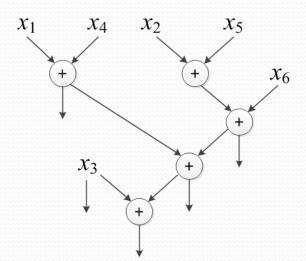
Lower bounds on the additive complexity of linear operators over GF(2)

> I.S. Sergeev MVK seminar, 2024

Additive circuits



	0	0	1	0	0	0
	0	1	0	0	1	1
A =	1	0	0	1	0	0
	1	1	0	1	1	1
	1	1	1	1	1	1

1 + 1 = 2	circuits over $\{\mathbb{Z},+\}$	d monotone
1 + 1 = 1	circuits over $\{\mathbb{B}, \vee\}$	\int models
1 + 1 = 0	circuits over $GF(2)$	-

Complexity of a matrix A over GF(2): L(A)

Preliminary information

$$L(n \times n) \sim \frac{n^2}{2\log_2 n}$$
 (E. I. Nechiporuk, 1963)

In monotone models: $L_{mon}(A) = n^{2-o(1)}$ for explicit matrices (A. E. Andreev, 1986; J. Kóllar, L. Rónyai, T. Szabó, 1996)

Open problem: construct an explicit example $L(A) = \omega(n)$

Direct sums of matrices

$$A \boxplus B = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}; \qquad \mathsf{L}_{mon}(A \boxplus B) = \mathsf{L}_{mon}(A) + \mathsf{L}_{mon}(B)$$
$$\frac{1}{2}(\mathsf{L}(A) + \mathsf{L}(B)) \le \mathsf{L}(A \boxplus B) \le \mathsf{L}(A) + \mathsf{L}(B)$$

Example (from a paper by W. Paul, 1976): $B \in GF(2)^{n \times n}$, $L(B) = n^{2-o(1)}$.

$$\mathsf{L}(I_n \otimes B) = \mathsf{L}(B \boxplus \cdots \boxplus B) = \mathsf{L}(B \cdot X) \preceq n^{2.38} \ll n\mathsf{L}(B)$$

Lower bounds in GF(2). Easy example

Transposition principle (B. S. Mityagin, B. N. Sadovskii, 1965): **Claim.** For a matrix $A \in GF(2)^{m \times n}$ without zero rows and columns, $L(A) + m = L(A^{\top}) + n.$

$$Y_n \in GF(2)^{n \times (2^n - 1)} : \qquad Y_3 = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

 $\Rightarrow \mathsf{L}(Y_n) \sim 2 \cdot 2^n$

$$\begin{split} & \frac{\operatorname{Example} \; (\text{from a paper by A. V. Chaskin, 1994; modified}):}{m = \log_2 n, \quad U \in GF(2)^{m \times (n-m)}, \quad U \subset Y_m: \quad A = \begin{bmatrix} U & 0 \\ 0 & U^{\top} \end{bmatrix}} \in GF(2)^{n \times n}. \\ & \Rightarrow \mathsf{L}(A) \ge \mathsf{L}(U) + n - 2m = \mathsf{L}(U^{\top}) + 2n - 4m \ge 3n - 6m \sim 3n. \end{split}$$

Extended complexity

Extended circuit:

- may have inputs of additional variables Y;

- if an element computes a sum $\langle a, X \rangle + \langle b, Y \rangle$, then let b be the type of the element.

- complexity $L^* =$

the number of elements – the number of different types of weight ≥ 2 . By definition, $L^*(A) \leq L(A)$.

Lemma. For any pair of boolean matrices A, B,

 $\mathsf{L}^*(A\boxplus B)=\mathsf{L}^*(A)+\mathsf{L}^*(B),\qquad\quad\mathsf{L}(A\boxplus B)\geq\mathsf{L}(A)+\mathsf{L}^*(B).$

Theorem. For any matrix $A \in GF(2)^{m \times n}$, it holds that $L^*(A) \leq 2m + n$.

Main theorem

<u>Independency index</u> ind(B) of a vector set $B \subset GF(2)^m$: maximal number $k \leq |B|$, such that any k vectors from B are linearly independent over GF(2).

Theorem. Let $m \le n$, a matrix $B \in GF(2)^{n \times m}$ does not have rows of weight 1, and $ind(B) \ge 2k \ge 6$. Then

$$\mathsf{L}^{*}(B) \ge n + \frac{2k - 4}{2k - 1} \cdot n^{1 - \frac{1}{k}} - m.$$

For $k \gg \log n$, the lower bound is 2n - o(n) - m.

Notes to the theorem

 $m = n^{8/9};$

 $n \times m$ matrix B of random rows of weight 3:

- has complexity $L(B) \leq 2n$;
- $-\operatorname{ind}(B) \succeq n^{1/9}$ (due to good expanding properties).

 \Rightarrow the bound of the theorem is (asymptotically) tight.

<u>Fact</u>: if a linear code with the check matrix H has distance d, then $\operatorname{ind}(H^{\top}) = d - 1$.

Main corollary

 $p = \log_2 n, \quad s = \sqrt{n}, \quad m = ps \qquad \alpha_1, \dots, \alpha_{n-m} \in GF(2^p),$

$$U = \begin{pmatrix} \alpha_1^1 & \alpha_1^2 & \dots & \alpha_1^s \\ \alpha_2^1 & \alpha_2^2 & \dots & \alpha_2^s \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{n-m}^1 & \alpha_{n-m}^2 & \dots & \alpha_{n-m}^s \end{pmatrix} \in GF(2)^{(n-m)\times m}$$

 $\operatorname{ind}(U) \ge s.$

Corollary 1. $A = U^{\top} \boxplus U \in GF(2)^{n \times n} \Rightarrow |\mathsf{L}(A) \ge 5n - o(n).|$

► $L(A) \ge L^*(U) + L(U^{\top}) \ge L^*(U) + L(U) + n - 2m \ge 5n - o(n).$

Corollary 2. $A = 1_{m \times (n-m)} \boxplus U \in GF(2)^{n \times n} \Rightarrow L^*(A) \ge 3n - o(n).$

• $L^*(A) = L^*(1_{1 \times (n-m)}) + L^*(U);$ $L^*(1_{1 \times n}) = L(1_{1 \times n}) = n-1.$

Bilinear algorithms

- Bilinear form: $\sum a_{ij} x_i y_j$
- Bilinear algorithm (for a system of bilinear forms) = circuit over $\{+, \times\}$:
- all multiplications are of the form $(\sum \alpha_i x_i) \cdot (\sum \beta_j y_j)$

Matrix multiplication

Complexity of a *bilinear algorithm* for a system of bilin. forms F over GF(2): - $\mathsf{Bil}_+(F)$ - minimal number of additive operations;

- $-\operatorname{Bil}_{*}(F)$ minimal number of auditive operations;
- $-\operatorname{Bil}(F)$ minimal overall number of operations.

 MM_n — operator of multiplication of matrices in $GF(2)^{n \times n}$. Fact: $\text{Bil}_*(MM_n) \ge 3n^2 - o(n^2)$ (A. Shpilka, 2003)

Lemma. For any matrix $A \in GF(2)^{n \times n}$,

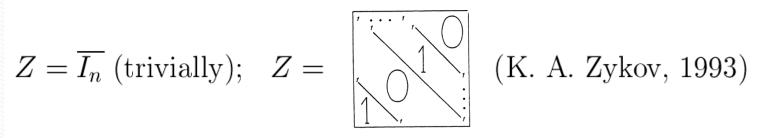
$$\mathsf{Bil}_+(MM_n) \ge n\mathsf{L}^*(A) + n^2 - \nu(A) - O(n).$$

 $X \cdot Y \to A \cdot Y;$ $L^*(A \boxplus \cdots \boxplus A) = nL^*(A).$

Corollary. $Bil_+(MM_n) \ge (4 - o(1))n^2$, $Bil(MM_n) \ge (7 - o(1))n^2$.

Circulant matrices

 $S \subset [n]; \quad Z_{n,S} \in GF(2)^{n \times n}$: 1s in the 1st row are in positions S. Known bounds for $GF(2)^{n \times n}$: $L(Z) \ge 2n - o(n)$.



Claim. If a matrix $B \in GF(2)^{n \times m}$, $n \ge m$, doesn't contain rectangles, and its every row has weight $\geq s$, then $ind(B) \geq s$.

S is a Sidon set \Rightarrow there are no rectangles in $Z_{n,S}$. Example: $p \sim \sqrt{n}$, $S_n = [n] \cap \{s_k = 2pk + (k^2 \mod p) \mid k \ge 1\}$ (P. Erdos, P. Turán, 1941)

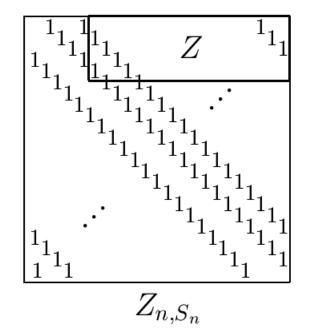
Circulant matrices

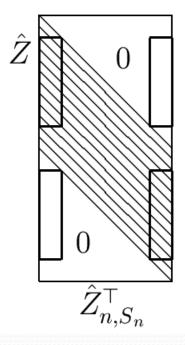
$$\hat{Z}_{n,S_n} \in GF(2)^{n \times (2n-1)}$$

Corollary.

$$\mathsf{L}(Z_{n,S_n}) \ge 3n - o(n),$$

$$\mathsf{L}(\hat{Z}_{n,S_n}^{\top}) \ge 4n - o(n).$$



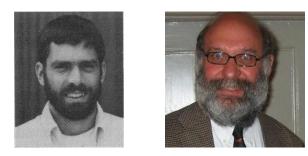


Polynomial multiplication

 M_n – operator of multiplication of degree n-1 polynomials over GF(2); CC_n – the order n cyclic convolution over GF(2):

$$CC_n(x_1,\ldots,x_n;y_1,\ldots,y_n) = \left\{ \sum_{i+j \equiv k \bmod n} x_i y_j \mid k = 1,\ldots,n \right\}$$

Fact: $\text{Bil}_*(M_n) \ge (3.52 - o(1))n$. (M. R. Brown, D. P. Dobkin, 1980)



Lemma. For any set $S \subset \llbracket n \rrbracket$,

 $Bil_{+}(CC_{n}) \ge L(Z_{n,S}) + n - |S| - O(1),$ $Bil_{+}(M_{n}) \ge L(\hat{Z}_{n,S}^{\top}) + n - |S| - O(1).$

Corollary. $\text{Bil}_+(CC_n) \ge (4 - o(1))n$, $\text{Bil}_+(M_n) \ge (5 - o(1))n$, $\text{Bil}(M_n) \ge (8.52 - o(1))n$.

Complexity of the Sierpinski matrices

Sierpinski matrices (or disjointness matrices) $D_n \in GF(2)^{2^n \times 2^n}$:

$$D_0 = 1,$$
 $D_1 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix},$ $D_{k+1} = \begin{bmatrix} D_k & D_k \\ 0 & D_k \end{bmatrix}.$

Alternatively: $D_n[I, J] = (I \cap J = \emptyset), \quad I, J \subset \llbracket n \rrbracket.$

Hypothesis: $\mathsf{L}(D_n) = \omega(2^n)$

 $D_{n,k}$ – a submatrix composed from columns indexed by sets of cardinality $\leq k$. $D_{n,k}$ has size $2^n \times (C_n^0 + C_n^1 + \ldots + C_n^k)$.

 $\mu_{n,k}$ — minimal number of monomials for a nonzero boolean function on n variables, taking value 0 on all inputs of weight $\geq n - k$.

Lemma. (1)
$$\operatorname{ind}(D_{n,k}) \ge \mu_{n,k} - 1$$
, (2) $\mu_{n,k} > k^{5/2}/(5n)$.

Corollary. $L(D_n) \ge (3 - o(1))2^n$. $k = n/3: \quad L(D_n) \ge L(D_{n,k}^{\top}) = L(D_{n,k}) + 2^n - o(2^n) \ge (3 - o(1))2^n$.

Open problems

Hystorical:

For a rectangle-free matrix $A \in GF(2)^{n \times n}$: L(A) vs $\nu(A) - n$? (B. S. Mityagin, B. N. Sadovskii, 1965)

First examples $\frac{L(A)}{\nu(A)-n} < const < 1$: by depth-3 circuits (S. B. Gashkov, 1973; K. A. Zykov, 1998)

Finally:

$$\inf_{A \in GF(2)^{n \times n}} \frac{\mathsf{L}(A)}{\nu(A) - n} = n^{o(1) - 0.5}$$

on explicit examples

(S. B. Gashkov, I. S. Sergeev, 2010)

Open problems

1. Construct a pair of explicit matrices A_1 , A_2 with $L(A_1 \boxplus A_2) < L(A_1) + L(A_2)$.

2. Construct a matrix A: $L_{\vee}(A) \ll L(A)$.

3. Do conjunctions allow to reduce the complexity of a linear operator?

Note: for circuits over (\mathbb{B}, \vee) , yes! (R. E. Tarjan, 1978)

4. Is it true that $L(D_n) < n2^{n-1}$ as $n \to \infty$?

5. Does a circulant matrix Z exist such that $L(Z) = \omega(n)$?

Note: There exist circulant matrices $L_{mon}(Z) = n^{2-o(1)}$ (M. I. Grinchuk, 1988); moreover, there are explicit examples (S. B. Gashkov, I. S. Sergeev, 2012)

