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Abstract

The paper provides a survey of the modern state of the theory of fast multiplication of
numbers and polynomials. We consider the development of multiplication methods from
the initial block algorithms of 1960s due to Karatsuba and Toom to the methods of 1970s
based on the Discrete Fourier transform (DFT) and further to the novel methods invented
in 2007–2019. Modern multiplication methods combine exploiting of special algebraic struc-
tures, the use of approximate computations, special forms of Fourier transforms, namely,
multidimensional DFT, additive analogue of DFT. These and other concepts essential for
the fast multiplication algorithms are thoroughly discussed in the present survey. In partic-
ular, we provide an introduction to the theory of DFT with derivation of facts necessary for
the exposition. The final part of the survey contains a brief discussion of results on parallel
multiplication algorithms, accurate complexity bounds of the basic methods, online multipli-
cation algorithms, multiplicative complexity of the multiplication of polynomials over finite
fields. We mention computational models where multiplication has either linear, or quadratic
complexity.
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1 Introduction

Interest in methods of fast calculations arose even among ancient mathematicians: it is
enough to recall Euclid’s algorithm for the greatest common divisor. But only at the beginning
of the 20th century did a mathematical theory appear that allows to strictly formulate and give
precise answers to questions like “how fast does this algorithm work?” or “which algorithm is
faster?” The central concept of this theory is complexity.

Complexity theory, which can be attributed to mathematical logic, discrete mathematics or
mathematical cybernetics1, arose in the works of the American theoretical engineer C. Shannon
in the 1930–40s.

The technological revolution of the mid-20th century, which led to the birth of modern
electronics, provoked the rapid development of related scientific disciplines: computer science,
cybernetics, computational methods, the theory of algorithms and complexity. In addition to
Shannon, A. N. Kolmogorov made a significant contribution to the creation of the mathematical
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apparatus of these theories (see, e.g., [57]). He also actively supported research in new directions
in the USSR and abroad.

Fast algorithms for individual arithmetic operations began to appear without waiting for
either the final formulation of the theory or emergence of powerful computing tools. Just a few
examples. In 1938, D. Lehmer constructed an accelerated version of the Euclidean GCD algo-
rithm, interestingly, specially adapted for computer applications. Lehmer’s method is the basis
of modern fast GCD algorithms. A year later, A. Brauer published an optimal method for
raising to a natural power in terms of the number of multiplications — it is approximately twice
as fast as the trivial binary method.

In the 1950s, engineers and mathematicians were already actively developing efficient designs
of circuits or programs for the efficient implementation of arithmetic. Among the theoretical
results, we can note the final solution to the problem of the complexity of evaluating a given
polynomial at a point, obtained in the late 1950s by students of A. G. Vitushkin (who, in
turn, was a student of Kolmogorov) V. Ya. Pan and E. G. Belaga. A little earlier in the USA,
this problem was studied by T. Motzkin. In particular, they constructed fast algorithms for
evaluating a polynomial, using approximately two times fewer multiplications of coefficients
than in Horner’s scheme.

However, it was with the advent of A. A. Karatsuba’s fast method of multiplying numbers
in 1960 (or rather, with its publication in 1962) that the formation of a new scientific direction
is associated – the theory of fast computations. The extraordinary influence that Karatsuba’s
result had on the development of the theory is explained by the combined effect of several
circumstances. On the one hand, the result was sensational (many believed that the school
method of multiplication was optimal). On the other hand, Karatsuba’s method demonstrates
the efficiency of a general technique for reducing a large problem to smaller problems, which
was then successfully applied to construct fast algorithms for many other arithmetic operations.
Thirdly, multiplication is a fundamental operation – a building block for various arithmetic
operations, which, as a result, are automatically accelerated by accelerating the multiplication
algorithm.

As a result, both objective factors (the fundamental nature of the multiplication opera-
tion) and subjective factors (the effect produced by Karatsuba’s method) led to the problem of
studying the complexity of multiplication becoming central for the theory of fast computations.

By the time the first fast multiplication algorithms (Karatsuba’s and Toom’s) appeared in
the early 1960s, the apparatus of complexity theory had fully formed, and the central question
of the complexity of implementing an arbitrary Boolean function was solved in the asymptotic
sense for several basic computational models by O. B. Lupanov.

One can notice the similarity in the development of fast methods for computing Boolean
functions and fast methods for multiplication. The first nontrivial estimate of the complexity of
computing a function is given by Shannon’s cascade method. Using the formula

f(x1, x2, . . . , xn) = f(1, x2, . . . , xn) · x1 ∨ f(0, x2, . . . , xn) · x1

it reduces the original problem to two similar problems of smaller size — implementations of
subfunctions (here x denotes the negation of variable x). Similarly, Karatsuba’s method reduces
the original multiplication to three multiplications of smaller size, only the formula used in it
is less obvious. Lupanov’s asymptotically optimal method nontrivially develops the idea of the
cascade method and consists in reducing to the computation of a function in local domains.
The principle underlying the method is called the local coding principle. In the multiplication
problem, this principle corresponds to the idea of interpolation. All fast multiplication methods,
starting with Toom’s method, are based on interpolation.

Along with numerical multiplication, we consider the multiplication of polynomials of one
variable. This is motivated, firstly, by the fact that the methods of multiplying numbers and
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polynomials are closely interrelated, and secondly, the importance of polynomial arithmetic
continues to grow as cryptography develops. Perhaps especially in demand are methods for fast
multiplication of polynomials over finite fields of characteristic 2.

Formally, the multiplication of n-digit numbers can be interpreted as a Boolean operator
whose inputs and outputs are the binary digits of the numbers being multiplied and the prod-
uct, respectively. To estimate the complexity of Boolean operators, it is convenient to use a
computational model of Boolean circuits. Boolean circuits are built from functional elements
with two inputs and one output, implementing all possible Boolean operations. Complexity of
a circuit is the number of functional elements in it. The latter concept is very close to the
concept of bit complexity of a computation, and the concept of a circuit itself is very close to the
concept of a straight-line program. In theoretical works on computer arithmetic, computations
are often simulated on (multi-tape) Turing machines, the operating principle of which is to read
and rewrite information on a tape using a movable head that functions as an automaton. In
practice, Turing machines in their pure form are not used.

To study methods of multiplying polynomials over some ring K, it is natural to use the
model of arithmetic circuits, otherwise called circuits over the ring K. Unlike Boolean circuits,
arithmetic circuits are built from elements of addition, multiplication, and multiplication by
constants of the ring K.

A more detailed explanation of computational models and basic concepts of complexity
theory can be found, for example, in [3, 56, 86, 33, 14].

Below, M(n) denotes the complexity of multiplying n-digit numbers when implemented by
Boolean circuits (or straight-line programs). MK(n) denotes the complexity of multiplying
polynomials of degree < n over K when implemented by circuits over K. MK denotes the
complexity of multiplication in the ring K when implemented by Boolean circuits.

2 Karatsuba’s method

The standard (machine) method of multiplication is based on a well-known school trick: one
of the factors is successively multiplied by the digits of the other, the correspondingly shifted
results are written under each other and then added together. The multiplication of numbers
26 and 21 in this interpretation would look like this:

1 1 0 1 0
1 0 1 0 1
1 1 0 1 0

0 0 0 0 0
1 1 0 1 0

0 0 0 0 0
1 1 0 1 0

1 0 0 0 1 0 0 0 1 0

Fig. 1

The complexity of multiplying n-bit numbers in this way, as is easy to check, has the order
of n2 operations. If we calculate more accurately, a complexity estimate of 6n2 − 8n may be
obtained: the multiplication circuit contains n2 bit multiplication elements and n− 1 standard
adders to compute the sum of n numbers.

Such estimate can also be derived recursively. Let’s split 2n-bit numbers A and B into blocks
of n digits: A = A12n +A0, B = B12n +B0. Now the multiplication of the original numbers is
performed using four multiplications of “halves” and several additions according to the formula

AB = A1B122n + (A0B1 +A1B0)2n +A0B0. (1)
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Reflecting on the problem of the complexity of multiplication posed by A. N. Kolmogorov, in
1960 A. A. Karatsuba (at that time a graduate student at Moscow State University) discovered
a more economical formula than (1),

AB = A1B122n + (A1B1 +A0B0 − (A0 −A1)(B0 −B1))2n +A0B0, (2)

which requires only three multiplications of n-digit numbers and several additions and subtrac-
tions. For the complexity K(n) of the method, we obtain the recurrence relation:

K(2n) ≤ 3K(n) +O(n),

which is resolved as K(n) = O
(
nlog 3

)
. (Here and further in the text all logarithms are to the

base 2.)
The author of the first fast multiplication method tells in detail about its history in [49, 50].
A similar method and result are valid for polynomials. The polynomial analogy allows us

to see the idea of interpolation at the heart of Karatsuba’s method. Thus, the multiplication of
degree-1 polynomials is performed in three steps:

i) Evaluating polynomials at three points2: 0, −1, ∞.
ii) Multiplying the values point-wise.
iii) Recovering a polynomial with given values at the interpolation points, see formula (2).
The development of the interpolation idea led to the emergence of theoretically faster meth-

ods of multiplication.

3 Block multiplication methods of the 1960s

The first such method was proposed by A. L. Toom (at that time a student of the Mechanics
and Mathematics Department of Moscow State University) in 1963 [83]. In Toom’s method,
each multiplier is divided into r blocks:

A =

r−1∑
i=0

Ai2
iq, B =

r−1∑
i=0

Bi2
iq, Ai, Bi < 2q. (3)

The product of numbers is restored from the product of polynomials A(X) =
∑
AiX

i and
B(X) =

∑
BiX

i by substituting X = 2q. To multiply polynomials, interpolation is performed
at 2r − 1 points: −r + 1, . . . , r − 1.

Note that multiplications in Toom’s method occur not only at the interpolation points, but
also when evaluating the polynomials A(X) and B(X) at these points, and when reconstructing
the polynomial A(X)B(X) from the values at the points. In the original method, the recon-
struction stage is considered as solving a system of linear equations for the coefficients of the
desired polynomial.

Toom’s method is practical for small values of r. Choosing r = 2 simply yields a variant
of Karatsuba’s method. To this day, Karatsuba’s methods and the ternary (r = 3) variant of
Toom’s method are commonly used to multiply numbers in the range from a few tens to 1000
binary digits. But to derive a theoretical complexity estimate, one should choose r to grow
with n, and the optimal choice is r = 2Θ(

√
logn).

The author’s estimate of the complexity of the method is O
(
n25
√

logn
)

. A more thorough

analysis by D. Knuth (see [53]) resulted in a refinement of the estimate to O
(
n2
√

2 logn log n
)

.

A version of Toom’s method adapted for multiplying polynomials (indicated by S. Cook [17])
suggests choosing polynomials of small degrees with coefficients 0 and 1 as interpolation points.

2The value of a polynomial at point ∞ is assumed to be equal to the leading coefficient.
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This choice is universal: it allows multiplying binary polynomials as well. Record estimates
of the complexity of multiplying binary polynomials of degrees within one or two hundred are
obtained by specially optimized block methods, see, for example, [13, 63, 23].

More broadly, the idea of the transition to a modular representation can be seen as the basis
of Toom’s method, since interpolation is a special case of this idea. In a modular representation,
a polynomial is written as a set of residues modulo some given polynomials fi(x). The Toom—
Cook method, as described above, uses polynomials xq − αi, where αi are points: numbers or
polynomials.

Developing the modular idea, A. Schönhage in 1966 [69] constructed a suitable system of
modules of the form 2qi − 1 and obtained another method of multiplying numbers with a com-

plexity estimate O
(
n2
√

2 logn log3/2 n
)

.

A year before this, an article by J. Cooley and J. Tukey [18] appeared, in which the authors
indicated a fast method for computing the discrete Fourier transform (DFT) and generally drew
attention to the DFT as a tool for fast computations. Since then, all new fast multiplication
algorithms are based on the DFT.

4 Discrete Fourier transform

The application of the DFT to the problem of multiplication practically ended the discussion
of the optimal choice of interpolation points. Multiplication via the DFT uses a group of roots
of unity as interpolation points. The following is some background on the DFT that is necessary
for presenting fast multiplication methods.

Following [33], we give a formal definition. Let K be a commutative, associative ring with
unity. An element ζ ∈ K is called a primitive root of order N ∈ N if ζN = 1, and none of the
elements ζN/p − 1, where p is a prime divisor of N , is a zero divisor in K. (Recall that an
element a is called a zero divisor if there is a nonzero element b such that ab = 0.)

The discrete Fourier transform (DFT) of order N is a (KN → KN )-transform

DFTN,ζ [K](γ0, . . . , γN−1) = (γ∗0 , . . . , γ
∗
N−1), γ∗j =

N−1∑
i=0

γiζ
ij , (4)

where ζ is a primitive root of order N .
The fundamental property of the DFT is formulated as follows:

Lemma 1. Let the elements γ∗j be determined from (4). Then

DFTN,ζ−1 [K](γ∗0 , . . . , γ
∗
N−1) = (Nγ0, . . . , NγN−1),

where N on the right-hand side of the formula is the sum of N units of the ring.

As a consequence, we obtain that if the element N = 1 + . . .+ 1 ∈ K is invertible, then the
inverse transform to the DFT is defined as

DFT−1
N,ζ [K] = N−1 ·DFTN,ζ−1 [K].

4.1 Polynomial interpretation of the DFT

Consider a polynomial Γ(x) = γ0 + . . .+ γN−1x
N−1. Then, by definition,

DFTN,ζ [K](γ0, . . . , γN−1) =
(
Γ(ζ0), . . . ,Γ(ζN−1)

)
,
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i.e., the DFT evaluates the polynomial Γ(x) at the points ζi. The meaning of the inverse
transform DFT−1

N,ζ [K] is to restore the coefficients of the unique polynomial of degree < N that

has a given set of values at the points ζ0, . . . , ζN−1.
Formally, the relationship between the DFT and interpolation is described by the following

lemma:

Lemma 2. The transform DFTN,ζ [K] defines an isomorphism: K[x]/(xN − 1)→ KN .

The above isomorphism leads to an efficient way of multiplying polynomials over K.

Theorem 1. Let DFTN,ζ [K] and its inverse be defined in a ring K. Then the multiplication of
two polynomials modulo xN − 1 over K can be performed using two transforms DFTN,ζ [K], one
DFT−1

N,ζ [K], N nonsclar multiplications in K, and N multiplications by constants N−1 ∈ K.

If we represent polynomials as vectors of coefficients, then the multiplication modulo xN − 1
coincides with the cyclic convolution of order N .

4.2 DFT computation

The efficiency of the DFT is ensured by a family of algorithms for its fast computation.
These algorithms are called the fast Fourier transform (FFT). In general, FFT algorithms are
those algorithms that employ the technique of reducing a DFT of composite order N to DFTs
of order of factors of N . Sometimes the term FFT is applied to any algorithms of complexity
O(N logN).

The most popular example of FFT is the Cooley—Tukey method [18] based on the following
lemma.

Lemma 3 ([18]). A DFT of order ST is implemented using S DFTs of order T , T DFTs of
order S, and (S − 1)(T − 1) multiplications by powers of ζ — a primitive root of order ST .

The proof of the lemma is based on the decomposition of the DFT into “external” DFTs of
order S and “internal” DFTs of order T . For any s = 0, . . . , S − 1 and t = 0, . . . , T − 1, the
following holds:

γ∗sT+t =
ST−1∑
I=0

γIζ
I(sT+t) =

T−1∑
i=0

S−1∑
j=0

γiS+jζ
(iS+j)(sT+t) =

=
T−1∑
i=0

S−1∑
j=0

γiS+jζ
itS+jsT+jt =

S−1∑
j=0

(ζT )js · ζjt · γ(j),t, (5)

where

γ(j),t =

T−1∑
i=0

γiS+j(ζ
S)it.

Given that the DFT of order 2 costs an addition and a subtraction, a recursive application
of Lemma 3 yields

Lemma 4. The DFT of order 2k can be performed in k2k addition-subtraction operations and
(k − 2)2k−1 + 1 scalar multiplication operations.

This upper bound is asymptotically the best known for the complexity of the DFT of order 2k.
For the case where N is decomposed into relatively prime factors, there is a more efficient

algorithm by I. Good [34] that does not require additional multiplications by powers of the prim-
itive root. This algorithm is also called the Good—Thomas algorithm, since it was rediscovered
by L. Thomas [82] several years after Good’s work.
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Lemma 5 ([34]). If GCD(S, T ) = 1, then to compute a DFT of order ST it is sufficient to
perform S DFTs of order T and T DFTs of order S.

The proof is based on the following decomposition. Let m,n be the Bezout coefficients from
the equality nS + mT = 1. First, for I = 0, . . . , ST − 1 denote γI = γi, j , where i = I mod T
and j = I mod S, and for K = 0, . . . , ST − 1 denote γ∗K = γ∗s, t, where s = mK mod S and
t = nK mod T . Note that I = (inS + jmT ) mod ST and K = (sT + tS) mod ST . Then for
any K,

γ∗K = γ∗s, t =
ST−1∑
I=0

γIζ
IK =

S−1∑
j=0

T−1∑
i=0

γi, jζ
(inS+jmT )(sT+tS) =

=
S−1∑
j=0

T−1∑
i=0

γi, jζ
(intS2+jmsT 2) =

S−1∑
j=0

T−1∑
i=0

γi, j(ζ
S)it(ζT )js =

S−1∑
j=0

(ζT )jsγ(j), t, (6)

where

γ(j), t =

T−1∑
i=0

γi, j(ζ
S)it.

Comparing the right-hand sides of (5) and (6), we see that multiplication by powers of ζjt can
be avoided in the second case.

In the case when N is prime or when it has no small divisors, a DFT of order N can be
reduced to a convolution by the method of L. Bluestein [10] or the method of C. Rader [66].

Bluestein’s method requires a root of unity of degree 2N in the ring K and works as follows.
Let, as above, ζ be a primitive root of order N . Put β = ζ(N−1)/2 ∈ K. Note that β−2 = ζ.
Then

γ∗j =

N−1∑
i=0

γiζ
ij = β−j

2
N−1∑
i=0

β(j−i)2β−i
2
γi = β−j

2
∑

i+k≡j mod N

UkVi = β−j
2
Cj ,

where Uk = βk
2
, Vi = β−i

2
γi. If we define polynomials u(x) =

∑
Uix

i, v(x) =
∑
Vix

i, c(x) =∑
Cix

i, then c(x) = u(x)v(x) mod (xN − 1). In fact, it is proved

Lemma 6 ([10]). A DFT of order N can be performed by a cyclic convolution of order N and
2N − 2 multiplications by roots of unity in the ring K.

An alternative to Bluestein’s method is Rader’s method. It is applicable in the case of
prime N , but does not impose additional requirements on the ring. We retain the notation ζ for
a primitive root of degree N in the ring K. Let g mod N be a generator of the multiplicative
group of the field GF (N). For k = 1, . . . , N − 1 we denote γ[k] = γgk mod N , γ∗[k] = γ∗

gk mod N
,

and ζ [k] = ζg
k

for any k. Then

γ∗[j] = γ0 +
N−1∑
i=1

γ[i]ζ
[i+j].

The sums on the right-hand side of the formula are the components of the cyclic convolution of
the vectors

(
γ[1], . . . , γ[N−1]

)
and

(
ζ [N−1], . . . , ζ [1]

)
. The component γ∗0 is calculated separately

as
∑
γi. Thus, we obtain

Lemma 7 ([66]). A DFT of prime order N can be performed by a cyclic convolution of order
N − 1 and 2N − 2 additions in the ring K.
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Rader’s method can be generalized to the case of odd primary numbers N = pn (p is a prime
number). In this case, the DFT reduces to a cyclic convolution of order (p − 1)pn−1, see,
e.g., [9, 59].

Another useful technique was proposed by R. Crandall and B. Fagin [19]. In some cases, it
allows to reduce a DFT of “inconvenient” order to a DFT of “convenient” order. For example,
multiplication modulo a Mersenne prime 2p− 1 coincides with a cyclic convolution of order p of
the binary notation vectors of the numbers being multiplied. Therefore, it is implemented by
the DFT of order p with a primitive root 2 ∈ Z2p−1. But p is also a prime number, and DFT of
this order is usually not implemented very efficiently.

However, the problem can be reduced to an approximate calculation of the real DFT of
arbitrary order N . We split the number X = [xp−1, . . . , x0] into N blocks of approximately
equal length: X = [XN−1, . . . , X0]. Let Bi be the starting position of the i-th block. Write X
as

X =
N−1∑
i=0

Xi · 2Bi =
N−1∑
i=0

(
Xi · 2Bi−ip/N

)
2ip/N =

N−1∑
i=0

X ′i · 2ip/N .

Now the multiplication of X by Y =
∑N−1

i=0 Y ′i · 2ip/N can be performed via two DFTs of
order N with primitive root 2p/N ∈ (R mod 2p − 1) and one inverse DFT. From the resulting
vector [Z ′N−1, . . . , Z

′
0] the desired product is determined as

XY =

N−1∑
i=0

(
Z ′i · 2ip/N−Bi

)
2Bi mod 2p − 1.

When the block size is chosen close to the length of the machine word, the described method
is efficiently implemented on standard computers.

4.3 Multidimensional DFT

The concepts of DFT and FFT algorithms are easily extended to multidimensional domains.
Let DFTs of orders n1, . . . , nd be defined in a ring K with primitive roots ζ1, . . . , ζd, respectively.
In the polynomial interpretation, the input of the d-dimensional transform is some polynomial
Γ(x1, . . . , xd) ∈ K[x1, . . . , xd], and the components of a DFT of order n1 × . . .× nd over K are
all possible values

Γ
(
ζj11 , . . . , ζ

jd
d

)
, j1 ∈ {0, . . . , n1 − 1}, . . . , jd ∈ {0, . . . , nd − 1}.

It is easy to verify that the analogue of Lemma 2 holds: the DFT defines an isomorphism of the
rings K[x1, . . . , xd]/

(
(xn1

1 − 1) · . . . ·
(
xnd
d − 1

))
and Kn1·...·nd . The inverse DFT is obtained from

the forward one by replacing the primitive roots ζi with ζ−1
i and multiplying by (n1 · . . . · nd)−1

(the analogue of Lemma 1 takes place).
A straightforward way to compute a multidimensional DFT is as a composition of one-

dimensional DFTs component-wise. In the case d = 2, write Γ(x1, x2) =
∑n2−1

j=0 Γj(x1) · xj2.

With the use of n2 DFTs of order n1, find all values Γj(ζ
i
1). Apply the DFT of order n2 to each

of the polynomials Γ′i(x2) =
∑n2−1

j=0 Γj(ζ
i
1) · xj2. As a result, we will obtain all values Γ(ζi1, ζ

j
2).

Generalization of the described method leads to the following result.

Lemma 8. Let N = n1 · . . . · nd. A DFT of order n1 × . . .× nd can be realized by N/n1 DFTs
of order n1, N/n2 DFTs of order n2, . . . , and N/nd DFTs of order nd.

For more details on fast DFT computing, see, for example, [9, 84, 30].
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5 Multiplication via FFT

Theorem 1 and Lemma 4 show that the complexity of multiplication of complex polynomials
of degree n = 2k can be estimated as

MC(n) ≤ (9 + o(1))n log n. (7)

As Schönhage [73] noted, the same estimate is also valid for arbitrary n: in the proof, one should
replace n with the nearest number n′ = 2tr from above, where r = O(log n). In practice, it is
preferable to use a DFT of order 2dlogne truncated to n components, see [44, 58, 75, 4].

Of course, bound (7) holds for multiplication over an arbitrary ring containing primitive
roots of unity of any order. Special tricks were needed to apply the FFT to multiplication over
rings that do not have suitable roots of unity, as well as to multiplication of integers.

A simple ring extension method works well for polynomials with real coefficients: it is enough
to switch to calculations over the field C. Moreover, since the complex Fourier transform of a real
vector is completely determined by half of its components (the rest are complex conjugates),
about half of the operations can be saved, see, e.g., [84, 30].

Since the 1960s, algorithms for computing a complex DFT of order 2k with real complexity3

∼ 4k2k have been known. Such an estimate was first obtained by R. Yavne [88] using a method
in which all multiplications are performed by real constants (real-factor FFT), see also [84].
However, the split-radix FFT methods (see [84, 7]) have become more popular — in them, all
multiplications are multiplications by roots of unity, which is favorable for error control of the
computations. In 2004, J. van Buskirk improved the complexity bound to ∼ (34/9)k2k (the
method is published in [47, 55]) by a modification of the split-radix algorithm. Other practical
algorithms were proposed in [42, 89], and the best bound to date, ∼ 3123

160 · k2k, is published
in [79].

Thus, the complexity of multiplication of real polynomials is estimated as MR(n) ≤(
11 49

160 + o(1)
)
n log n.

The methods mentioned above use Θ(k2k) of both additive operations and scalar multipli-
cations. However, it is known [87, 43] that O(N) multiplications are sufficient to implement a
DFT of arbitrary order N , but the corresponding algorithms have a higher overall complexity.

The theory of multiplication of real and complex polynomials is adapted to multiplication
over the fields GF (q) and GF (q2), where q = 2p − 1 is a pseudo-Mersenne prime. The field
GF (q2) ∼= GF (q)[x]/(x2 + 1) has primitive roots of order 2k, k ≤ p + 1, hence, fast algorithms
are possible for multiplication of polynomials of degree < 2k. For more details, see [9, 29].

Immediately after the appearance of FFT algorithms, attempts were made to apply them to
multiplication of numbers. According to [57], the first fast algorithm for integer multiplication
based on the DFT was constructed by N. S. Bakhvalov — his method had complexity O(n log3 n).

Then, in 1971, A. Schönhage and V. Strassen [70] published two fast methods of multiplica-
tion at once. The first of them exploits the natural idea of transition to calculations over the
complex field C, which admits a DFT of arbitrary order.

5.1 Complex approximation method

Let 2N = 2nq. In the first Schönhage—Strassen method [70] N -digit numbers to be mul-
tiplied are divided into blocks of length q, as in (3). The resulting polynomials are multiplied
using a complex DFT of order 2n. Calculations with complex numbers are performed with an
accuracy of s digits after the binary point. The parameter s is chosen so that the coefficients
of the product polynomial, which are actually integers, are computed with an error < 1/2; then

3The symbol “∼” means asymptotic equality.
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they can be restored by rounding. A simple analysis (see [70] or [53]) shows that it is sufficient
to choose s = 2n+ 2q + log n+O(1).

The main complexity of the algorithm is concentrated in the DFT: O(2nn) multiplications
and additions-subtractions of O(s)-digit numbers. The recurrence relation for the complexity of
the method has the form

M(N) ≤ O(2nn(M(s) + s))

and is solved as M(N) = O(N logN log logN log log logN . . .). The same complexity estimate
(and probably by the same method) was previously obtained by A. A. Karatsuba [50], but not
published.

5.2 Multiplication in ring extensions

Essentially, the second Schönhage—Strassen method [70] is based on reducing the mul-
tiplication of polynomials over a ring K that does not have roots of unity of an appropri-
ate order to multiplication in an extension ring. Namely, it is proposed to use the extension
K2,n(x) = K[x]/(x2n + 1), where 2 is supposed to be invertible in K.

In the ring K2,n(x), the DFT of order 2n+1 with a primitive root x is defined (for clarity,
here and below, instead of elements of the factor ring K2,n(x), which are classes of polynomials
equivalent modulo x2n + 1, polynomials-representatives of the classes stand).

Lemma 4 implies

Lemma 9. A DFT of order 2k over a ring K2,n(x), k ≤ n + 1, can be implemented in k2k+n

additive operations in K.

For the proof, it suffices to note that multiplication by powers of a primitive root x in the
ring K2,n(x) is implemented for free.

The ring K2,n(x) can be considered as an extension of a similar ring K2,m(y) of lower di-
mension:

Lemma 10. Let m < n. There is an isomorphism

K2,n(x) ∼= K2,m(y)[x]/(x2n−m − y),

generated by the substitution x2n−m
= y.

It is important to note that the indicated isomorphism is realized by a simple permutation
of the coefficients. For example, the polynomial x3 + 2x2 − 1 ∈ K2,2(x) corresponds to the
polynomial yx + (2y − 1) ∈ K2,1(y)[x]/(x2 − y). Other isomorphisms can also be used to
implement multiplication, see [7].

In the Schönhage—Strassen method for multiplication in the ring K2,n(x), an isomorphism
of Lemma 10 is used with the choice of parameter m = dn/2e. Via three DFTs of order
2n−m+1 = 2bn/2c+1 over the ring K2,m(y), the multiplication is reduced to multiplications in a
smaller ring. Recursive application of this procedure leads to the following result.

Theorem 2. Multiplication in the ring K2,n(x) can be performed using 3 · 2nn(log2 n + O(1))
additive operations and O(n2n) multiplications in K.

Multiplication of polynomials over K can now be performed by a suitable multiplication
algorithm in K2,n(x).

To obtain an algorithm for multiplying numbers, instead of the ring K2,n(x), we consider
the residue ring ZFn modulo the Fermat number Fn = 22n + 1. Number 2 plays the role of the
variable x — it is a primitive root of order 2n+1 in the Fermat ring.

10



The n-bit numbers to be multiplied are divided into blocks of length 2m−1, which are inter-
preted as coefficients of integer polynomials. The product of the initial numbers is reconstructed
from the product of these polynomials. The main part of the integer multiplication method fol-
lows the algorithm of Theorem 2. The polynomials are multiplied as polynomials over the ring
ZFm , and therefore the coefficients of the product of the original polynomials are not computed
exactly, but modulo Fm = 22m + 1. In fact, the coefficients of the product of the original poly-
nomials can be of order 2n−m · 22m . Hence, in the method [70], the product of the original
polynomials over the residue ring modulo 2n−m+O(1) is additionally computed. The desired
coefficients are then recovered via the Chinese remainder theorem.

The complexity of the method is determined by the complexity of multiplication over the
ring ZFm , so as a result, the same bound O(n log n log logn) as in Theorem 2 holds for it.

In the same 1971, J. Pollard [65] proposed an ideologically close, but simpler and more
practical version of the algorithm. In it, the numbers are divided into 2k−1 blocks of length m,
corresponding to the length of the machine word. The numerical product is reconstructed from
the product of polynomials, performed over several prime moduli pi such that

∏
pi ≥ 22m+k.

The moduli are chosen with the condition pi ≡ 1 mod 2k, then the multiplication of polynomials
is performed via a DFT of order 2k over GF (pi).

The original Schönhage—Strassen method does not allow multiplying polynomials over rings
in which two is non-invertible, since there is no DFT of even order defined over such rings. In [71]
Schönhage proposed a modified multiplication algorithm for rings in which three is invertible.
For such a ring K, the extension K3,n(x) = K[x]/(x2·3n + x3n + 1) is considered — in it x is
a primitive root of degree 3n+1. The multiplication is performed in the spirit of Theorem 2, but
using DFTs of order of the powers of three.

For the complexity of the specified multiplication method in the ring K3,n(x), an upper
bound 13 · 3nn(log n+O(1)) holds, which in the case of a ring of characteristic 2 can be reduced
to 10 · 3nn(log n+O(1)) operations in K [31].

The multiplication strategy in the case of 2−1, 3−1 /∈ K is indicated by the Cantor—Kaltofen
method [12]. By the method of Theorem 2 and its ternary analogue, replacing the inverse
transforms DFT−1

N,ζ with unnormalized transforms DFTN,ζ−1 , we compute the “almost products”

2N1fg = 2N1fg mod (x2n1
+ 1), 3N2fg = 3N2fg mod (x2·3n2

+ x3n2
+ 1)

for suitable ni, Ni ∈ N, where f, g are the polynomials being multiplied. Finally, the product
fg can be determined as q2N1fg + s3N2fg, where q, s are Bezout coefficients from the relation
q2N1 + s3N2 = 1. However, the importance of developing fast multiplication algorithms over
such rather exotic rings seems insignificant for now.

The applicability of the Schönhage—Strassen integer method has long been in doubt. How-
ever, the method is implemented in many modern fast arithmetic libraries and is usually called
when the length of multipliers exceeds several thousand digits4. Moreover, in the last decade,
applications have appeared that employ multiplication of numbers with millions of digits and
more, in particular, fully homomorphic encryption (FHE). But at the same time, theoretically
faster methods of multiplication have also emerged.

6 The latest methods of multiplication

For a long time, the methods of Schönhage and Strassen remained record-breaking, until
in 2007 M. Fürer [26] presented a method for multiplying n-digit numbers with complexity
n log n · 2O(log∗ n). In a certain sense, Fürer’s method is a combination of two methods from [70].

4Perhaps the skepticism regarding the Schönhage—Strassen method was overcome by its implementation by
Schönhage himself and his students on a multi-tape Turing machine emulator in the early 1990s [74].
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A year later, a group of Indian mathematicians [20] proposed a modification of Fürer’s method
with a similar complexity estimate.

It is curious that Fürer back in 1989 [25] constructed a method that had such complexity
under the assumption of a sufficiently high distribution density of Fermat primes — but today
the hypothesis of finiteness of the set of such numbers is considered more plausible.

In 2014, D. Harvey, J. van der Hoeven, and G. Lecerf [36, 37] constructed a family
of multiplication algorithms for both integers and polynomials, with theoretical complexity
O
(
n log n · 8log∗ n

)
. In subsequent works [38, 39], the complexity estimates were improved to

O
(
n log n · 4log∗ n

)
.

A single iteration of each of the new multiplication methods performs a logarithmic reduction

in the problem size: from n to 2logO(1) logn. This is achieved by switching to computations over
a ring that admits a compact encoding of elements and contains primitive roots of high and
smooth order: for example, a ring of complex polynomials of small degree or a finite field of
suitable size.

Unlike previous multiplication methods, the main complexity of the new methods is concen-
trated in the Fourier transforms, not in the multiplications of Fourier images. More precisely,
the complexity of the algorithms is concentrated in the scalar multiplications that arise when
the FFT is decomposed into a composition of low-order transforms.

6.1 Fürer’s method

Consider the ring Cp = C[x]/(x2p +1). In it, x is a primitive root of unity of order 2p+1. The
ring also contains primitive roots of unity of arbitrary degree q2p+1, which are simultaneously
roots (of degree q) of x.

One of such primitive roots ρq(x) of degree q2p+1 can be constructed as follows. Denote
ζ = eiπ/2

p
and ξ = eiπ/(q2

p). We define the polynomial ρq(x) of degree < 2p by its values at a
set of points:

ρq(ζ
2k+1) = ξ2k+1, k = 0, . . . , 2p − 1.

As can be verified, this polynomial has an additional important property: the moduli of the
coefficients of its powers ρmq (x) in the ring Cp do not exceed 1.

Thus, in the ring Cp, a DFT of order N = 2s(p+1) with primitive root ρ∗ = ρ2(s−1)(p+1)(x)
is defined, and when implemented by the Cooley-Tukey method, it has the following structure:
s layers in which N2−(p+1) DFTs of order 2p+1 are performed in parallel alternate with layers
in which N multiplications by powers of ρ∗(x) are performed.

The circuit consists of O(N logN) “light” operations — additions-subtractions and multipli-
cations by powers of x (cyclic shifts), with the help of which the internal DFTs are performed,
and (s− 1)N “heavy” operations: multiplications by powers of the primitive root.

Let E binary digits be used to write the real and imaginary parts of the complex coefficients
of polynomials from Cp. Then the complexity M(N,E) of multiplying polynomials from Cp[y]
modulo yN − 1 can be estimated as

M(N,E) ≤ O(2pEN logN) + 3sN ·M(1, E).

Multiplication in the ring Cp naturally reduces to multiplying O(2p(E + p))-digit numbers.
Due to the accumulation of error (absolute value of error) during the calculations, the accu-

racy with which the coefficients of the product are computed is, generally speaking, significantly
worse than the accuracy of the original coefficients. However, using the boundedness of the
coefficients ρm∗ (x), it is easy to verify that the error increases by a factor of A2NO(1), where A
is the maximum of the absolute values of the complex coefficients of the original polynomials.

The Fürer method uses a choice of parameters5 E � logN and 2p � logN . The numbers

5The symbols “�” and “�” denote equality and inequality of orders.
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to be multiplied are represented by polynomials over Cp of degree < N/2 as follows: they
are divided into blocks of length E/3, which are interpreted as integers, each 2p−1 consecutive
blocks are interpreted as coefficients of a polynomial from the ring C[x]/(x2p +1). The precision
parameter E is chosen so that the coefficients of the product of the resulting polynomials can
be reconstructed by simple rounding.

Thus, for the complexity of multiplication of n-digit numbers, we obtain the relation

M(n) ≤ O(2pEN logN) + 3sN ·M(O(2p(E + p))),

where N � n/ log2 n, E � log n, 2p � log n, s � log n/ log logn. It resolves as M(n) �
n log n · 2O(log∗ n).

The method [20] develops Fürer’s idea by using suitable extensions of residue rings Zpc
instead of Cp.

6.2 Harvey—van der Hoeven—Lecerf method

Note that neither Fürer’s method [26] nor its p-adic version [20] can be adapted to multiplying
polynomials. However, the family of methods proposed in [36, 37] includes both numerical and
polynomial methods of multiplication. Let us consider the new approach on the example of
multiplying binary polynomials.

Multiplication of binary polynomials can be interpreted as multiplication in the ring
GF (2)[x]/(xn − 1). By inserting an appropriate number of zero coefficients, such multi-
plication reduces to multiplication in the ring GF (2k)[y]/(yN − 1), where kN � n, and
N = N1 · . . . ·Nd | 2k − 1 is a smooth number.

The existence of a suitable smooth numberN is guaranteed by the following number-theoretic
result.

Lemma 11 ([1]). The minimum number λ(t) such that

t ≤
∏

p∈P, (p−1)|λ(t)

p,

has magnitude λ(t) = (log t)Θ(log log log t).

According to the lemma, for a given threshold t there exists a number M ≥ t — a product
of primes 2 < p ≤ λ(t) + 1 with the property p− 1 | λ(t). The last condition, by Fermat’s little
theorem, means that p | 2λ(t) − 1. It can be verified that if S > λ(t), then from M one can
extract a product N = N1 · . . . ·Nd ∈ [t, (λ(t) + 1)t] of mutually prime factors, S ≤ Ni ≤ S3.

In the method under consideration, t � n and S = 2Θ(log2 logn) are chosen. The parameter k
is chosen to be a multiple of λ(t) and has size of order (log n)Θ(log log logn). By construction, the

size of factors Ni is 2Θ(log2 logn).
Next, the multiplication in the ring GF (2k)[y]/(yN−1) is performed using a DFT of order N

over GF (2k). The DFT of order N by the Cooley—Tukey method (Lemma 3) or Good’s method
(Lemma 5) reduces to successively performing DFTs of orders N1, . . . , Nd. The DFT of order Ni

by the Bluestein method (Lemma 6) reduces to the multiplication in the ringGF (2k)[y]/(yNi−1).
This multiplication, in turn, is reduced (by inserting zero coefficients) to multiplication in

the ring GF (2)[x]/(xni − 1), where ni � kNi. Thus, the problem of multiplication of size n is

reduced to multiplications of size ni = 2Θ(log2 logn).
Using the complexity estimate for a DFT of composite order N that follows from Lemma 5,

we obtain for the complexity MGF (2)(n) of multiplication in the ring GF (2)[x]/(xn − 1) the
recurrence relation

MGF (2)(n) ≤ N
d∑
i=1

MGF (2)(ni)

Ni
+ 2dNMGF (2k),
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where MGF (2k) is the complexity of multiplication in the field GF (2k) — we estimate it roughly
as O(k log k log log k) (Schönhage’s method [71]).

Denote µ(n) =
MGF (2)(n)

n . Then, taking into account d � log n/ log2 log n, we have (for some
constant c)

µ(n) ≤ c
d∑
i=1

µ(ni) +O(d log k log log k) = c
d∑
i=1

µ(ni) + o(log n).

It is easy to verify that this relation is resolved as µ(n) = log n · 2O(log∗ n).
To justify the bound µ(n) � log n · 4log∗ n in [37, 38], several additional techniques and a

more careful analysis are proposed. In particular, the Crandall—Fagin method [19] adapted for
finite field extensions is applied.

Similarly, one can perform multiplication over an arbitrary finite field and, with the help of
the Cantor—Kaltofen idea [12] (see above), over an arbitrary ring. An accurate estimate [38]
says that multiplication of polynomials of degree n over an arbitrary ring K may be performed
using O

(
n log n · 4log∗ n

)
additive operations and O

(
n · 2log∗ n

)
multiplicative operations in K.

Numerical versions [36, 39] of the method follow a general scheme close to the above. Instead
of fields GF (2k), either residue rings Zq with a special representation of the elements or a field of
complex numbers, in which calculations are performed with controlled precision, and the order
of the DFT is chosen to be a power of two, are used.

6.3 Multiplication with complexity O(n log n)

In 2019, D. Harvey and J. van der Hoeven [40, 41] constructed multiplication methods of
complexity O(n log n), and it is quite possible that this result is no longer improvable in order.
The new methods are based on reduction to multivariate interpolation.

Indeed, from the multiplication of polynomials of degree < n over a ring K, which admits
only FFT of order m� n, it is easy to pass by Kronecker substitution xi = xr·2

i
to multiplication

in the ring of polynomials K[x1, . . . , xd]. For multiplication in this ring, d-dimensional FFT on
md points is available. But in order for the inverse substitution to allow the product to be
restored, the parameter r should be chosen slightly smaller than m/2. Therefore, the size of the
polynomials being multiplied increases by at least 2d times. Such growth is unacceptable for
constructing theoretically fast methods of multiplication.

The growth of dimension can be avoided by passing to a multidimensional DFT with rela-
tively prime components. Indeed, let n = n1 · . . . · nd, where n1, . . . , nd are pairwise relatively
prime. Then there is an isomorphism K[x]/ (xn − 1) ∼= K[x1, . . . , xd]/

(
xn1

1 − 1, . . . , xnd
d − 1

)
generated by the substitution x1 = xn/n1 , . . . , xd = xn/nd . Thus, a one-dimensional DFT of
order n coincides with a d-dimensional DFT of order n1× . . .× nd up to a permutation of com-
ponents. This connection was observed in [2], and the Good—Thomas method allows to reduce
the computation of such a transform to DFTs of orders ni. In this case, the stumbling block
may be the inefficiency of the implementation of DFTs with various orders ni.

Such way of transition to a multidimensional DFT is employed in the method [40, 41]. As in
the Fürer method, n-digit numbers to be multiplied are first divided into N = O(n/ log n) blocks
of length of order log n, interpreted as complex coefficients. The numbers are then considered
as polynomials over the ring Cp = C[y]/(y2p + 1), where p = d(1/d) logNe. Multiplication
of such polynomials is performed as multiplication in the ring Cp[x]/ (xn1·...·nd−1 − 1), where
3N > n1 · . . . · nd−1 · 2p > 2N , and all ni are distinct primes. The last multiplication, as
described above, reduces to computing a DFT of order n1 × . . . × nd−1 and multiplications at
the interpolation points. All calculations are performed with a budget of accuracy that can be
specified as O(log n) digits. Let E = O(log n) digits be used to store the real and imaginary
parts of a complex coefficient.
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To overcome the problem of inefficiency of DFTs of prime orders ni, the authors [40, 41]
proposed two ways. In the first method, as parameters ni, numbers of the form ni = ki · 2p + 1
are chosen, where the factors ki are not very large. By a multidimensional version of the Rader
method, a DFT of order n1 × . . . × nd−1 is reduced to a cyclic convolution of a smoother
order (n1 − 1)× . . . × (nd−1 − 1). In this way, an upper bound O(n log n) of the complexity of
multiplication can be obtained, provided that ki can be chosen to be really small, say, ki < 2εp,
where ε is a suitable constant. But the possibility of such a choice relies on an unproven
conjecture about the size of primes in an arithmetic progression. If the conjecture is confirmed,
then the estimate O(n log n) of complexity for multiplication of polynomials of degree n will be
proved at the same time, see [41].

The second method works only in the numerical case. The primes ni are chosen to be slightly
smaller than powers of two ti ∈ {2p−1, 2p}, so that T = t1 · . . . · td−1 ≤ 2N ′ = 2n1 · . . . · nd−1.
The prime number distribution law allows this to be done. The key point of the method is to
reduce a DFT of order n1× . . .×nd−1 to a DFT of order t1× . . .× td−1: naturally, we are talking
about constructing an approximation with sufficiently high accuracy. The possibility of quickly
approximately calculating a DFT of one order using a DFT of another order is not obvious and
little known. The issue was studied in [22] for one-dimensional transforms. The authors [40]
generalized the method [22] to the multidimensional case and slightly improved it. As a result,
it was possible to show that, given certain relations between ni and ti (the numbers should not
be too close) and some other feasible conditions, the specified reduction can be performed with
complexity o(n log n) and the required accuracy.

Recall that a DFT of order ti over a ring Cp can be computed by the Cooley—Tukey method
in O(ti log ti) operations in Cp, i.e. with the overall complexity O(ti log ti ·2pE). Then Lemma 8
allows us to estimate the complexity of a DFT of order t1 × . . .× td−1 as O(N ′ logN ′ · 2pE) =
O(n log n). Using the notation M(N,E) from §6.1, we arrive at the relation

M(n) ≤M(N ′, E)+O(n) ≤ N ′ ·M(1, E)+O(n log n) ≤ N ′ ·M(O(2p(E+p)))+O(n log n), (8)

estimating the complexity M(1, E) of (approximate) multiplication in the ring Cp as
M(O(2p(E + p))), as in §6.1. Since N ′ = O(n · 2−p/ log n) and p ∼ (1/d) log n, relation (8)
is resolved as M(n) = O(n log n) for a sufficiently large constant parameter d.

This is the general scheme of the computation. The error analysis and the choice of the
parameter E are performed in approximately the same way as in the Fürer method. The main
difficulty of the proof lies in constructing an approximation of a multidimensional DFT. The
multidimensional case is reduced to the one-dimensional one, i.e. computing a DFT of order s
via a DFT of order t > s, where (s, t) = 1. For this, the matrix identity R ·Πs ·Φs = Πt ·Φt ·R′
is used, where Φz are matrices of order-z DFTs, Πz are suitable permutation matrices of size
z × z, and R and R′ are special matrices of size t× s. For a fixed vector of arguments x ∈ Cs,
we obtain an overdetermined system of linear equations A · X = b with respect to the vector
of unknowns X = Φs · x, where A = R · Πs and b = Πt · Φt · R′ · x. The construction of an
approximate solution of the system is facilitated by the peculiarity of the matrices R and R′ —
the rapid decrease of their coefficients with distance from a certain diagonal. For more details,
see [40].

7 Additive DFT and multiplication

DFT-based methods generally do not allow fast multiplication of polynomials over finite
fields, since a finite field rarely supports a DFT of sufficiently large smooth order. Theoretically
fast methods do not work in a practical range of dimensions. However, it turns out that one
can multiply quickly using interpolation at points of additive subgroups of a finite field, and
methods based on this turn out to be practically efficient.
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A special case of the additive multiplication method was proposed by Y. Wang and
X. Zhu [85] in 1988. A year later, D. Cantor [11] constructed a fast multiplication method

over fields of order qq
k
. Later, J. von zur Gathen and J. Gerhard [32] extended the method to

fields of arbitrary order.
Let a basis {α1, α2, . . . , αk} be chosen in a field GF (qk). Set W0 = {0} and denote Wi =

〈α1, . . . , αi〉 — the linear span of the first i basis elements over GF (q). Thus, Wi is an additive
subgroup. By construction,

Wi =
⋃

c∈GF (q)

{cαi +Wi−i}.

The additive DFT (ADFT) of order qi is defined as the set of values of a polynomial Γ(x) ∈
GF (qk)[x] at the points of the subgroupWi. The inverse ADFT is defined as the set of coefficients
of a unique polynomial of degree < qi − 1 that takes the given values at Wi.

Define polynomials Si(x) as

Si(x) =
∏
β∈Wi

(x− β). (9)

It is easy to prove

Lemma 12. The following properties of the polynomials Si(x) hold:

(i) S0(x) | S1(x) | . . . | Sk(x) = xq
k − x;

(ii) Si+1(x) = Sqi (x)− Sq−1
i (αi+1)Si(x);

(iii) A polynomial Si(x) is linearized over GF (q), i.e. it has nonzero coefficients only at xq
j
,

0 ≤ j ≤ i.

For linearized polynomials, in particular for polynomials Si(x), the linearity properties hold:
Si(β + γ) = Si(β) + Si(γ) for any β, γ ∈ GF (qk), and Si(cβ) = cSi(β) for any β ∈ GF (qk) and
c ∈ GF (q).

It can be verified [32] that both the forward and inverse ADFT of order qi over GF (qk) may
be implemented by circuits over GF (qk) of complexity O(i2qi+1).

7.1 Fast ADFT

The ADFT complexity can be reduced by a special choice of basis. Efficient bases for the

ADFT over fields GF
(
qq

k
)

were proposed by D. Cantor [11]. Elements of Cantor bases6 are

defined by the relations α1 = 1 and αqi+1 − αi+1 = αi for i > 1. Such a choice of basis allowed

Cantor to improve the complexity estimate to O
(
i logq (q+1

2 )qi+1
)

in the case of a prime number q.

For binary fields, which are of primary interest, faster algorithms have been constructed by

S. Gao and T. Mateer [28, 58]. We present a fast ADFT algorithm over the field GF
(

22k
)

.

The Cantor basis in a binary field is constructed according to the rules: α1 = 1 and
α2
i+1 + αi+1 = αi for i > 1. Then the characteristic polynomials (9) satisfy the relation
Si+1(x) = S2

i (x) + Si(x) according to Lemma 12.
The fast Gao—Mateer algorithm makes effective use of the fact that many polynomials Si

are binomials. Namely, S2i(x) = x22
i

+ x and W2i
∼= GF

(
22i
)

. In other words, the sequence

{Wi} contains a tower of fields

GF (2) ⊂ GF
(
22
)
⊂ . . . ⊂ GF

(
22i
)
⊂ . . . ⊂ GF

(
22k
)
.

To show the analogy between the fast ADFT algorithm and the FFT, we rewrite the preimage
polynomial in a special basis.

6The Cantor basis is a special case of the Artin—Schreier basis.
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On the set of polynomials of degree < 2i over GF (2k) we define a basis Pi = {mb(x) |
0 ≤ b < 2i} as follows: if in binary notation b = [bi−1, . . . , b0], then mb(x) =

∏i−1
j=0 S

bj
j (x). By

construction, P0 ⊂ P1 ⊂ . . . ⊂ Pk. We have

Lemma 13 ([58]). The transition between the representations of a polynomial of degree < 2m in

the standard basis and the basis Pm in any direction can be performed by a circuit over GF
(

22k
)

of ≤ 2m−2m logm additive operations.

The algorithm for transition to the basis Pm involves only operations of division with re-
mainder by binomials, which explains its low complexity. Let 2i < m = 2i+t ≤ 2i+1. A problem
of size 2m is reduced to 22i problems of size 2t and 2t problems of size 22i . The general scheme
is as follows.

1) First, the polynomial f(x) is rewritten as

2t−1∑
j=0

fj(x)Sj
2i

(x),

deg fj < 22i . This is done by the “bisection” method: first we divide the polynomial f(x)

by S2t−1

2i
, then the quotient and remainder by S2t−2

2i
, and so on.

2) The inner polynomials fj(x) are rewritten in the basis P2i .
3) Assuming y = S2i(x), the result of the previous step can be written as

22
i−1∑
b=0

mb(x)gb(y),

deg gb < 2t. Then, we represent the polynomials gb in the basis Pt (with respect to the variable y).
Note that S2i+l(x) = Sl(y), so the transition is complete.

When passing from the special basis Pm to the standard one, all steps are implemented in
reverse order.

The proof of the following lemma is completely analogous to the proof of Lemma 4.

Lemma 14. The evaluation of a polynomial f(x) ∈ GF
(

22k
)

[x], written in the basis Pm, at the

points ω +Wm, where ω ∈ GF
(

22k
)

, and the inverse problem of reconstructing the polynomial

from the given values at these points, is performed by a circuit over GF
(

22k
)

containing m2m

additions and m2m−1 scalar multiplications. In the case ω = 0, one can additionally save 2m−1
additions and scalar multiplications.

At the next step of the algorithm, a polynomial f(x) of degree 2m − 1 is written as
f1(x)Sm−1(x) + f0(x). Hence,

f(ω +Wm−1) = f ′(ω +Wm−1), f(ω + αm +Wm−1) = f ′′(ω + αm +Wm−1),

where f ′ = f1Sm−1(ω) + f0, f ′′ = f1Sm−1(ω) + f0 + f1.
When performing the inverse procedure, polynomials f0, f1 are restored using the formulas

f1 = f ′′ + f ′, f0 = f ′ + Sm−1(ω)(f ′′ + f ′).
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7.2 Multiplication via ADFT

The ADFT allows fast multiplication of polynomials over fields GF (qk) if the degree of the
product is less than qk. If the field cardinality is small, then the computations are embedded in
a field of larger size.

For example, to multiply binary polynomials, the polynomials are divided into blocks of

length 2k−1, which are interpreted as elements of the field GF
(

22k
)

for a suitable k.

As a result, the multiplication of polynomials of degree N is reduced to Θ(N) mul-
tiplications in a field of degree O(logN), so the theoretical complexity of the method is
O(N logN log1+o(1) logN) — somewhat higher than that of the Schönhage—Strassen method
or the method from [37]. However, in practice, the ADFT method has priority. Another reason
is that many multiplications in the fast ADFT algorithm are performed on elements of subfields.

In [8], it is shown that this method allows multiplying binary polynomials of degree of order
of several hundred faster than any other previously applied method.

Quite recently [46, 54] it was discovered that an additional gain (in the limit about two times,
but in practice less) can be obtained by exploiting the Frobenius identity (a+b)q = aq+bq, which
is valid for any a, b ∈ GF (q). By virtue of this identity, the value of a polynomial with coefficients

from GF (q) at a point ω ∈ GF (qk) automatically determines its values at all points ωq
l
. Indeed,

if f ∈ GF (q)[x] and ω ∈ GF (qk), then f
(
ωq

l
)

= (f(ω))q
l
.

The Frobenius automorphism x → x2i preserves the additive subgroups Wj defined for the
Cantor basis: if ω ∈ Wj , then ω2 ∈ Wj , as follows from the definition of the basis. It can be
verified that the Frobenius automorphism group, when acting on an element ω ∈ Wj \Wj−1 ∈
GF

(
22k
)

, generates an equivalence class (orbit) {ω2i | i = 0, . . . , 2k − 1} of cardinality 2dlog je.

As a consequence, the set of ADFT points of order 2m over GF
(

22k
)

splits into at most

2m/(m− o(1)) equivalence classes.
This observation dictates the following method for multiplying polynomials of total degree

less than 2m. The field GF (22k), k = dlogme, is used for the computations. First, each of

the polynomials f, g ∈ GF (2)[x] to be multiplied, interpreted as a polynomial over GF
(

22k
)

,

is represented in the basis Pm. Partitioning into blocks and insertion of zero blocks are not
required. Next, each polynomial is evaluated on the set Σ ⊂ Wm of representatives of the
equivalence classes. The algorithm of Lemma 14, adapted for polynomials with coefficients from
the subfield GF (2), is applied. The inverse procedure reconstructs the product from the values
f(ω)g(ω), ω ∈ Σ. For details, see [15].

Note the analogy with the multiplication of polynomials with real coefficients: the presence
of the complex conjugation automorphism that preserves the subfield R and the set of roots of
unity allows to compute the complex DFT with a real image or preimage approximately twice
as fast as in the general case.

The idea of a reduced DFT over a finite field exploiting the Frobenius identity was proposed
by J. van der Hoeven and R. Larrieu in [46]. The additive analogue of the method described
above was constructed by a group of mathematicians from Taiwan in 2018 [54]. The upper
bounds obtained with its help for the complexity of multiplication of binary polynomials of
degree from several hundred and higher are the best of those published at the time of writing
this survey.

8 Parallel multiplication circuits

Until now we have measured the quality of algorithms by the total number of operations
performed. Now let’s consider another important characteristic — the execution time of the
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algorithm. In theoretical works, time is usually formalized by the concept of depth.
Depth is the maximum number of elements in a directed input-output chain of a circuit.

If complexity corresponds to the size or area of a real electronic microcircuit, then depth cor-
responds to the speed or response time of the microcircuit. The depth D(f) of a function f
(i.e. the minimum depth of the circuit implementing the function) characterizes the time of its
parallel computation. The depth of a function that essentially depends on n variables in a basis
of binary operations cannot be less than log n.

In addition to Karatsuba’s method, the paper [48] presents another result due to Yu. P. Of-
man. In modern language, it says that the multiplication of n-digit numbers can be implemented
by a Boolean circuit of depth O(log n).

Multiplication of n-coefficient polynomials is obviously performed with depth dlog ne+ 1 by
the standard method, and this bound is tight. The problem of the integer multiplication depth
is more complicated. In the numerical case, even the question of the addition depth is not
trivial. However, V. M. Khrapchenko [51] solved it in the asymptotic sense, having constructed
an n-digit adder of depth (1 + o(1)) log n. The best, to date, upper bound on the depth of the
adder is log n+ log log n+O(1) and belongs to M. I. Grinchuk [35].

In the early 1960s, several papers, including [48], showed that the depth of multiplication
of n-digit numbers is O(log n). The proof is based on a reduction to the problem of summing
n bits. Indeed, if in the school method of multiplication (see Fig. 1) we perform the additions
separately in each column and properly group the bits of the results, the multiplication will
reduce to summing log n numbers. We can continue in the same spirit, reducing the number of
terms to log log n, etc., until only two terms remain, in order to arrive at the relation

D(Mn) ≤ (D(Cn) +D(Clogn) + . . .) +D(A2n) = D(Cn) + log n+ o(log n), (10)

where Mn, An, and Cn denote the operators of multiplication and addition of n-digit numbers,
respectively, and the operator of summation of n bits. The last transition is valid under the
condition D(Cn) = o(n). In practical terms, the described strategy is not ideal, but it allows to
derive the asymptotically best known estimates of the multiplication depth.

Fast methods for performing multiple addition are based on the idea of compressors.
A binary (k, l)−compressor7 of width 1 is a circuit implementing a Boolean operator

(x1, . . . , xk)→ (y1, . . . , yl) according to the rule
∑

2aixi =
∑

2bjyj , where k > l, and ai, bj ∈ Z.
A (k, l)−compressor of arbitrary width is composed from parallel copies of width-1 compres-
sors — it maps k multidigit numbers into l numbers, preserving the sum.

Indeed, k numbers xi = [xin−1, ..., x
i
0], 1 ≤ i ≤ k, by parallel transforms (x1

j+a1
, . . . , xkj+ak)→

(y1
j+b1

, . . . , ylj+bl), j ∈ Z, are converted into l numbers yi = [yin+h, ..., y
i
0], 1 ≤ i ≤ l, where

h < log k, while preserving the sum (all undefined digits in the above expressions are assumed
to be zero).

The simplest compressor is the (3, 2)−compressor. It implements the sum of three bits
according to the rule x1 + x2 + x3 = 2y2 + y1 by the formulas

y2 = x1(x2 ⊕ x3)⊕ x2x3, y1 = x1 ⊕ x2 ⊕ x3

of complexity 5 and depth 3.
An elementary way to implement the operator Cn in parallel is to construct a tree

of (3, 2)−compressors of width8 log n. The tree has n inputs, two log n-bit outputs, and
dlog3/2(n/2)e compressor levels. It remains to attach a log n-bit adder to the outputs. Clearly,
the depth of the resulting circuit is O(log n).

7In Western literature, the term CSA (carry save adder) is often used.
8Note from 2025: here, width is related to compressors.
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Methods for fast computation of Cn via compressors were developed and improved in the
works of V. M. Khrapchenko [52], M. Paterson, N. Pippenger, U. Zwick [61, 62] (these works
also provide a detailed history of the issue). In particular, in [61, 62] a method for optimal
placement of given compressors in a circuit was established. Record-breaking results to date
were obtained by one of the authors of this review: a constructive bound D(Mn) . 4.34 log n [76]
and a non-constructive bound D(Mn) . 4.02 log n [78]. In the proof of these estimates, the sum
of the bits is reconstructed from the remainders modulo 2k and 3l, and an approximate sum
value calculated with suitable accuracy.

Of both applied and theoretical interest is the construction of parallel versions of fast mul-
tiplication methods that do not significantly increase complexity. The considered methods of
polynomial multiplication already have logarithmic depth. At least two approaches to parallel
rebuilding of numerical algorithms are known — both involve the use of special encoding of
numbers in which additive operations are performed with depth O(1). The first method intro-
duces notation in the signed quaternary number system and has been known since the 1960s [5],
see also [86]. In the second method, proposed by A. V. Chashkin [14], the number u is encoded
by a pair of numbers (u1, u2), the difference of which yields the true value u = u1 − u2.

9 More on the complexity of basic multiplication methods

Despite the development of fast multiplication methods, the standard method and its mod-
ifications are still widely used. In practice, the numbers being multiplied are usually relatively
small, up to several hundred digits — for such sizes, the standard method is efficient.

So, the essence of the standard method is to reduce multiplication to multiple addition of
numbers. The complexity of n-fold addition of n-digit numbers is obviously of order n2, due to
the dimensionality of the problem.

Knowing that 5n−3 operations are required to add two n-digit numbers [68], it seems natural
that summing m numbers requires approximately 5(m−1)n operations. Even more unexpected
was the result obtained in the work [21] of 2010 by a group of mathematicians from the St.
Petersburg Branch of the MI RAS9: the trivial estimate for the complexity of m-fold addition
can be improved already for m = 3. The circuit proposed by the authors is based on a new
economical compressor design. Using this compressor, the upper bound for the complexity of
the standard multiplication method can be refined to 5.5n2 − 6.5n− 1 + (n mod 2) [77].

For the complexity of Karatsuba’s method, in which multiple additions and subtractions
dictated by formula (2) are optimized taking into account the result [21], the upper bound
K(2k) ≤ 25 83

405 · 3
k −O(2k) [77] holds.

10 Complexity: quadratic and linear

The initial assumption about the quadratic complexity of multiplication is justified in the
computational model of cell circuits. Essentially, a planar cell circuit is a rectangle composed
of square cell elements. On a side of a cell there is no more than one input or output, by
means of which the cells are connected to each other. For example, a circuit can be composed
of functional, switching and separating elements, shown in Fig. 2 (f symbolizes a binary, and
g — an unary Boolean function). The inputs and outputs of a circuit are located along the
perimeter of the rectangle. The complexity of a cell circuit is the number of elements in it. For
more details, see, e.g., [80].

N. A. Shkalikova [80] proved that the order of complexity of multiplying n-digit numbers when
implemented by planar cell circuits is n2. The same is true for three-dimensional cell circuits.

9Mathematical Institute, Russian Academy of Sciences.
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It is clear that although cell circuits are to some extent similar to real electronic circuits, the
relative size of conductors (switching elements) in the model is somewhat overestimated. The
lower bound for the complexity of multiplication is obtained from the estimate of the number
of conductors connecting the circuit fragments. However, in modern circuit engineering, the
density of conductor placement and the density of functional elements are approaching each
other.

On the contrary, one can specify computational models in which multiplication is provably
performed exceptionally fast, unlike cell circuits. One such model is RAM-programs (alternative
notation log-RAM). A RAM-program performs arithmetic operations with arguments of length
log n in unit time, where n is the input size, for more details see [3, 81, 27]. The complexity
is measured by the total time of instructions executed. The model is introduced to adequately
reflect the process of computation on a general-purpose processor with memory, although, of
course, a physical processor is not capable of supporting unit time for executing operations when
n→∞.

A. O. Slisenko [81] and later M. Fürer [27] observed that already the first Schönhage—
Strassen method, based on the complex DFT, is implemented by RAM-programs of linear com-
plexity. Indeed, the method reduces the multiplication of n-digit numbers to the DFT of order
Θ(n/ log n) with O(log n)-digit arguments, which is performed in O(n) arithmetic operations
with such arguments.

However, the linear complexity of multiplication in the RAM-program model should not
be misleading. The model fundamentally allows computations with sublinear complexity. For
example, addition of n-digit numbers is implemented by RAM-programs in time O(n/ log n).

Around 1979, A. Schönhage [72] obtained a linear complexity of multiplication in a more
sophisticated computational model — storage modification machines, see also [53, 81].

11 Real-time multiplication

In some applications, there is a need for real-time (or online) multiplication algorithms.
Real-time means that a k-th digit or coefficient of a multiplier is supplied to the input of an
algorithm only after the (k − 1)-th digit (coefficient) of the product has been computed. Such
a situation naturally arises when the next input digits depend on the obtained output digits.
This happens, in particular, when solving functional equations by an iterative procedure (see,
e.g., [45]).

Let MONLINE(n) denote the complexity of real-time multiplication of n-digit numbers by
straight-line programs10. M. Fischer and L. Stockmeyer [24] obtained the estimate

MONLINE(2k) �
k−1∑
i=0

2k−iM(2i) + k2k

10Recall that a straight-line program is a circuit with a fixed linear order of operations.
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in terms of the complexity of usual multiplication11. From this estimate, under the assumption
of uniform growth of the function M(n), it follows that MONLINE(n) � M(n) log n. If, for
example, the Karatsuba method is used for the internal multiplications of the algorithm, then
the resulting online version of the Karatsuba method will have the same order of complexity
nlog 3 as the original method. A similar result is true for the multiplication of polynomials.

J. van der Hoeven showed in a series of papers (see, for example, [45]) that the factor log n
can be reduced under some additional assumptions about the properties of the ring over which
the multiplication is performed.

A nontrivial lower bound MONLINEn) = Ω(n log n) is due to M. Paterson, M. Fischer, and
A. Meyer [60].

12 Conclusion

So, the pessimistic hypothesis M(n) = Ω(n2) of the 1950s was initially replaced by optimistic
expectations: some publications raised the question of the existence of a multiplication method of
linear complexity. Today, we can state that, starting with Karatsuba’s method and ending with
the methods of 2014–2019, the main line of development of multiplication methods — problem
size reduction using interpolation — remained unchanged. This path led to the conquest of the
O(n log n) boundary in the integer version of the problem; there is no doubt that in the very
near future a similar estimate will be proven for the complexity of polynomial multiplication.
Many researchers are inclined to believe that the obtained result in terms of complexity can no
longer be improved.

However, some hopes are associated with the development of methods of multiplication of
linear multiplicative complexity. Multiplicative complexity of multiplication of polynomials from
K[x] is the number of nonscalar multiplications in K performed. The question of multiplicative
complexity is nontrivial when the cardinality of the ring K is less than the number of coefficients
in the product of polynomials, and is especially interesting in the extreme case K = GF (2).

Around 1987, Chudnovsky brothers [16] proposed a theory for constructing multiplication
methods over any finite field GF (q) with linear multiplicative complexity. The research was
continued in dozens of papers by other authors, see, e.g., the surveys [6, 67]. All the constructed
methods use interpolation in groups of divisors on algebraic curves and have a very nontrivial
justification12.

So far, the main results here deal with the refinement of constants in estimates of multi-
plicative complexity. For example, it has been proven to date that the multiplicative complexity
of multiplying polynomials of degree n over GF (2) does not exceed (35/3 + o(1))n [64]. But
the overall complexity of the corresponding multiplication algorithms is apparently far from
desirable.

On the other hand, nonlinear multiplicative complexity is one of the limiting factors for the
known fast multiplication algorithms, since it determines the dimension of linear transforms
in the bilinear structure of the algorithms. For comparison, in the methods of Schönhage
and Strassen, of order n log n elementary nonscalar multiplications are performed, in the
method [37] — about n · clog∗ n, and in the method [41] — about n logc n.

11In [24] the Turing machine computational model was considered, but the bound also holds for straight-line
programs.

12The complexity of the theory is emphasized by the fact that in all the initial and in many subsequent papers
on multiplication methods of linear multiplicative complexity, gaps in the proofs were found.
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