of output nodes, the expected

number of node-disjoint paths from X to Y is > δk. This is a weakening

of the property of superconcentrators by letting Y be random, and not

requiring to have exactly k node-disjoint paths. Yet another weakening

of the superconcentrator property was earlier considered by Dolev et

al. [22], and Pudlák [86]: here both X and Y are random k-element

subsets.



6.2. Lower bounds for code matrices 97

For some time, it was a hope that superconcentrators must have

superlinear number of edges. However, as we already mentioned in Sec-

tion 3.7, Valiant [105] refuted this hope: superconcentrators with O(n)

edges exist. Pippenger [82] has shown that such (surprisingly small)

superconcentrators exist already in logarithmic depth. Dolev et al. [22]

proved the existence of linear-size superconcentrators already in depth

d, where d = d(n) is a function growing slower than the inverse of any

primitive-recursive function. The next question was: what happens if

the depth is constant?

A lower bound Ω(n ln n) and an upper bound O(n ln2 n) in depth-2

were proved by Pippenger [85]. For larger depths d, Dolev et al. [22],

and Pudlák [86] proved matching bounds of the form nλd(n) for depth-

d (weak) superconcentrators, where λ2(n) ≍ ln n, λ3(n) ≍ ln ln n, and

λd(n) is extremely slowly growing function for larger depths d (see

§ 4.1).

These bounds hold even for the weak versions of superconcentrators.

For the size of the strong version of superconcentrators, where every set

of k inputs must be connected with every subset of k outputs by node-

disjoint paths, better lower bounds were obtained in depth 2. First,

Alon and Pudlák [5] proved the lower bound of n ln3/2 n. By using

different arguments, Radhakrishnan and Ta-Shma [92] were then able

to prove the optimal bound of n ln2 n/ ln ln n.

Codes and superconcentrators

A connection between superconcentrators and circuits computing error-

correcting codes was already observed by Spielman [101]. His construc-

tion of linear-size encoding circuits was inspired by known constructions

of linear-size superconcentrators. Spielman also observed that some sim-

ilarity to superconcentrators is necessary. He proved that circuits with

m inputs and n outputs computing codes with minimum distance δn

have δm node-disjoint paths from any set X of |X| = δm inputs to any

set Y of |Y | = (1 − δ)n outputs.

Gál et. al. [33] proved the following stronger connection between

circuits encoding error-correcting codes and superconcentrators, which

may be of independent interest.
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Lemma 6.5 (Gál et. al. [33]). Let A be an n × m matrix. If dist(A) >

δn, then every general circuit for an n × m matrix A is a δ-

superconcentrator.

Proof. Take a general circuit for A, and let X be a fixed subset of its

|X| = k inputs. For a subset Y of output nodes, let f(Y ) denote the

maximal number of node-disjoint paths from inputs in X to outputs

in Y . Call an output node v 6∈ Y bad, if f(Y ∪ {v}) = f(Y ). Let W be

the set of all |W | = n output nodes.

By a result of Perfect [79] in matroid theory (see also [109, Chapter

13]), the subsets of W formed by the sets of endpoints of node-disjoint

paths from X to W are independent sets of a matroid over W . Thus,

if B is the set of all output nodes that are bad for Y , then f(Y ∪ B) =

f(Y ).

Claim 6.6. For any Y with |Y | < k, at least δn output nodes are not

bad for Y .

Proof. Let B be the set of all output nodes that are bad for Y , and

let ℓ < k be the number of node-disjoint paths from X to Y . Hence,

f(Y ∪B) = f(Y ) = ℓ. By Menger’s theorem, the smallest cut separating

X and Y ∪ B is of size ℓ. If we set all input bits except for X to 0, then

by varying inputs to X we have 2|X| = 2k different inputs. However,

over these 2k inputs, the outputs belonging to Y ∪ B will take on at

most 2ℓ different settings, as these output bits will be determined by

the values at the gates of the cut separating X and Y ∪ B, which is of

size ℓ < k.

Thus there exist two different inputs x and x′ such that the outputs

of our circuit on these two inputs agree on the Y ∪ B part. So the

Hamming distance between the outputs of the circuit on x and x′ is

at most the number of output nodes outside of Y ∪ B. However, since

G computes a code with minimum distance δn, the Hamming distance

between the encodings of any two different inputs has to be at least δn.

Thus, the number of output nodes outside of Y ∪ B is at least δn.

Now pick a random k-element subset Y of output nodes by picking

at random one element at a time. By the claim, we have that as long as
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|Y | < k, with probability at least δ the next randomly chosen output

will increase the number of node-disjoint paths from X to the current

Y by one. By linearity of expectation we get at least δk node-disjoint

paths on average.

Theorem 6.7 (Gál et. al. [33]). For every good n-code matrix A we

have

GEN2(A) < n ·
( ln n

ln ln n

)2
.

Proof. We only sketch the proof without calculating the specific con-

stants arising along the way. The proof uses some ideas invented by

Radhakrishnan and Ta-Shma [92] in their proof of an optimal bound

of Θ(n ln2 n/ ln ln n) on the size of depth-2 superconcentrators; see also

Dutta and Radhakrishnan [25] for a simplification and generalization

of these ideas.

Take a general depth-2 circuit for A, and let E be set of edges in

it. We assume that n is sufficiently large. For a node u and a set of

nodes V , let deg(u) be the degree of u (number of all incoming and

outgoing edges), and degV (u) the number of nodes in V incident with

u. For the sake of contradiction, assume that |E| < cnt2 holds for every

constant c > 0, where

t :=
ln n

ln ln n
.

For a parameter k, split the set V of nodes on the second level into

three classes:

S =

{
v ∈ V : deg(v) <

n

k ln2 n

}
(small-degree nodes)

M =

{
v ∈ V :

n

k ln2 n
6 deg(v) <

n ln2 n

k

}
(medium-degree nodes)

L =

{
v ∈ V : deg(v) >

n ln2 n

k

}
(large-degree nodes)

Our first goal is to choose a value of k for which at most c1nt edges2 are

incident with nodes in M . For this, let ki := ln4i n, and let Mi be the

2In what follows, c1, c2, . . . stand for appropriately chosen constants; these are
small constants depending only on the constants ρ and δ in the definition of a good
code-matrix.
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set M of medium degree nodes when k := ki. Since (n/ki+1) ln2 n 6

n/ki ln2 n, the sets Mi are disjoint. Consider the integers i between

t/16 and t/8. Were Mi be incident with at least 16cnt edges for all

these integers i, then the total number of edges would be at least cnt2,

contradicting our assumption |E| < cnt2.

Thus, we can take c1 = 16c and fix a k between n1/4 and n1/2 for

which at most c1nt edges are incident with nodes in M . Then at least

c2n output nodes w are “good” in the sense that degM (w) 6 c2t, and

at least c3n input nodes u are “good” in the sense that degM (u) 6 c4t

and deg(u) 6 c5t2.

After all these technical preparations, we now come to the crux

of the argument. Let p = 1/ ln n, and consider the following random

process: 3 for each node v ∈ M , with probability p remove all the edges

leaving v, and with the remaining probability 1−p remove all the edges

entering v. An input or output node survives if no edge incident to it

was removed during this process. Let U be the set of surviving good

input nodes, and W the set of surviving good output nodes.

Using the consequence (5.7) of Chebyshev’s inequality for sums of

weakly dependent random 0/1 variables, and making some computa-

tions as in the proof of Theorem 5.13, one can show that |W | > (1−c6)n

and |U | > c7n9/10 both hold with probability > 0. In particular, |U | > k

if n is sufficiently large. Fix U and W with these properties. We know

that:

there were no paths from U to W in the original circuit going

through M .

Now let X ⊆ U be a random k-element subset of U , and Y be a random

k-element subset of output nodes. The proof is finished by proving the

following two contradictory claims:

(i) The expected number of node-disjoint paths from X to Y through

S is > c8k.

(ii) The expected number of all paths from X to Y through S is o(k).

3This idea goes back to Hansel and Krichevski; see the proof of Lemma 3.7. The
same idea was also used in [92, 25].
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Claim (i) follows since the size of L is o(k), the expected number of

node-disjoint paths from X to Y is Ω(k) (by Lemma 6.5), and U is not

connected through M with almost all outputs (since |W | > (1 − c6)n).

Claim (ii) follows from the bounds on the degree of good inputs and

nodes in S.

The lower bound of Theorem 6.7 is optimal as well.

Theorem 6.8 (Gál et. al. [33]). There exist good n-code matrices A

such that

XOR2(A) 4 n ·
( ln n

ln ln n

)2
.

Proof. We will only give a rough idea of the proof of a weaker upper

bound XOR2(A) 4 n ln2 n (the proof of the stronger bound uses exis-

tence of good expander graphs). First, note that

dist(A) = min{|Ax| : x 6= ~0} ,

where |Ax| is the weight of (number of 1s in) the vector Ax. Thus, it is

enough to show that there exists a depth-2 XOR circuit with 4 n ln2 n

edges which, on every nonzero input, outputs a vector with < n ones.

(The task is non-trivial because the circuit must output ~0 on input

x = ~0.) That is, the circuit must be a “magnifier” in the sense that it

maps all nonzero vectors to vectors of very large weight, while mapping
~0 to ~0.

The idea is first to consider r = ln n slices of {0, 1}n, the i-th of

which consists of all vectors of weight between wi = n/ei and wi/e,

and to design depth-1 magnifiers of size about Li = n
wi

ln
( n

wi

)
for each

of these slices. Then one puts these depth-1 magnifiers in parallel, and

constructs a depth-2 circuit as follows: at each gate on the last (output)

level, choose at random one output in each of r depth-1 magnifiers, and

take the XOR of them.

The number of edges on the second level is nr = n log n. Since

n

wi
ln

(
n

wi

)
6

n

wi
ln
(en

wi

)wi

= n ln ei = n · i ,
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the number of edges on the first level also does not exceed the desired

upper bound:
r∑

i=1

Li 6 n
r∑

i=1

i 6 nr2 = n ln2 n

A depth-1 magnifier for the slice of vectors of weight w is also con-

structed by probabilistic arguments. Roughly, at each output node, one

joins it with a subset T of about 1
w ln

(n
w

) ≍ ln(n/w) inputs. Then one

shows that, for every w-element subset S of inputs, |S ∩ T | is odd with

at least some constant probability p > 0; cf. (6.2) below.

In fact, Gál et al. [33] prove matching bounds for generator matrices

of good codes in all depths. For example, in depth 3, the bound is

Θ(n ln ln n). The lower bounds for depths d > 2 are almost direct

consequences of the lower bounds for depth-d weak superconcentrators

proved earlier by Dolev et al. [22], and Pudlák [86].

6.3 Hashing is easy for XOR circuits

An operator f : S → {0, 1}m cannot be injective, if m < log |S|. But

if we allow the dimension of the range be just twice larger (than this

“counting barrier”), then an even linear operator of linear XOR com-

plexity can do the job!

Theorem 6.9 (Miltersen [65]). For any constant c > 0 and any subset

S ⊆ {0, 1}n, there exists a boolean m × n matrix A with m 6 (2 +

c) log |S| rows such that XOR(A) 4 n and Ax 6= Ay for all distinct

x, y ∈ S.

Goldreich and Wigderson [36] proved an earlier, somewhat weaker

upper bound using universal hashing.

Proof. We present a simplified proof due to Chashkin [17] (see also [16]).

Let us first sketch the proof idea. The desired matrix A has the form

A = L · G, where G is 4n × n matrix which maps every nonzero vector

to a vector of weight at least γn for a constant γ > 0. The matrix L has

the property that it maps the G-images of |S|2 differences of vectors in

S into nonzero vectors.
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That the mapping x 7→ Ax is injective follows from the following

considerations:

1. The mapping Ax is injective on S if and only if it does not map

any difference of two distinct vectors of S into zero vector.

2. The mapping Gx is injective on {0, 1}n (simply follows from defi-

nition). Hence, it maps all differences of vectors of S into distinct

vectors of large weight.

3. The mapping Lx maps all images of differences into nonzero vec-

tors.

The matrix L is taken to be a certain type of random matrix with

O(n) ones; each its entry is 1 with probability Θ(1/n). To construct

a matrix G of complexity O(n), a recursion is used, exploiting special

building blocks also provided by probabilistic arguments. When con-

structing G, Chashkin’s proof essentially follows the exposition due to

Sudan [102].

Now we turn to the actual proof.

Expanding operator G Fix a constant δ < 2−8, and let n be suffi-

ciently large. Say that a n × 2n matrix is dispersed if

(i) every column has 7 ones, and

(ii) every k 6 2δn columns have a 1 in more than 4k rows.

Claim 6.10. Dispersed n × 2n matrices Mn,2n exist.

Proof. We will show this by counting. Consider the set of all n × 2n

matrices with 7 ones in each column. Let p be the fraction of these

matrices that are non-dispersed. It is easy to see that the number of

possibilities to choose k columns with 1s in 4k rows is
(2n

k

)
, and there

are
( n

4k

)
possibilities to choose these 4k rows. The 1s in these k columns

can be displaced in at most
(4k

7

)k
ways, and in the remaining columns

this can be done in
(n

7

)2n−k
ways. Thus, p is at most the sum over all

1 6 k 6 2δn of

(
2n

k

)(
n

4k

)(
4k

7

)(
n

7

)2n−k(
n

7

)−2n

=

(
2n

k

)(
n

4k

)(
4k

7

)(
n

7

)−k
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6
(3 · 2n

k

)k(3 · n

4k

)4k[4k(4k − 1) · · · (4k − 6)

n(n − 1) · · · (n − 6)

]k

6
(3 · 2n

k

)k(3n

4k

)4k(4k

n

)7k
= 35k27k

(k

n

)2k
< (3527δ2)k 6 2−k .

Thus, the fraction of not dispersed matrices is p 6
∑2δn

k=1 2−k = 1 −
2−2δn < 1, as desired.

Claim 6.11. Let M = Mn,2n be a dispersed n×2n matrix. Then |Mx| >

|x| holds for every vector x ∈ F
2n
2 of weight |x| 6 2δn.

Proof. It is enough to show that, for every k 6 2δn columns, there are

more than k rows, each having exactly one 1 in these columns. To show

this, take any k 6 2δn rows of M , and let M ′ be the corresponding

n × k submatrix of M . Let a be the number of rows having exactly one

1, and b the number of rows having at least two 1s in M ′. Since the

matrix M is dispersed, we have that a + b > 4k and a + 2b 6 7k, which

yields a > 4k − b > 4k − (7k − a)/2 = k/2 + a/2, that is, a > k, as

desired.

Claim 6.12. There is a constant 0 < γ < 1, and a 4n × n matrix

G = G4n,n such that XOR(G) 4 n and |Gx| > 4γn for every x ∈ F
n
2 ,

x 6= ~0.

Proof. Induction on log n. Let m be the smallest m for which there

exists a 4m × 2m matrix from Claim 6.11. Let G = G4m,m be the

matrix such that Gx = (x, x, x, x). That is, G consists of 4 identity

matrices Im. It is clear that then |Gx| > 4γm holds for all x 6= ~0 with

γ = 1/m.

Now assume a matrix G4n,n exists for some n > m. Using this

matrix and dispersed matrices Mn,2n guaranteed by Claim 6.11, we

define the 8n × 2n matrix G = G8n,2n as follows:

G8n,2n =




I2n

G4n,n · Mn,2n

M2n,4n · G4n,n · Mn,2n


 .

Set γ = min{1/m, δ/4}, and let x ∈ F
2n
2 be an arbitrary nonzero

vector. Our goal is to show that |Gx| > 8γn. This clearly holds if
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|x| > 8γn. If |x| < 8γn then, by Claim 6.11, the vector x′ = Mn,2nx

has nonzero weight, and the induction hypothesis implies that the vec-

tor y = G4n,nx′ has weight |y| > 4γn. If we have an even stronger

inequality |y| > 8γn, then we are done. If 4γn 6 |y| < 8γn then, by

Claim 6.11, we have that the vector z = M2n,4ny has weight |z| > |y|,
and hence, |Gx| > |y| + |z| > 8γn.

It remains to show that XOR(G4n,n) is linear in n. At this point,

it is convenient to allow that output nodes may have nonzero fanout:

it is clear that by adding a linear number of edges, we can obtain a

standard circuit. Under this proviso, we have that XOR(G4n,n) 6 42n.

Indeed, since the matrix Mn,2n has only 14n ones, we obtain that

XOR(G8n,2n) 6 XOR(M2n,n) + XOR(G4n,n) + XOR(M4n,2n)

6 14n + 42n + 28n = 42 · 2n .

Contracting operator L Now let t > 0 be an integer parameter, and

0 < γ < 1 a constant.

Claim 6.13. For every set D ⊆ F
n
2 of 0 < |D| < 2n vectors such

that |x| > γn for all x ∈ D, there exists an m × n matrix L with

m = ⌈(1 + 2−t) log 2|D|⌉ such that XOR(L) 4 mt and Lx 6= ~0 for all

x ∈ D.

In the proof of this last claim, we will use the following simple fact:

if X = X1 + · · · + Xt is a sum of independent 0-1 Bernoulli random

variables, each with success probability α, then

Pr[X is odd] =
1 − (1 − 2α)t

2
. (6.2)

To verify this, it is enough to consider the product Y of t ±1 random

variables Yi = 1−2Xi. Hence, the sum of Xi is odd if and only if Y = −1.

Since the Yi’s are independent, we have E [Y ] =
∏

i E [Yi] =
∏

i(1 − 2α).

It remains to observe that E [Y ] = Pr[Y = 1] − Pr[Y = −1] = 1 − 2 ·
Pr[Y = −1].

Proof of Claim 6.13. Take a random m×n matrix L, where each entry

is set to 1 independently and with equal probability α. Let x ∈ F
n
2 be
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a fixed vector of weight |x| > d where d > γn. By (6.2),

Pr[Lx = ~0] 6 2−m[1 + (1 − 2α)d]m 6 2−m(1 + 2−2αd)m 6 2−m4m2−2αd
.

If we take α = (t + 2)/2d, then the right-hand side is at most

2−m(1−2−t−1). For our choice of m, we have that Pr[Lx = ~0] < 1/(2|D|),
from which

Pr[Lx = ~0 for some x ∈ D] < |D|/(2|D|) = 1/2

follows. On the other hand, the expected number of 1s in L is αnm 6

(t+1)γm. By Chebyshev’s inequality, L will have more than 2(t+1)γm

ones with probability < 1/2. Thus, the desired matrix L exists.

Proof of Theorem 6.9 Now we can finish the proof of the theorem as

follows. Let c > 0 be a given constant, and take t = ⌈− log c + 2⌉. Let

S ⊆ F
n
2 , and consider the set D = {x ⊕ y : x 6= y ∈ S} of all differences

(modulo 2) between the vectors in S. Claim 6.12 gives us a 4n × n

matrix G = G4n,n such that XOR(G) 4 n and |Gx| > 4γn for every

x ∈ D. On the other hand, Claim 6.13 gives us an m × 4n matrix L

such that XOR(L) 4 mt 4 n, Lx 6= ~0 for all x ∈ D and

m = ⌈(1 + 2−t) log 2|D|⌉ 6 2(1 + c/4) log |S| + 1 6 (2 + c) log |S| .

Thus, A = L · G is the desired m × n matrix with Ax 6= Ay for all

x 6= y ∈ S. This completes the proof of Theorem 6.9.

By taking S to be the set of all vectors with Hamming weight 6 k,

we obtain the following consequence.

Corollary 6.14. For every 1 6 k 6 n/2, there is an m × n matrix A

with m 4 log
(n

k

)
rows such that XOR(A) 4 n and any k columns of A

are linearly independent.

Note that the matrix in this corollary is a parity-check matrix of a

linear self-correcting code with very good parameters. As we mentioned

in § 6.2, Gál et al. [33] also proved surprisingly small upper bounds for

generator matrices A of good self-correcting codes. These bounds show

why lower bounds on the size of XOR circuits are so difficult to prove:

these circuits may have unexpected power!
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Conclusion and Open Problems

We described known and new results concerning the computational

complexity of linear operators over different semirings. Unlike the XOR

complexity, the SUM and the OR complexities are relatively well un-

derstood. Still, even there some questions remain. In particular, we al-

ready know (Theorem 5.1) that the SUM/OR gap is at least n1/2−o(1),

if we allow OR circuits of depth at least 3. But what about depth 2?

We know that the gap SUM2(A)/OR2(A) may be at least logarithmic

(Theorem 5.4).

Problem 7.1. How large the SUM/OR gaps can be?

We know that the intersection matrices Ðn (complements of Kneser–

Sierpinski matrices) have small OR complexity; see (4.2).

Problem 7.2. What is the SUM complexity of Ðn?

For the n × n Kneser–Sierpinski matrix Dn, we know that

OR2(Dn) ≍ n1+c for some constant c lying somewhere between 0.16

and 0.28 (see Lemma 4.2).

Problem 7.3. What is the right order of magnitude of OR2(Dn)?

107
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As we mentioned in § 2.1, Pippenger [81, 83] achieved the asymp-

totics L(m, n) ∼ mn/ log(mn) for the complexity of the hardest boolean

n×m matrix for all log n ≪ m 6 n via constructing circuits of growing

depth. Several years before, Nechiporuk conjectured that this can be

achieved in constant depth, and even in depth 4.

Problem 7.4. Does Ld(m, n) ∼ mn/ log(mn) hold for all log n ≪ m 6

n and a constant d?

We used Kronecker products of matrices to show the SUM/OR

gap (Theorem 5.1) as well as the optimality of Nechiporuk’s theorem

(Theorem 3.9). We have also shown (Theorem 3.20) that L(A ⊗ B) >

r·|A|/k2 holds for every (k+1)-free matrix B, where r is the L-rank of A,

and L ∈ {SUM, OR}. In depth 2, we have a stronger bound L2(A⊗B) >

tr(A) · L2(B) (Theorem 3.19).

Problem 7.5 (Find et al. [30]). Does L(A ⊗ B) > r · L(B) hold?

The next problem is to better understand the effect of the depth.

Problem 7.6. How much can the restriction to depth 2 increase the

L-complexity?

For the Sylvester n × n matrix H = Hn, we have that OR2(H) ≍
n3/2 (Theorem 4.3) but OR(H) 4 n log n. Thus, OR2(H)/OR(H) <√

n/ log n. Theorems 5.1 and 5.2 show that the same gap is achievable

on a matrix A with OR(A) 4 n. By taking the n × n matrix M =

Hm ⊗Jk, where n = km and Jk is the k ×k all-1 matrix with k = log n,

one can slightly improve the gap until
√

n/ log n. Since the matrix

M is t-free for t = k
√

m, Theorem 3.9 yields OR2(M) > |M |/t <

k2m2/t = km3/2. On the other hand, Lemma 2.8 and Lemma 2.6 yield

OR(M) 6 L(Hm) + 2km 4 km.

It would be interesting to beat this “square root” gap. Yet fewer

is known about what happens with XOR circuits. Spielman [101] con-

structed explicit good code matrices A with XOR(A) 4 n. Together

with Theorem 6.7, this yields an explicit gap of about ( ln n
ln ln n)2.

Problem 7.7. Do matrices A with XOR2(A)/XOR(A) growing faster

than polylog(n) exist?
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In Theorem 5.13 we have shown that matrices A achieving the gaps

OR(A)/OR(A) < n1−o(1) exist.

Problem 7.8. Exhibit explicit matrices achieving such a gap.

We have shown that almost all submatrices of the Sylvester matrix

exhibit almost maximal OR/XOR gaps (Theorem 5.8). Explicit gaps

up to n/∆ with ∆ = 2O(
√

ln n ln ln n) are also known (see § 5.4).

Problem 7.9. Improve this explicit gap.

A related problem (cf. § 5.4) is

Problem 7.10. What are the largest possible gaps OR2(A)/XOR2(A)

and OR3(A)/XOR3(A) for a 2-free matrix A?

Unlike for OR/XOR gaps, much less is known about XOR/OR gaps.

The gap of Ω(ln ln ln n) in depth 2 was shown in Theorem 5.12.

Problem 7.11. Do matrices A with XOR(A)/OR(A) → ∞ exist?

Intersection matrix Ðn could be again a natural candidate to try.

One can also consider an analogue of one-wayness problem for lin-

ear operators: how large the gap XOR(A)/XOR(A−1) may be for an

invertible matrix A over F2. One can easily see that in constant depth

the gap grows unboundedly: just consider the full triangular matrix Tn

and note that T −1
n is a bidiagonal matrix. Thus,

XOR2(Tn)/XOR1(T −1
n ) ≍ log n and XORd(Tn)/XOR1(T −1

n ) → ∞

for any constant d. In unbounded depth the following problem is open

and deserves investigation.

Problem 7.12. Do matrices A with XOR(A)/XOR(A−1) → ∞ exist?

Hiltgen [46] has (implicitly) proved the following non-trivial upper

bound

XOR(A)/XOR(A−1) 4 (n/ log n)1/2 .

for any triangular matrix A, that is, any matrix obtained from Tn by

flipping to 0 some its 1s outside the diagonal.
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The situation with explicit lower bounds for XOR circuits is even

worse. The strongest known lower bounds are due to Gál et al. [33].

In depth 2 these bounds are of the form n(ln n/ ln ln n)2, and are of

the form n ln ln n in depth 3. On the other hand, as noted already by

Valiant [106], dense 2-free matrices “should” require large XOR circuits,

at least in depth 2.

Problem 7.13. Does any of the known dense 2-free n × n matrices A

require XOR2(A) < n1+ǫ for a constant ǫ > 0?

A related problem of Pudlák, Rödl and Savický [89] asked whether

the complements A of dense 2-free matrices A must have large boolean

rank rk∨(A). If true, this together with Valiant’s reduction [106], would

imply a superlinear lower bound for fanin-2 circuits over {∧, ∨, ¬} of

logarithmic depth (see [50, Chapter 11] for how this happens).

Recently, Katz [53] almost refuted this belief via probabilistic argu-

ments: there exist 2-free n × n matrices A with |A| < n1+ǫ ones, for

a constant ǫ > 0, such that rk∨(A) 4 log n; see Theorem 5.13(ii) for

a simpler proof. We write “almost refuted”, because his matrices are

not dense enough. In § 1.3, we have seen explicit 2-free matrices with

|A| < n3/2 ones. To have the desired consequences for fanin-2 circuits

of logarithmic depth, it would be enough to show that there is an ar-

bitrary small constant c > 0 such that the complement of a matrix A′,
obtained by removing all but n3/2−c ones from A, has boolean rank at

least nc.

The following two problems deal with the effect of circuit

fanin/fanout and memory size. Although we do not touched these as-

pects, they deserve an attention.

Problem 7.14. Find an asymptotic of the complexity of n × n boolean

matrices in the class of fanin-2 and fanout-2 XOR circuits.

By Theorem 2.4 and Observations 1.3 and 1.1, the asymptotic value

has the form cn2/ log n for some constant c between 1 and 2. The

problem is to determine this constant. Important here is that both the

fanin and the fanout are bounded. If we leave one of them unbounded,

then similar arguments as in the proof of Theorem 2.4 give n2/2 log n

nodes, and hence, n2/ log n edges.
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One can also consider memory (or space) restriction which is nat-

urally applied to the straight-line version of XOR circuits. Assume we

are given an n × n matrix A and m > n bit registers. Initially, n of

the registers are filled with the bits of a given input vector x, and the

value of any other register is zero. A computation proceeds step by

step: at each step, the sum of values in some registers is computed,

and the result is written into one of the registers; the old value of this

register disappears. Finally, some n of registers output the required

vector y = Ax. The complexity of a computation is the total number

of summands in computed sums, which is the number of edges in the

corresponding XOR circuit. In the case m = n the computation (pro-

gram or corresponding circuit) is usually called in-place. Note that this

model is even more restricted than that of leveled circuits with at most

n nodes on each level: in an in-place circuit, the registers cannot be

changed in parallel.

Unlike for the case of boolean functions and boolean circuits, each

boolean matrix can be computed by an in-place XOR circuit. This

can be done, for example, by Gaussian elimination: registers x1, . . . , xn

correspond to columns, and the addition of the i-th column to the j-

th column means to replace the current content of xj by xi ⊕ xj . In

fact, if the matrix has full rank, then in-place circuit just is a Gaussian

elimination procedure.

Problem 7.15 (Wigderson [110]). Prove an explicit nonlinear lower

bound on the in-place XOR complexity.

A related and apparently easier question is to show that matrices A

whose in-place complexity is larger than XOR(A) exist.

We already know that n × n requiring XOR circuits of size about

n2/ log n exit; see Theorem 2.4. Also, all known superlinear lower

bounds for depth-2 XOR circuits (except those proved using rigidity

arguments) actually hold for general circuits where arbitrary boolean

functions are allowed as gates.

Problem 7.16. Do n × n matrices with GEN2(A) < n2/ log n exist?

We only know an affirmative answer for “half-linear” circuits, where

either all middle gates or all output gates are required to be linear. Ac-
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tually, every such circuit can even be “linearized”, that is, transformed

into an XOR circuit of depth 2 computing the same operator without

increasing the complexity.

Lemma 7.17. Half-linear depth-2 circuits can be linearized.

Proof. First, consider the case when XOR-gates are on the output level.

Imagine each function f(x) computed at a gate on the middle level as

its multilinear XOR (Zhegalkin polynomial) representation. The linear

part of a polynomial is a sum of degree-1 monomials. Clearly, each

sum computed at an output gate is a sum of linear parts of its inputs

(nonlinear parts must be canceled to get a linear function). So, all

middle-level functions can be replaced by their linear parts.

Next, consider the case when XOR-gates are on the middle level.

Take one output gate, and let V be the linear span of sums computed

in the middle-level inputs of this gate. Suppose that the function f

computed at this gate is not an XOR of some of its inputs. Since the

function f must be linear, this means that f is of the form f = g ⊕ h

with g ∈ V and h 6∈ V . Let g1, . . . , gs be a basis of V . Our assumption

h 6∈ V implies that for every boolean α1, . . . , αs, β, the system g1(~x) =

α1, . . . , gs(~x) = αs, h(~x) = β has a solution.

Now consider solutions ~x0 and ~x1 of two such systems differing only

by values 0 and 1 of β. Then all functions in V take the same values

on ~x0 and ~x1. Hence, the function f must take the same values as well.

But this is impossible, because h(~x0) = 0 and h(~x1) = 1. This shows

that f must be a linear combination of its inputs, as desired.

For a measure L(A) with L ∈ {XOR, GEN}, let L[A] denote its “re-

laxed” version, where it is only required that a circuit correctly com-

putes the operator y = Ax over F2 on n unit vectors x ∈ {~e1, . . . , ~en};

on other inputs x it may output arbitrary values. It is easy to see that

XOR[A] = XOR(A), that is, in the case of XOR circuits, this is no re-

laxation at all. Thus, n × n matrices A with XOR[A] < n2/ log n exist.

On the other hand, Jukna [49] has shown that GEN2[A] 4 n log n holds

for all matrices.1 Thus, XOR[A]/GEN2[A] < n/ log2 n. That is, under

1Moreover, the constructed circuits are half-linear with polynomials of only log-
arithmic degree as output gates.
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the relaxation (be correct only on basis vectors), usage of superlinear

gates can help to substantially reduce the circuit size. But what about

the gap XOR(A)/GEN(A)?

Problem 7.18. Do non-linear gates help to compute F2-linear opera-

tors?

It is known that the answer is “no” for circuits over infinite fields;

see, for example, [13, Theorem 13.1].

When trying to approach this question over the field F2, one faces

the following “min-rank conjecture”. A completion of a partially defined

0/1 matrix A is a 0/1 matrix obtained by setting undefined entries to 0

and 1. Let R(A) be the smallest possible rank over F2 of a completion

of A. A system of semi-linear equations for a partial matrix A has the

form A0~x = f(~x), where A0 is obtained from A by setting all undefined

entries to 0, and f : F
n
2 → F

n
2 is an operator, the i-th coordinate

of which can only depend on variables corresponding to the undefined

entries in the i-th row of A. Let s(A) be the maximum, over all possible

operators f , of the number of solutions of such a system.

Problem 7.19 (Jukna and Schnitger [51]). Is s(A) 6 2n−ǫ·R(A) for some

constant ǫ > 0?

If true, this would give a negative solution for Problem 7.18: then

XOR(A)/GEN(A) = O(1).

Note that Problem 7.18 concerns the power of non-linear gates when

computing linear operators y = Ax over the XOR group. One can also

ask a similar question for the OR semigroup: Do non-linear gates can

help to simultaneously compute boolean sums? That is, if GENOR(A)

denotes the smallest size of a general (not just OR) circuit simultane-

ously computing all the n ORs yi =
∨

aij=1 xj, how large can the gap

OR(A)/GENOR(A) be?

Results above imply that this gap can be almost maximally possi-

ble, can be as large as Ω(n/ log3 n). This follows from the gaps (5.11)

between the OR complexities of matrices and their complements, to-

gether with a simple observation that GENOR(A) 6 GENOR(A) + 2n.

To see this upper bound, take a circuit for A (computing all ORs given
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by A). To obtain a circuit for A, just add one gate computing the OR

h of all n variables, and replace each output gate yi by yi ∧ ¬h. Im-

portant in this construction was that we allow NOT gates: Nechiporuk

[74], Mehlhorn [64], and Pippenger [84] have shown that every circuit

with only OR and AND gates for a (k + 1)-free matrix A must gave at

least |A|/k3 wires.

Finally, let us mention that the problems above are chosen from the

perspective of seeking incremental improvements in this research area.

The really important longer-term goals are much more ambitious:

• Can we find explicit rigid boolean matrices?

• Can we prove XOR2(A) > n1+Ω(1) in depth 2?

• Can we prove a super-linear lower bound on XOR(A), at least

when the depth is restricted to be logarithmic?
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