Lower bounds on the additive complexity of linear operators over GF(2)

> I.S. Sergeev MVK seminar, 2024

Additive circuits

Complexity of a matrix A over $GF(2)$: $\mathsf{L}(A)$

Preliminary information

$$
\mathsf{L}(n \times n) \sim \frac{n^2}{2 \log_2 n} \text{ (E. I. Nechiporuk, 1963)}
$$

In monotone models: $\mathsf{L}_{mon}(A) = n^{2-o(1)}$ for explicit matrices (A. E. Andreev, 1986; J. Kóllar, L. Rónyai, T. Szabó, 1996)

Open problem: construct an explicit example $\mathsf{L}(A) = \omega(n)$

Direct sums of matrices

$$
A \boxplus B = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}; \qquad \mathsf{L}_{mon}(A \boxplus B) = \mathsf{L}_{mon}(A) + \mathsf{L}_{mon}(B)
$$

$$
\frac{1}{2}(\mathsf{L}(A) + \mathsf{L}(B)) \le \mathsf{L}(A \boxplus B) \le \mathsf{L}(A) + \mathsf{L}(B)
$$

Example (from a paper by W. Paul, 1976): $B \in GF(2)^{n \times n}$, $\mathsf{L}(B) = n^{2-o(1)}$.

$$
L(I_n \otimes B) = L(B \boxplus \cdots \boxplus B) = L(B \cdot X) \preceq n^{2.38} \ll nL(B)
$$

Lower bounds in GF(2). Easy example

Transposition principle (B. S. Mityagin, B. N. Sadovskii, 1965): **Claim.** For a matrix $A \in GF(2)^{m \times n}$ without zero rows and columns, $\mathsf{L}(A) + m = \mathsf{L}(A^{\top}) + n.$

$$
Y_n \in GF(2)^{n \times (2^n - 1)}: \t Y_3 = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}
$$

$$
\Rightarrow \mathsf{L}(V_n) \sim 2 \cdot 2^n
$$

Example (from a paper by A.V. Chaskin, 1994; modified): $m = \log_2 n$, $U \in GF(2)^{m \times (n-m)}$, $U \subset Y_m$: $A = \begin{bmatrix} U & 0 \\ 0 & U^{\top} \end{bmatrix} \in GF(2)^{n \times n}$. $\Rightarrow L(A) \ge L(U) + n - 2m = L(U^T) + 2n - 4m \ge 3n - 6m \sim 3n.$

Extended complexity

Extended circuit:

 $-$ may have inputs of additional variables Y;

- if an element computes a sum $\langle a, X \rangle + \langle b, Y \rangle$, then let b be the *type* of the element.

 $-$ complexity $L^* =$

the number of elements – the number of different types of weight ≥ 2 . By definition, $\mathsf{L}^*(A) \leq \mathsf{L}(A)$.

Lemma. For any pair of boolean matrices A, B,

 $L^*(A \boxplus B) = L^*(A) + L^*(B),$ $\mathsf{L}(A \boxplus B) \geq \mathsf{L}(A) + \mathsf{L}^*(B).$

Theorem. For any matrix $A \in GF(2)^{m \times n}$, it holds that $\mathsf{L}^*(A) \leq 2m + n$.

Main theorem

Independency index ind(B) of a vector set $B \subset GF(2)^m$. maximal number $k \leq |B|$, such that any k vectors from B are linearly independent over $GF(2)$.

Theorem. Let $m \leq n$, a matrix $B \in GF(2)^{n \times m}$ does not have rows of weight 1, and $\text{ind}(B) \geq 2k \geq 6$. Then

$$
\mathsf{L}^*(B) \ge n + \frac{2k-4}{2k-1} \cdot n^{1-\frac{1}{k}} - m.
$$

For $k \gg \log n$, the lower bound is $2n - o(n) - m$.

Notes to the theorem

 $m = n^{8/9}$

 $n \times m$ matrix B of random rows of weight 3:

- has complexity $\mathsf{L}(B) \leq 2n$;
- $-\operatorname{ind}(B) \succeq n^{1/9}$ (due to good expanding properties).

 \Rightarrow the bound of the theorem is (asymptotically) tight.

Fact: if a linear code with the check matrix H has distance d, then $\text{ind}(H^{\perp}) = d - 1$.

$$
p = \log_2 n, \quad s = \sqrt{n}, \quad m = ps \qquad \alpha_1, \dots, \alpha_{n-m} \in GF(2^p),
$$
\n
$$
U = \begin{pmatrix} \alpha_1^1 & \alpha_1^2 & \dots & \alpha_1^s \\ \alpha_2^1 & \alpha_2^2 & \dots & \alpha_2^s \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{n-m}^1 & \alpha_{n-m}^2 & \dots & \alpha_{n-m}^s \end{pmatrix} \in GF(2)^{(n-m)\times m}
$$
\n
$$
\text{ind}(U) \ge s.
$$

Corollary 1. $A = U^{\top} \boxplus U \in GF(2)^{n \times n} \Rightarrow |L(A) \geq 5n - o(n)|$

 \blacktriangleright $\mathsf{L}(A) \ge \mathsf{L}^*(U) + \mathsf{L}(U^\top) \ge \mathsf{L}^*(U) + \mathsf{L}(U) + n - 2m \ge 5n - o(n).$

Corollary 2. $A = 1_{m \times (n-m)} \boxplus U \in GF(2)^{n \times n} \Rightarrow |L^*(A) \geq 3n - o(n).|$

 $\mathsf{L}^*(A) = \mathsf{L}^*(1_{1 \times (n-m)}) + \mathsf{L}^*(U);$ $L^*(1_{1\times n}) = L(1_{1\times n}) = n-1.$

Bilinear algorithms

- Bilinear form: $\sum a_{ij} x_i y_j$
- Bilinear algorithm (for a system of bilinear forms) $=$ circuit over $\{+, \times\}$:
- all multiplications are of the form $(\sum \alpha_i x_i) \cdot (\sum \beta_i y_i)$

Matrix multiplication

Complexity of a *bilinear algorithm* for a system of bilin. forms F over $GF(2)$: $-$ Bil₊ (F) – minimal number of additive operations;

- $-\text{Bil}_*(F)$ minimal number of multiplicative operations;
- $-$ Bil(F) minimal overall number of operations.

 MM_n – operator of multiplication of matrices in $GF(2)^{n \times n}$. Fact: $\text{Bil}_*(MM_n) \ge 3n^2 - o(n^2)$ (A. Shpilka, 2003)

$$
\text{Bil}_{+}(M\!M_{n}) \geq n\mathsf{L}^{*}(A) + n^{2} - \nu(A) - O(n).
$$

 \blacktriangleright $X \cdot Y \to A \cdot Y;$ \blacktriangleright $\blacktriangle^*(A \boxplus \cdots \boxplus A) = n\blacktriangle^*(A).$

Corollary. $\text{Bil}_{+}(M M_n) \geq (4 - o(1))n^2$, $\text{Bil}(M M_n) \ge (7 - o(1))n^2$.

Circulant matrices

 $S \subset [n]; \quad Z_{n,S} \in GF(2)^{n \times n}$: 1s in the 1st row are in positions S. Known bounds for $GF(2)^{n \times n}$: $L(Z) \geq 2n - o(n)$.

Claim. If a matrix $B \in GF(2)^{n \times m}$, $n \geq m$, doesn't contain rectangles, and its every row has weight $\geq s$, then $\text{ind}(B) \geq s$.

S is a Sidon set \Rightarrow there are no rectangles in $Z_{n,S}$. Example: $p \sim \sqrt{n}$, $S_n = \llbracket n \rrbracket \cap \{ s_k = 2pk + (k^2 \bmod p) \mid k \geq 1 \}$ (P. Erdos, P. Turán, 1941)

Circulant matrices

$$
\hat{Z}_{n,S_n} \in GF(2)^{n \times (2n-1)}
$$

Corollary.

$$
\mathsf{L}(Z_{n,S_n})\geq 3n-o(n),
$$

$$
\mathsf{L}(\hat{Z}_{n,S_n}^{\top}) \ge 4n - o(n).
$$

Polynomial multiplication

 M_n – operator of multiplication of degree $n-1$ polynomials over $GF(2)$; CC_n – the order *n* cyclic convolution over $GF(2)$:

$$
CC_n(x_1,\ldots,x_n;y_1,\ldots,y_n)=\left\{\sum_{i+j\equiv k\text{ mod }n}x_iy_j\mid k=1,\ldots,n\right\}
$$

Fact: $\text{Bil}_*(M_n) \geq (3.52 - o(1))n$. (M. R. Brown, D. P. Dobkin, 1980)

Lemma. For any set $S \subset ||n||$,

 $\text{Bil}_{+}(CC_n) \geq L(Z_{n,S}) + n - |S| - O(1),$ $\text{Bil}_{+}(M_{n}) \geq L(\hat{Z}_{n, S}^{\top}) + n - |S| - O(1).$

Corollary. $\text{Bil}_+(CC_n) \geq (4-o(1))n$, $\text{Bil}_+(M_n) \geq (5-o(1))n$, $Bil(M_n) \geq (8.52 - o(1))n$.

Complexity of the Sierpinski matrices

Sierpinski matrices (or disjointness matrices) $D_n \in GF(2)^{2^n \times 2^n}$.

$$
D_0 = 1, \qquad D_1 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \qquad D_{k+1} = \begin{bmatrix} D_k & D_k \\ 0 & D_k \end{bmatrix}.
$$

Alternatively: $D_n[I, J] = (I \cap J = \emptyset), \quad I, J \subset [n].$

Hypothesis: $\mathsf{L}(D_n) = \omega(2^n)$

$$
\sum_{i=1}^{n} a_i
$$

 $D_{n,k}$ – a submatrix composed from columns indexed by sets of cardinality $\leq k$. $D_{n,k}$ has size $2^n \times (C_n^0 + C_n^1 + ... + C_n^k)$.

 $\mu_{n,k}$ – minimal number of monomials for a nonzero boolean function on *n* variables, taking value 0 on all inputs of weight $\geq n-k$.

Lemma. (1)
$$
ind(D_{n,k}) \ge \mu_{n,k} - 1
$$
, (2) $\mu_{n,k} > k^{5/2}/(5n)$.

Corollary. $\mathsf{L}(D_n) \geq (3 - o(1))2^n$. • $k = n/3$: $\mathsf{L}(D_n) \ge \mathsf{L}(D_{n,k}^{\top}) = \mathsf{L}(D_{n,k}) + 2^n - o(2^n) \ge (3 - o(1))2^n$.

Open problems

Hystorical:

For a rectangle-free matrix $A \in GF(2)^{n \times n}$: $\mathsf{L}(A)$ vs $\nu(A) - n?$ (B. S. Mityagin, B. N. Sadovskii, 1965)

First examples $\frac{\mathsf{L}(A)}{\nu(A)-n} < const < 1$: by depth-3 circuits (S. B. Gashkov, 1973; K. A. Zykov, 1998)

Finally:

$$
\inf_{A \in GF(2)^{n \times n}} \frac{\mathsf{L}(A)}{\nu(A) - n} = n^{o(1) - 0.5}
$$

on explicit examples

 $(S. B. Gashkov, I. S. Sergev, 2010)$

Open problems

1. Construct a pair of explicit matrices A_1 , A_2 with $\mathsf{L}(A_1 \boxplus A_2) < \mathsf{L}(A_1) + \mathsf{L}(A_2).$

 $L_V(A) \ll L(A)$. **2.** Construct a matrix A :

3. Do conjunctions allow to reduce the complexity of a linear operator?

Note: for circuits over (\mathbb{B}, \vee) , yes! (R. E. Tarjan, 1978)

4. Is it true that $\mathsf{L}(D_n) < n2^{n-1}$ as $n \to \infty$?

 $L(Z) = \omega(n)$? **5.** Does a circulant matrix Z exist such that

Note: There exist circulant matrices $L_{mon}(Z) = n^{2-o(1)}$ (M. I. Grinchuk, 1988); moreover, there are explicit examples $(S. B. Gashkov, I. S. Sergev, 2012)$

