
Regular estimates for the complexity of polynomial
multiplication and truncated Fourier transform∗

I. S. Sergeev†

Abstract

In the present paper polynomial multiplication circuits, which are efficient ei-
ther in complexity and depth or in complexity and memory size, are proposed.
Consequently, for instance, the multiplication of polynomials of total degree n =
2n1 + . . . + 2ns , where n1 > . . . > ns, over a ring with invertible 2, can be im-
plemented in M(n1) + . . . + M(ns) + O(n) arithmetic ring operations with depth
maxi{D(ni)}+ O(log n), where M(k) and D(k) are the complexity and depth of a

modulo x2k + 1 multiplication circuit. As another example, the truncated DFT of
order n (i.e. the DFT of order 2dlog2 ne, reduced to vectors of dimension n) can be
implemented by a circuit of complexity 1.5n log2 n + O(n) and memory size n + 1.

Keywords: arithmetic circuits, complexity, depth, memory size, multiplication,
discrete Fourier transform (DFT).

Introduction

In this paper, we consider the problem of constructing circuits for multiplying polynomi-
als with complexity regularly (uniformly, smoothly) depending on the input size (i.e. the
degrees of polynomials). A typical situation is when efficient (basic) circuits for multiply-
ing modulo x2k + 1 are available, but it is required to construct a circuit for multiplying
polynomials of arbitrary total degree n− 1 with complexity that asymptotically depends
on n in the same way as in the case of n = 2k (the asymptotics is naturally assumed to
be a smooth function). In theoretical papers, this goal is usually achieved by modifying
the basic multiplication algorithm, for example, by extending it to modules of the form
xs2

k
+ 1. But such techniques usually worsen the second term in the complexity estimate.

(The notion “second term” is used informally here and below.) Interestingly, a better
result can be achieved without interfering with the basic algorithm at all (using it as
a “black box”). To do this, it is enough to be able to efficiently reduce a polynomial
modulo a set of binomials x2i + 1 and restore it from known remainders from division by
these modules. This is what we will discuss below.

∗Translated version. Originally published in: Prikladnaya Diskretnaya Matematika [Applied Dis-
crete Math.]. 2011, no. 4(14), P. 72–88 (in Russian).
†Lomonosov Moscow State University, Moscow, Russia. e-mail: isserg@gmail.com
0The work was supported by RFBR, projects 11–01–00508 and 11–01–00792–a, and the fundamental

research program of the Department of Mathematical Sciences of the Russian Academy of Sciences
“Algebraic and combinatorial methods of mathematical cybernetics and new generation information
systems” (project “Problems of optimal synthesis of control systems”).

1



The above problem is consonant with the problem of efficient implementation of the
truncated DFT (TFT — Truncated Fourier transform). The DFT of order of a power
of two is computed most efficiently, therefore in [9] it is proposed to use n components
of the DFT of order 2dlog2 ne instead of the DFT of arbitrary order n; the corresponding
transform in [9] is called the truncated DFT.

In this paper, we consider circuits for solving the listed problems, which are efficient
in terms of complexity (potentially more than one term from the asymptotic complexity
of the basic circuit can be preserved) and simultaneously of depth or space (storage or
memory size). The formulation of the problem of minimizing the space is borrowed
from [8].

In addition, the problem of efficient implementation of polynomial multiplication via
multiplication modulo x2·3k + x3k + 1 circuits is considered. Such circuits were proposed
for multiplication by A. Schönhage [13]. Schönhage’s method can be generalized to mul-
tiplication modulo x(p−1)·pk + x(p−2)·pk + . . . + xp

k
+ 1, where p is a prime [2]. However,

for p 6= 3 this generalization apparently has no practical significance yet (see also [1, 7]).
Such circuits are usually applied when two is non-invertible in the coefficient ring, but
three is invertible (a popular example is finite fields of characteristic 2). In this case, as
shown below, for multiplying polynomials of total degree n− 1 one can construct circuits
with a regular complexity estimate for n ∈

⋃
k∈N[2 ·3k, 3k+1), and with a worsening of the

asymptotic complexity by at most 4/3 times for other n, provided that the basic circuits
are kept intact.

Let us discuss the essence of the question in more detail, introducing the necessary
concepts along the way.

Let K be a commutative (and associative) ring with unity. An element ζ ∈ K is called
a primitive root of order N if ζN = 1 and for any prime p|N the element ζN/p − 1 is not
a zero divisor in K.

Discrete Fourier transform of order N is the (KN → KN)-transform

DFTN, ζ(γ0, . . . , γN−1) = (γ∗0 , . . . , γ
∗
N−1), γ∗j =

N−1∑
i=0

γiζ
ij,

where ζ is a primitive root of order N . If an element N = 1+. . .+1 ∈ K is invertible, then
there exists an inverse transform to the DFT (called inverse DFT) satisfying DFT−1

N, ζ =
(1/N)DFTN, ζ−1 .

It is convenient to keep in mind the polynomial interpretation of the DFT as an isomor-
phism of rings, when the DFT input is regarded as the coefficient vector of a polynomial:

DFTN, ζ : K[x]/(xN − 1)→ KN , DFTN, ζ(Γ(x)) =
(
Γ(ζ0), . . . ,Γ(ζN−1)

)
.

For more details on the DFT, see, e.g., [7].
To analyze the efficiency of the algorithms discussed below, it is convenient to employ

the standard computational model of circuits of functional elements [11, 16] (hereinafter,
simply circuits). Namely, we consider circuits over the arithmetic basis {x ± y, xy} ∪
{ax|a ∈ K} (arithmetic circuits). For programmers, the concept of straight-line program
is closer: essentially, a straight-line program (hereinafter, simply program) is a circuit for
which the sequence of operations (numeration of circuit elements) is fixed. So, several
programs can correspond to one circuit.

2



Several measures of circuit (program) complexity are defined in a standard way.
Namely, complexity is the number of functional elements in a circuit (program). Cir-
cuit depth is the maximum number of elements in a directed input-output chain in the
circuit. Memory space of a program is the maximum size of intermediate data (including
all already computed outputs) used in subsequent iterations during the program execu-
tion. Somewhat artificially, the memory space of a circuit can be defined as the minimum
memory space over all programs corresponding to a given circuit.

Essentially, complexity corresponds to the execution time of a program on a single-
processor machine or the area of a microchip implementing a circuit; depth corresponds
to the response time of a microcircuit or the number of parallel steps performed by
a multiprocessor machine; memory space in the definition corresponds to the memory
capacity allocated for storing variables when implementing a program on a computer.

When analyzing the memory space, it is convenient to represent the computation
process as follows. Intermediate data are stored in memory cells (the capacity of a cell
is equal to one element of the ring K). At the beginning of work, the cells contain input
data. Elementary (basic) operations are performed sequentially. Each operation uses the
data that is in memory at the time of its execution. The result of an operation is stored
in some cell.

A DFT of order of a power of two allows the most efficient implementation. Hence,
fast algorithms efficiently multiply polynomials of total degree n− 1 if n = 2k, assuming
that the coefficient ring or its suitable extension admits a DFT of order of a power of two.

As is known, by the Cooley—Tukey method [3] a DFT of order 2k can be implemented
by a circuit of k2k addition-subtraction elements, (k−2)2k−1+1 elements of multiplication
by powers of a primitive root (of order 2k), and of depth 2k−1 (if only additive operations
are taken into account, then the depth is k). This circuit can be rebuilt so as to have
memory space 2k+1 with the same complexity. By adding k2k−1 elements of multiplication
by 2, the space can be reduced to 2k; what is meant here is that the basic transform of
the circuit, the order-2 DFT: (x, y)→ (x+ y, x− y), can be computed with complexity 2
and space 3 in the chain (x, y)→ (x+ y, x, y)→ (x+ y, x− y) or with complexity 3 and
space 2 in the chain (x, y)→ (x+ y, y)→ (x+ y, 2y)→ (x+ y, x− y).

The inverse DFT can be implemented in the same way as the forward one, by replac-
ing ζ with ζ−1 and performing 2k multiplications by the constant 2−k ∈ K at the end.
However, some of these multiplications can be combined with internal multiplications by
powers of the primitive root.

If n 6= 2k, then “by default” the algorithm for multiplying polynomials of total degree
2dlog2 ne − 1 can be applied. However, the complexity of the multiplication algorithm
grows irregularly with increasing n, and approximately twofold jumps occur when passing
through powers of two. There are known techniques that allow smoothing the complexity
function so that for any n it is asymptotically expressed in terms of n in the same way
as in the case of n = 2k. For example, DFTs of order of powers of two can be replaced
by DFTs of order s2l, where s � 2l [14], or slightly more general multiple DFTs [15].
However, these techniques, as a rule, worsen the second-order term of the complexity
function and transfer the jumps to it.

Another approach was proposed by van der Hoeven in [9, 10], where a truncated
DFT is implemented that computes the DFT values on some subset of points from the
set corresponding to the DFT of order of the nearest power of two from above. The
truncated DFT (TFT) of order n is defined as a set of n components of the vector

3



DFT2Λ(n), ζ(γ0, . . . , γn−1, 0, . . . , 0), where Λ(n) = dlog2 ne.
Van der Hoeven [9] proposed to include into the TFF such components, which are

values at the points ζρ(i), i = 0, . . . , n− 1, where ρ(i) is a number whose binary notation
is the reversed length-Λ(n) binary notation of the number i.

The forward TFT circuit in the method [9] is obtained from the order-2Λ(n) DFT cir-
cuit by removing “unnecessary” operations. The inverse TFT circuit is somewhat more
complicated. For both circuits, the complexity is estimated as nΛ(n) + 2Λ(n) additive
operations and d(nΛ(n) + 2Λ(n))/2e multiplications by powers of a primitive root (multi-
plications by powers of two are ignored in the calculation, or more precisely, operations of
the form x± 2sy are allowed). The depth of the forward TFT circuit is Λ(n); the depth
of the inverse TFT circuit is somewhat larger, but also O(log n). The memory space of
this circuit (more precisely, the circuit rebuilt similarly to the above-mentioned circuit of
the usual DFT), as noted in [8], is 2Λ(n). In [8], the circuit of space n+O(1) is proposed,
but with a greater asymptotic complexity, although of the same order, O(n log n).

From the perspective of the polynomial multiplication problem, ideas close to em-
ploying the TFT were previously expressed in [4], where it was proposed to perform
multiplication modulo two numbers that allow a fast multiplication algorithm and finally
restore the product based on the Chinese remainder theorem, and later in [1], where it
was proposed to use several modules. In terms of DFTs, this means choosing a TFT of
order l, where the number l has a small (binary) weight.

In [12], it was proposed to choose the roots of polynomials x2i + 1 of total degree n as
the points of a TFT of order n.

For further analysis, it is convenient to introduce the concept of odd DFT (ODFT) of
order N :

ODFTN, ζ : K[x]/(xN + 1)→ KN , ODFTN, ζ(Γ(x)) =
(
Γ(ζ1), Γ(ζ3), . . . ,Γ(ζ2N−1)

)
,

where ζ is a primitive root of degree 2N . In other words, the components of the ODFT
of order N are the components of the DFT of order 2N , distinct from the components
of the DFT of order N (if we mean the polynomial interpretation of the DFT). A simple
way to implement ODFTN, ζ is to compose a variable substitution x→ ζx and DFTN,ζ2 .
Accordingly, the inverse ODFT can be implemented as a composition of DFT−1

N,ζ2 and
a substitution x→ x/ζ.

Let n = 2n1 + . . . + 2ns , where n1 > . . . > ns. An order-n TFT circuit [12] may be
constructed from circuits of ODFTs of orders 2n1 , . . . , 2ns plus 2Λ(n) + n additive opera-
tions and n multiplications. The inverse TFT circuit, in addition to circuits implementing
inverse ODFTs of orders 2n1 , . . . , 2ns , involves 3 ·2Λ(n) +n additive operations and n multi-
plications. These complexity estimates were calculated in [12] for a slightly more general
problem and can be reduced. The depth and memory space of the circuits [12] are esti-
mated approximately the same as for [9].

Further, somewhat more accurate upper bounds on the complexity of this TFT are
obtained together with the depth estimates, and it is shown that a TFT of order n can
be implemented by a circuit with space n (or n+ 1) and additional complexity O(n).

The issue of memory optimization can naturally be considered in the problem of poly-
nomial multiplication. In [8], based on an efficient TFT circuit, a circuit for multiplying
polynomials of degree n/2 − 1 with complexity O(n log n) and space 2n + O(1) is con-
structed, where n memory “cells” are allocated for storing the input coefficients and are
not modified.

4



From the estimates obtained further it follows, in particular, that for multiplying poly-
nomials of total degree n− 1 it is possible to construct a circuit of complexity O(n log n)
and memory space 2n. The prohibition on rewriting inputs is not imposed. If we keep in
mind that in fact a circuit is constructed for multiplying modulo some degree-n polyno-
mial, then the memory space of such a circuit cannot be further reduced.

Results for the problems of computing TFT and multiplying polynomials are formu-
lated in §1.1 and proved in §1.2. In Section 2, polynomial multiplication circuits are
composed from modulo x2·3k + x3k + 1 multiplication circuits.

1 TFT and the binary multiplication method

1.1 Main results

Let us have at our disposal circuits for order-2k ODFTs of complexity Φ(k) = ΦA(k) +
Φ2(k) + ΦC(k), depth dΦ(k) and memory space vΦ(k). Here ΦA(k) is the number of
additive elements, Φ2(k) is the number of multiplications by powers of two, ΦC(k) is the
number of other scalar multiplications. We introduce similar notations with strokes for
the parameters of circuits implementing inverse ODFTs.

We fix the notation n = 2n1 + . . .+ 2ns , where n1 > . . . > ns.

Theorem 1. The truncated DFT of order n can be implemented by a circuit
a) of 2n+

∑
i ΦA(ni) additive operations,

∑
i Φ2(ni) and

∑
i ΦC(ni) multiplications by

powers of two and other constants, respectively, and depth n1 + maxi{dΦ(ni)− ni}+ 1;
b) of 4n − 2n1+1 +

∑
i ΦA(ni) additive operations, 4n − 3 · 2n1 +

∑
i Φ2(ni) and∑

i ΦC(ni) multiplications by powers of two and other constants, respectively, and space
n+ maxi{vΦ(ni)− 2ni}.

The inverse truncated DFT of order n can be implemented by a circuit
c) of 4n−3·2n1 +

∑
i Φ
′
A(ni) additive operations, 2n−2n1+1+

∑
i Φ
′
2(ni) and

∑
i Φ
′
C(ni)

multiplications by powers of two and other constants, respectively, and depth n1 − ns +
2s− 1 + maxi{d′Φ(ni)};

d) of 4n − 2n1+1 +
∑

i Φ
′
A(ni) additive operations, 2n − 2n1+1 +

∑
i Φ
′
2(ni) and∑

i Φ
′
C(ni) multiplications by powers of two and other constants, respectively, and space

n+ maxi{v′Φ(ni)− 2ni}.

The theorem follows directly from Lemmas 2 and 3 proved below.
Specific estimates can be obtained by substituting the parameters of the ODFT circuits

mentioned in the introduction. For example, ΦA(k) = Φ′A(k) = k2k, ΦC(k) = Φ′C(k) =
k2k−1, Φ2(k) = 0, Φ′2(k) = 2k and either dΦ(k) = d′Φ(k) = 2k, or vΦ(k) = v′Φ(k) = 2k + 1.

Now let there be circuits for multiplying polynomials modulo x2k + 1 with coefficients
over a ring in which the element 2 is invertible. The complexity, depth, and memory space
of such circuits will be denoted by M(k) = MA(k)+M2(k)+MC(k)+MN(k), dM(k), and
vM(k), where MN(k) denotes the number of nonscalar multiplications in the circuit (the
remaining notations are similar to those introduced above for ODFT circuits). Lemmas 2
and 3 also imply

Theorem 2. For multiplication of polynomials of total degree n − 1, one can construct
a circuit

5



a) of 6n−3 ·2n1 +
∑

iMA(ni) additive operations, 2n−2n1+1 +
∑

iM2(ni),
∑

iMC(ni)
and

∑
iMN(ni) multiplications by powers of two, other constants and nonscalar multipli-

cations, respectively, and depth maxi{dM(ni)− ni}+ 2n1 − ns + 2s;
b) of 12n−6·2n1 +

∑
iMA(ni) additive operations, 10n−8·2n1 +

∑
iM2(ni),

∑
iMC(ni)

and
∑

iMN(ni) multiplications by powers of two, other constants and nonscalar multipli-
cations respectively, and space 2n+ maxi{vM(ni)− 2ni+1}.

Given that s ≤ n1 + 1, we obtain

Corollary 1. Let M(k) = f(2k), and f(x + y) ≥ f(x) + f(y) for any x, y ≥ 1. Let
also dM(k) − k ≤ dM(l) − l and vM(k) − 2k+1 ≤ vM(l) − 2l+1 for any k ≤ l. Then, for
multiplying polynomials of total degree n− 1, there is a circuit

a) of complexity f(n) + 8n− 5 · 2n1 and depth dM(n1) + 3n1 + 2;
b) of complexity f(n) + 22n− 14 · 2n1 and memory space 2n+ vM(n1)− 2n1+1.

By choosing the number n′ that is the closest from above to n and is a multiple of
2n1−α(n), where α(n) is a slowly growing natural function, and by passing to a circuit
multiplying polynomials of total degree at most n′ − 1, we obtain another corollary of
Theorem 2, item a (by the inequalities n1 − ns ≤ α(n), s ≤ α(n) + 1):

Corollary 2. Under the conditions of Corollary 1, additionally assume that f(x)/x→∞
for x → ∞ and f(x) = xO(1). Then, for multiplying polynomials of total degree n − 1,
there is a circuit of complexity no greater than (1 + o(1))f(n) and depth no greater than
dM(blog2(n+ o(n))c) + o(log n).

Note that the assumptions in the formulations of the corollaries are natural. First,
we assume that the modulo x2k + 1 multiplication circuits are structured in a uniform
manner. Second, we assume that the partially defined complexity function M(k) of the
multiplication circuits, k ∈ {2i}, can be extended to a function f(x) satisfying the su-
perlinearity condition f(x+ y) ≥ f(x) + f(y) (Corollary 1) and having nonlinear growth
(Corollary 2). The first of the conditions on f(x) actually follows from the second, and
the second is based on the widespread assumption of nonlinearity of the multiplication
complexity function. If one of the conditions cannot be satisfied, then instead of f(x) we
can take a suitable function f>(x) ≥ f(x) satisfying both conditions.

Specific estimates can be obtained by substituting the known parameters of the circuits
for multiplication modulo x2k + 1 — they are provided, e.g., in [7, 1, 12, 6].

In a standard way, a circuit for multiplication modulo x2k +1 can be constructed from
two order-2k ODFT circuits, an inverse ODFT circuit (if a DFT of order 2k+1 exists in
the ring under consideration) and 2k nonscalar multiplications performed at one level.
Substituting the known parameters of these circuits in Theorem 2, item b, we obtain the
complexity bound O(n log n) while memory space is 2n.

1.2 Auxiliary statements

Let a(x) =
∑n−1

l=0 alx
l. Formally, set al = 0 for l ≥ n. Introduce the notations ak,l and

bk,l:

a(x) mod (x2k − 1) =
2k−1∑
l=0

ak,lx
l, a(x) mod (x2k + 1) =

2k−1∑
l=0

bk,lx
l.

6



Obviously, the coefficients ak,l and bk,l are, respectively, constant-sign and alternating-sign
sums of the coefficients ai with index step 2k:

ak,l = ak+1,l + ak+1,2k+l =
∑

j2k<n−l

aj2k+l, bk,l = ak+1,l − ak+1,2k+l =
∑

j2k<n−l

(−1)jaj2k+l.

The following lemma is used primarily in constructing memory-efficient circuits.

Lemma 1. Let ni+1 < k ≤ ni. The following formulas are valid:

ak,l =
2ni−k−1∑
ji=0

bni, ji2k+l + 2
2ni−1−ni−1−1∑

ji−1=0

(
bni−1, (2ji−1+1)2ni+ji2k+l+

+ 2
2ni−2−ni−1−1−1∑

ji−2=0

(
bni−2, (2ji−2+1)2ni−1+(2ji−1+1)2ni+ji2k+l + . . .

. . .+ 2
2n1−n2−1−1∑

j1=0

bn1, (2j1+1)2n2+...+(2ji−1+1)2ni+ji2k+l . . .

)))
+ 2ia2n1+...+2ni+l;

bni,l =
1∑
j=0

(−1)j

2ni−1−ni−1−1∑
ji−1=0

(
bni−1, (2ji−1+j)2ni+l+

+ 2
2ni−2−ni−1−1−1∑

ji−2=0

(
bni−2, (2ji−2+1)2ni−1+(2ji−1+j)2ni+l + . . .

. . .+ 2
2n1−n2−1−1∑

j1=0

bn1, (2j1+1)2n2+...+(2ji−2+1)2ni−1+(2ji−1+j)2ni+l . . .

)))
+

+ 2i−1 (a2n1+...+2ni−1+l − a2n1+...+2ni+l) .

Proof. The first formula is obtained by recursively applying simple relations

ak,l =

{
ak+1,l + ak+1,2k+l, k /∈ {ni : i = 1, . . . , s}
bk,l + 2ak+1,2k+l, k ∈ {ni : i = 1, . . . , s}

,

starting from an1+1,l = al and taking into account that al = 0 for l ≥ n. The second
formula is obtained from the first one as bni,l = ani+1,l − ani+1,2ni+l.

Lemma 2. Let m ≤ n. Then the reduction of a polynomial of degree m − 1 modulo
x2ni + 1, i = 1, . . . , s, can be performed by a circuit

a) of 2(m − 1) additive elements and depth n1 − ns + 1, where the coefficients of the
remainder of division by x2ni + 1 are computed at depth n1 − ni + 1;

b) of 2(2n− 2n1) additive elements, 4n− 3 · 2n1 multiplications by powers of two and
space n.

Proof. Item a is proved by a simple construction [12].

7



It is easy to see that all sums ak,l, where k = ns + 1, . . . , n1, can be computed by
a single circuit of complexity no greater than m− 1, in which ak,l are computed at depth
at most l for k = n1 + 1− l.

The desired coefficients bni,l are obtained by adding to the constructed circuit
0, m ≤ 2ni ,

m− 2ni , 2ni ≤ m ≤ 2ni+1,

2ni , m ≥ 2ni+1.

subtraction elements located at depth n1 − ni + 1.
Since 2ni > 2ni+1 + . . .+2ns , for the number of subtractions (for a suitable i) we obtain

the estimate
m− 2ni + 2ni+1 + . . .+ 2ns ≤ m− 1,

from which follows the complexity estimate 2(m− 1) for the entire circuit.
It is sufficient to prove item b for the case m = n. Let us reconstruct the above circuit

so that it explicitly computes only those sums ak,l for which “there is enough space”.
Let Li = 2ni + . . . + 2ns . For any k = n1, . . . , ns + 1, we explicitly compute the sums

ak,0, . . . , ak,Li−1, where ni−1 ≥ k > ni, taking into account that n− Li of other “memory
cells” are allocated for storing the coefficients bnj ,l, where j < i.

It is convenient to divide the entire computation into stages, numbering them from
n1 to ns in descending order. At stage k, the sums ak,0, . . . , ak,Li−1 are computed (where
ni−1 ≥ k > ni) and, if k ∈ {ni : i = 1, . . . , s}, then the coefficients bk,0, . . . , bk,2k−1 are also
computed.

If the sum ak,l is not computed explicitly, then the right-hand side of the formula
(denote it ϕk,l) from Lemma 1 is used instead, expressing this sum through the already
computed coefficients bnj ,t, where nj ≥ k. Note that since l ≥ Li+1 for ni ≥ k > ni+1, the
last term a2n1+...+2ni+l in ϕk,l is zero.

Let ρk denote the number of terms in the formula ϕk,l (this number does not depend
on l, as follows from the form of the formula). Then the addition (subtraction) of ϕk,l
is performed in ρk additive operations and i multiplications by powers of two without
additional space, where ni ≥ k > ni+1.

We will illustrate the corresponding method with an example. Let us compute the
transform a→ a+ (b+ 2c+ 4d). We will perform the calculation in the following order:

a, a+ b, 2−1(a+ b), c+ 2−1(a+ b), 2−1(c+ 2−1(a+ b)),

d+ 2−1(c+ 2−1(a+ b)), 22(d+ 2−1(c+ 2−1(a+ b))) = a+ b+ 2c+ 4d.

Let us estimate the circuit complexity. Consider a stage k, where ni−1 > k > ni. The
available coefficients are ak+1,0, . . . , ak+1,Li−1, the remaining ak+1,l are expressed by the
formulas ϕk+1,l. Note that Li < 2ni+1 ≤ 2k. Then each of the coefficients ak,l, where
l < Li, is computed as ak+1,l + ϕk+1,2k+l with the complexity of ρk+1 additive operations
and i − 1 multiplications by powers of two. The complexity of the stage is estimated as
Liρk+1 additive operations and (i− 1)Li multiplications by powers of two.

Now consider the stage k = ni. The available coefficients are ak+1,0, . . . , ak+1,Li−1. In
this case, Li = 2k + Li+1. First, we compute all bk,l by the formulas ak+1,l − ak+1,2k+l

for l < Li+1 and ak+1,l − ϕk+1,2k+l for the remaining l. In this case, the coefficients bk,l
“overwrite” ak+1,l, l ≥ Li+1. Then we compute ak,l for l < Li+1 as 2ak+1,l − bk,l. The

8



complexity of the stage is estimated as 2Li+1 + (2k − Li+1)ρk+1 additive operations and
(i− 1)2k − (i− 2)Li+1 = (i− 1)Li − (2i− 3)Li+1 multiplications by powers of two.

Let us find ρk. From the formula of Lemma 1 it follows directly that

ρni
= 2n1−ni−(i−1) + 2n2−ni−(i−2) + . . .+ 2ni−1−ni−1 + 1, (1)

and ρk = 2ni−kρni
for ni+1 < k < ni.

Let us estimate the total additive complexity of the computations. The sum of the
complexity estimates for stages ni − 1, . . . , ni+1 does not exceed

Ci = Li+1ρni
(1 + 2 + . . .+ 2ni−ni+1−2) + 2Li+2 + (2ni+1 − Li+2)2ni−ni+1−1ρni

≤
≤ ρni

2ni−ni+1−1(Li+1 − Li+2 + 2ni+1)− ρni
Li+1 + 2Li+2 = ρni

(2ni − Li+1) + 2Li+2.

For i ≥ 1, the last expression is at most 2niρni
, given that Li+1 > 2Li+2 and ρni

≥ 1.
For the complexity of all stages except stage n1, using (1), we derive the bound

C1 + . . .+ Cs−1 =
s−1∑
i=1

2niρni
=

s−1∑
i=1

(2n1−(i−1) + 2n2−(i−2) + . . .+ 2ni) <

< (2n1 + 2n1−1 + . . .) + (2n2 + 2n2−1 + . . .) + . . .+ (2ns + 2ns−1 + . . .) < 2n.

Finally, estimating the complexity of stage n1 as 2L2 = 2(n − 2n1), we obtain the
assertion of item b in terms of additive complexity.

The number of multiplications by powers of two at stages ni− 1, . . . , ni+1 we estimate
roughly as

Di = (ni − ni+1 − 1)iLi+1 + iLi+1 − (2i− 1)Li+2 ≤
≤ i(ni − ni+1)Li+1 ≤ i2ni−ni+1−12ni+1+1 = i2ni .

Then for the total number of multiplications at all stages, except stage n1, we have the
estimate

D1 + . . .+Ds−1 = 2n1 + 2 · 2n2 + 3 · 2n3 + . . .+ (s− 1) · 2ns−1 =

= n+ (n− 2n1) + (n− 2n1 − 2n2) + . . . <

< n+ (n− 2n1) + (1/2) (n− 2n1) + (1/2)2 (n− 2n1) + . . . = n+ 2(n− 2n1).

By adding n− 2n1 multiplications by 2 at step n1, we arrive to the final estimate.

Lemma 3. Reconstruction of a polynomial of degree n−1 from given remainders modulo
x2ni + 1, i = 1, . . . , s, can be performed by a circuit

a) of 4n − 3 · 2n1 additive elements, 2(n − 2n1) multiplications by powers of two and
depth at most n1 − ns + 2s− 1;

b) of 2(2n− 2n1) additive elements, 2(n− 2n1) divisions by 2 and space n.

Proof. We apply Lemma 1 to express the differences

hi,l = a2n1+...+2ni−1+l − a2n1+...+2ni+l, (2)

where i = 1, . . . , s − 1 and l = 0, . . . , Li − 1, in terms of the coefficients bnj ,t. Note that
the subtrahend coefficient is zero for l ≥ Li+1.

9



To construct a circuit from item a, compute the auxiliary quantities ci,l and di,l, defined
by the equalities:

d1,l = bn1,l, ci,l =
2ni−1−ni−1−1∑

j=0

di−1, j2ni+1+l, di,l = bni,l + 2ci,2ni+l,

where i ≥ 2. Then compute the required coefficients hi,l via the formulas hi,l = 21−i(bni,l−
ci,l + ci,2ni+l), and in the case i = 1 simply h1,l = bn1,l.

The computational complexity implied in the formulas for ci,l, i = 2, . . . , s and l =
0, . . . , 2ni+1 − 1, is estimated as

s∑
i=2

2ni+1(2ni−1−ni−1 − 1) =
s∑
i=2

(2ni−1 − 2ni+1) < n− 2(n− 2n1).

The complexity implied in the formulas for di,l, i = 2, . . . , s − 1 and l = 0, . . . , 2ni − 1,
is estimated as 2n2 + . . . + 2ns−1 < n − 2n1 additive operations and the same number of
multiplications by 2. To complete the computation of hi,l, we need to perform another
2(2n2 + . . .+ 2ns) = 2(n− 2n1) additive operations and n− 2n1 multiplications by powers
of two.

It is easy to verify that ci,l is computed at depth n1 − ni + i − 3 and, consequently,
hi,l — at depth n1 − ni + i.

From the computed hi,l, the coefficients of the polynomial a(x) are easily reconstructed.
The coefficients a2n1+...+2ni−1+l simply coincide with hi,l for l ≥ Li+1. In particular, in
the case i = s, all coefficients are known. This allows us to sequentially determine the
missing coefficients a2n1+...+2ni−1+l, l = 0, . . . , Li+1 − 1, in descending order of i, directly
by formulas (2) with the total complexity

Ls + Ls−1 + . . .+ L2 = 2n2 + 2 · 2n3 + 3 · 2n4 + . . . < 2(n− 2n1).

The depth of these calculations obviously does not exceed s− 1.
Adding up all the estimates, we obtain the assertion of item a.
To prove item b, we construct a circuit that sequentially in descending order of i trans-

forms each coefficient bni,l according to the formula of Lemma 1 into the corresponding
difference hi,l.

It is easy to see that the transformation of each coefficient bni,l is performed in σi ad-
ditive operations and i − 1 divisions by 2, where σi is the number of coefficients bnj ,t on
the right-hand side of the second formula of Lemma 1. It can be directly verified that

σi = 2n1−ni−(i−2) + 2n2−ni−(i−3) + . . .+ 2ni−1−ni .

The additive complexity of computing the differences hi,l can now be estimated as

s∑
i=2

2niσi =
s∑
i=2

(2n1−(i−2) + 2n2−(i−3) + . . .+ 2ni−1) <

(2n1 + 2n1−1 + . . .) + (2n2 + 2n2−1 + . . .) + . . .+ (2ns + 2ns−1 + . . .) < 2n.

The number of divisions by 2 is estimated as
s∑
i=2

(i− 1)2ni = 2n2 + 2 · 2n3 + 3 · 2n4 + . . . < 2(n− 2n1).

The final part of the circuit is the same as in item a.

10



2 Ternary multiplication method

2.1 Main results

Further, unless otherwise explicitly stated, we assume n = 2 (3n1 + 3n2 + . . .+ 3ns), where
n1 > n2 > . . . > ns. Note that n ∈ [2 · 3n1 , 3n1+1).

Let us consider a method of using circuits for multiplying polynomials modulo
x2·3k + x3k + 1 with coefficients over a ring in which the element 3 is invertible. The
complexity, depth, and memory space of such circuits will be denoted by M(k) =
MA(k) + M3(k) + MC(k) + MN(k), dM(k), and vM(k), where MA(k) denotes the num-
ber of additive operations; M3(k) — the number of multiplications by powers of three;
MC(k) — the number of other scalar multiplications; MN(k) — the number of nonscalar
multiplications.

From Lemmas 5 and 6 given below, it follows

Theorem 3. For multiplication of polynomials of total degree at most n − 1, one can
construct a circuit

a) of 5.5n−5·3n1+
∑

iMA(ni) additive operations, 1.5n−3n1+1+
∑

iM3(ni),
∑

iMC(ni)
and

∑
iMN(ni) multiplications by powers of three, other constants and nonscalar multi-

plications, respectively, and depth 4n1 + maxi{dM(ni)− 2ni}− 2ns + s+ 1. In the case of
a ring of characteristic 2, the additive complexity estimate may be reduced by 0.5n;

b) of 15.5n− 19 · 3n1 +
∑

iMA(ni) additive operations, 4.75n− 8.5 · 3n1 +
∑

iM3(ni),∑
iMC(ni) and

∑
iMN(ni) multiplications by powers of three, other constants and non-

scalar multiplications, respectively, and space 2n+ maxi{vM(ni)− 4 · 3ni}.

Corollary 3. Let M(k) = f(2·3k), where for any x, y ≥ 1 we have f(x+y) ≥ f(x)+f(y).
Let also dM(k)− 2k ≤ dM(l)− 2l and vM(k)− 4 · 3k ≤ vM(l)− 4 · 3l for any k ≤ l.

Then for multiplying polynomials of total degree at most n− 1 there is a circuit
a) of complexity f(n) + 7n − 8 · 3n1 and depth dM(n1) + 3n1 + 2, and in the case of

a ring of characteristic 2 the circuit complexity is bounded by f(n) + 5(n− 3n1);
b) of complexity f(n) + 20.25n − 27.5 · 3n1 and memory space 2n + vM(n1 − 4 · 3n1),

and in the case of a ring of characteristic 2 the circuit complexity is bounded by f(n) +
15.5n− 19 · 3n1.

In the general case, namely for n ∈
⋃
i[3

i, 2 ·3i), we are not able to obtain a complexity
estimate of the form (1+o(1))f(n) without modifying the basic multiplication algorithm.
But it is possible to prove a weaker estimate (4/3 + o(1))f(n).

Corollary 4. Let f(x)/x → ∞ while x → ∞ and f(x) = xO(1) be satisfied additionally
under the conditions of Corollary 3. Then, for multiplying polynomials of total degree at
most n− 1, one can construct a circuit of complexity no greater than

(1 + o(1))f(n), 2 · 3k ≤ n < 3k+1,(
2− 3k/n+ o(1)

)
f(n), 3k ≤ n < 3k+1/2,(

2 · 3k/n+ o(1)
)
f(n), 3k+1/2 < n < 2 · 3k.

and depth at most dM(blog3(2n+ o(n))c − 1) + o(log n).

Proof. In the first case, the construction is the same as in Corollary 2. In the third case,
employ a circuit of multiplication of polynomials of total degree at most 2 · 3k − 1.

11



In the case n ∈ [3k, 3k+1/2), consider the nearest number n′ from above, which is
a multiple of 2 · 3k−α(n), where α(n) is a slowly growing natural function. If n′ > 3k+1/2,
then act as in the third case.

Otherwise, if n′ < 3k+1/2, compute the product modulo x2·3i + x3i + 1, where i =
k− 1, . . . , k− α(n), by a circuit of complexity f(3k − 3k−α(n)) +O(n) and depth O(α(n))
by the method of Theorem 3.

In fact, this gives us 3k − 3k−α(n) linear equations for the coefficients of the desired
product. To obtain the remaining n′′ = n′−3k + 3k−α(n) equations, note that n′′ = L+U ,
where

2L, 2U ∈ {0} ∪

α(n)⋃
j=1

[2 · 3k−j, 3k−j+1)

 ∩ {2 · 3k−α(n)N}.

Indeed, any natural number can be represented as a sum of two numbers whose
base-3 notation consists only of zeros and ones. All such numbers are contained in the
set {0} ∪

⋃∞
j=1[3j, 3j+1/2).

By separately multiplying the lower parts (of the polynomials) of total degree 2L− 2
and the higher parts of total degree 2U−2, we determine L lower and U higher coefficients
of the product. This can be done with complexity f(2L) + f(2U) +O(L+ U) and depth
O(α(n)) according to Theorem 3.

Next, by Lemma 5, find the remainders from dividing the known part of the desired
product by the polynomials x2·3i + x3i + 1, i = k− 1, . . . , k−α(n), from which determine
the remainders from dividing the unknown part a(x)xL, where deg a < n′−L−U , by the
same polynomials. All this is performed with complexity O(n) and depth O(α(n)).

The polynomial f(x) is reconstructed via a slightly modified method of Lemma 6
(see below; this modification is easy to construct), also with complexity O(n) and depth
O(α(n)).

Constructions and complexity characteristics of multiplication modulo x2·3k + x3k + 1
circuits are provided, e.g., in [7, 1, 12, 5, 6].

2.2 Auxillary statements

Let a(x) =
∑n−1

l=0 alx
l. Formally set al = 0 for l ≥ n. Let us introduce the notation

a(x) mod (x3k − 1) =
3k−1∑
l=0

ak,lx
l, a(x) mod (x2·3k + x3k + 1) =

1∑
r=0

3k−1∑
l=0

bk,r,lx
l.

The coefficients ak,l and bk,r,l are connected by simple relations:

ak,l = ak+1,l + ak+1,3k+l + ak+1,2·3k+l, bk,r,l = ak+1,r3k+l − ak+1,2·3k+l.

These are the basis of

12



Lemma 4. Let ni+1 < k ≤ ni. The following formulas hold:

ak,l =
3ni−k−1∑
ji=0

(
bni, 0, ji3k+l + bni, 1, ji3k+l+

+ 3
3ni−1−ni−1−1∑

ji−1=0

(
bni−1, 0, (3ji−1+2)3ni+ji3k+l + bni−1, 1, (3ji−1+2)3ni+ji3k+l+

+ 3
3ni−2−ni−1−1−1∑

ji−2=0

(
bni−2, 0, (3ji−2+2)3ni−1+(3ji−1+2)3ni+ji3k+l+

+ bni−2, 1, (3ji−2+2)3ni−1+(3ji−1+2)3ni+ji3k+l + . . .

. . .+ 3
3n1−n2−1−1∑

j1=0

(
bn1, 0, (3j1+2)3n2+...+(3ji−1+2)3ni+ji3k+l+

+ bn1, 1, (3j1+2)3n2+...+(3ji−1+2)3ni+ji3k+l

)
. . .

)))
+ 3ia2(3n1+...+3ni )+l;

bni,r,l =
1∑
j=0

(−1)j

3ni−1−ni−1−1∑
ji−1=0

(
bni−1, 0, (3ji−1+r+j(2−r))3ni+l+

+ bni−1, 1, (3ji−1+r+j(2−r))3ni+l+

+ 3
3ni−2−ni−1−1−1∑

ji−2=0

(
bni−2, 0, (3ji−2+2)3ni−1+(3ji−1+r+j(2−r))3ni+l+

+ bni−2, 1, (3ji−2+2)3ni−1+(3ji−1+r+j(2−r))3ni+l + . . .

. . .+ 3
3n1−n2−1−1∑

j1=0

(
bn1, 0, (3j1+2)3n2+...+(3ji−2+2)3ni−1+(3ji−1+r+j(2−r))3ni+l+

+bn1, 1, (3j1+2)3n2+...+(3ji−2+2)3ni−1+(3ji−1+r+j(2−r))3ni+l

)
. . .

)))
+

+ 3i−1
(
a2(3n1+...+3ni−1 )+r3ni+l − a2(3n1+...+3ni )+l

)
.

Proof. The proof is completely analogous to the proof of Lemma 1, we only use the
relations

ak,l =

{
ak+1,l + ak+1,3k+l + ak+1, 2·3k+l, k /∈ {ni : i = 1, . . . , s}
bk,0,l + bk,1,l + 3ak+1, 2·3k+l, k ∈ {ni : i = 1, . . . , s}

,

taking into account that an1+1,l = al, and, moreover, al = 0 for l ≥ n. The second formula
is obtained from the first as bni,r,l = ani+1, r3ni+l − ani+1, 2·3ni+l.

Lemma 5. Let m ≤ 2n, and n, ni be as in Theorem 3. Then the reduction of a polynomial
of degree at most m−1 modulo x2·3ni +x3ni +1, i = 1, . . . , s, can be performed by a circuit

a) of 2(m−1) additive elements and depth 2(n1−ns) + 1, where the coefficients of the
remainder of division by x2·3ni +x3ni + 1 are computed at depth 2(n1−ni + 1). Moreover,
in the case of a ring of characteristic 2, the complexity of the circuit us at most 1.5(m−1);

13



b) of 6n − 8 · 3n1 additive elements, 13n/8 − 11 · 3n1/4 multiplications by powers of
three, and space n.

Proof. All sums ak,l, where k = ns + 1, . . . , n1, can be computed by a single circuit of
complexity at most m− 3ns+1, in which the depth of computation of ak,l does not exceed
2(n1 + 1− k).

The coefficients bni,r,l of the remainder of division by x2·3ni + x3ni + 1 are obtained by
adding to the constructed circuit the subtraction elements located at depth of 1 relative
to ani+1,l, in the amount of

0, m ≤ 2 · 3ni ,

2(m− 2 · 3ni), 2 · 3ni ≤ m ≤ 3ni+1,

2 · 3ni , m ≥ 3ni+1.

The number of subtractions in the last two cases can also be estimated from above as
m− 3ni . Since 3ni > 2(3ni+1 + . . .+ 3ns), for the number of subtractions (for a suitable i)
we obtain the estimate

m− 3ni + 2 (3ni+1 + . . .+ 3ns) ≤ m− 1,

from which follows the estimate 2(m− 1) for the complexity of the entire circuit.
If the characteristic is 2, then one of the two coefficients in each pair bni,0,l, bni,1,l can

be used to compute ani,l (except for the case i = s). For the complexity of the circuit
in this case we have the estimate m − 3ns+1 + 0.5(m − 1) + 3ns < 1.5(m − 1). Item a is
proven.

The proof of item b is sufficient to carry out for the case m = n. Let us reconstruct
the circuit from the previous item so that it explicitly computes only those sums ak,l for
which “there is enough memory”.

Let Li = 2(3ni + . . . + 3ns). For any k = n1, . . . , ns + 1, explicitly compute the
sums ak,0, . . . , ak,Li−1, where ni−1 ≥ k > ni, taking into account that n− Li of the other
“memory cells” are allocated for storing the coefficients bnj ,r,l, where j < i.

The entire calculation can be divided into stages numbered from n1 to ns in descending
order. At stage k, the sums ak,0, . . . , ak,Li−1 are computed and, if k ∈ {ni : i = 1, . . . , s},
then the coefficients bk,r,l, r ∈ {0, 1}, l = 0, . . . , 3k − 1 are computed as well.

If the sum ak,l is not computed explicitly, then the right-hand side of the formula
(denote it by ψk,l) from Lemma 4 is used instead, expressing ak,l through the known
coefficients bnj ,q,t, where nj ≥ k. Note that since l ≥ Li+1 for ni ≥ k > ni+1, the last term
a2(3n1+...+3ni )+l in ψk,l is zero.

Let ρk denote the number of variables in the formula ψk,l (this number does not depend
on l, as follows from the form of the formula). Then the addition (subtraction) of ψk,l
is performed in ρk additive operations and i multiplications by powers of three without
additional space, where ni ≥ k > ni+1.

Let’s estimate the complexity of the circuit. Consider stage k, where ni−1 > k > ni.
The available coefficients are ak+1,0, . . . , ak+1,Li−1, the remaining ak+1,l are expressed by
the formulas ψk+1,l. Note that Li < 3ni+1 ≤ 3k. Then each of the coefficients ak,l, where
l < Li, can be computed as ak+1,l +ψk+1,3k+l +ψk+1,2·3k+l with complexity 2ρk+1 additive
operations and i−1 multiplications by powers of three (multiplications by powers of three

14



can be combined when adding two formulas of type ψ). The complexity of the stage is
estimated as 2Liρk+1 additive operations and (i−1)Li multiplications by powers of three.

Let us consider the case k = ni. The available coefficients are ak+1,0, . . . , ak+1,Li−1.
In this case, Li = 2 · 3k + Li+1. First, we compute all bk,r,l using the formulas
ak+1,r3k+l − ak+1,2·3k+l for l < Li+1 and ak+1,r3k+l − ψk+1,2·3k+l for other l. In this case,
the coefficients bk,r,l overwrite ak+1,l, l < 2 · 3k. Then we compute ak,l for l < Li+1

by the formulas 3ak+1,2·3k+l + bk,0,l + bk,1,l. The complexity of this step is estimated as
4Li+1 + 2(3k−Li+1)ρk+1 additive operations and 2(i− 1)3k− (2i− 3)Li+1 multiplications
by powers of three. This estimate is also valid in the case k = n1, since we can assume
ρn1+1 = 0.

Let us find ρk. From the formula of Lemma 4 it follows directly that

ρni
= 2

(
3n1−ni−(i−1) + 3n2−ni−(i−2) + . . .+ 3ni−1−ni−1 + 1

)
, (3)

and ρk = 3ni−kρni
for ni+1 < k < ni.

Let us estimate the total additive complexity of the computations. The sum of the
complexities of the stages ni − 1, . . . , ni+1 is at most

Ci = 2Li+1ρni
(1 + 3 + . . .+ 3ni−ni+1−2) + 4Li+2 + 2(3ni+1 − Li+2)3ni−ni+1−1ρni

≤

≤ 2ρni
3ni−ni+1−1(

1

2
Li+1 − Li+2 + 3ni+1)− ρni

Li+1 + 4Li+2 =

= 2ρni
3ni−ni+1−1(2 · 3ni+1 − 1

2
Li+2)− ρni

Li+1 + 4Li+2 =

= ρni
(4 · 3ni−1 − Li+23ni−ni+1−1 − Li+1) + 4Li+2.

For i ≥ 1 the last expression does not exceed 4 · 3ni−1ρni
, if we take into account that

Li+1 > 3Li+2 and ρni
≥ 1.

For the complexity of all stages except stage n1, using (3), we obtain the estimate

C1 + . . .+ Cs−1 = 4
s−1∑
i=1

3ni−1ρni
= 8

s−1∑
i=1

(3n1−i + 3n2−(i−1) + . . .+ 3ni−1) <

< 8
(
(3n1−1 + 3n1−2 + . . .) + (3n2−1 + 3n2−2 + . . .) + . . .+ (3ns−1 + 3ns−2 + . . .)

)
< 2n.

Finally, estimating the complexity of stage n1 as 4L2 = 4(n − 2 · 3n1), we obtain the
assertion of item b in terms of additive complexity.

The number of multiplications by powers of three at stages ni, . . . , ni+1+1 is estimated
as

Di = (ni − ni+1 − 1)iLi+1 + 2(i− 1)3ni − (2i− 3)Li+1 =

= i(ni − ni+1)Li+1 + (i− 1)(Li − 4Li+1).

The sum of the first terms can be estimated as

s∑
i=1

i(ni − ni+1)Li+1 ≤
s∑
i=1

i3ni−ni+1−1(3ni+1+1/2) =
1

2

s∑
i=1

i3ni <

<
1

2
((3n1 + 3n2 + . . .) + (3n2 + 3n3 + . . .) + . . .) <

<
1

2

(
n

2
+ (n/2− 3n1) +

1

3
(n/2− 3n1) + . . .

)
=
n

4
+

3

4
(n/2− 3n1).

15



We will roughly estimate the sum of the second terms as

(L2 − 4L3) + 2(L3 − 4L4) + 3(L4 − 4L5) + . . . ≤ L2 = n− 2 · 3n1 .

Summing the last two estimates, we complete the proof of item b.

Lemma 6. Reconstruction of a polynomial of degree n − 1 from given remainders from
division by polynomials x2·3ni + x3ni + 1, i = 1, . . . , s, can be performed by a circuit

a) of 3.5n− 5 · 3n1 additive elements, 1.5(n− 2 · 3n1) multiplications by powers of three
and depth 2(n1 − ns) + s+ 1;

b) of 3.5n−3n1+1 additive elements, 1.5(n−2 ·3n1) divisions by 3 and memory space n.

Proof. From Lemma 4 express the differences

hi,r,l = a2(3n1+...+3ni−1 )+r3ni+l − a2(3n1+...+3ni )+l, (4)

where i = 1, . . . , s− 1, r ∈ {0, 1} and l = 0, . . . , Li − 1, in terms of the coefficients bnj ,q,t.
Note that the subtrahend coefficient is zero for l ≥ Li+1.

To construct the circuit from item a, compute the auxiliary quantities ci,l and di,l,
defined by the equalities

d1,l = bn1,0,l + bn1,1,l, ci,l =
3ni−1−ni−1−1∑

j=0

di−1, j3ni+1+l, di,l = bni,0,l + bni,1,l + 3ci,2·3ni+l,

where i ≥ 2. The desired coefficients hi,r,l for i ≥ 2 are expressed by the formulas
hi,r,l = 31−i(bni,r,l − ci,r3ni+l + ci,2·3ni+l), and for i = 1 simply as h1,r,l = bn1,r,l.

The computational complexity implied in the formulas for ci,l, i = 2, . . . , s and l =
0, . . . , 3ni+1 − 1 is estimated as

s∑
i=2

3ni+1(3ni−1−ni−1 − 1) =
s∑
i=2

(3ni−1 − 3ni+1) <
n

2
− 3(n/2− 3n1) = 3n1+1 − n.

The complexity implied in the formulas for di,l, i = 1, . . . , s − 1 and l = 0, . . . , 3ni − 1 is
estimated as 3n1 +2(3n2 + . . .+3ns−1) < n−3n1 additive operations and 3n2 + . . .+3ns−1 <
n/2− 3n1 multiplications by 3. To complete the computation of hi,r,l, we need to perform
another 4(3n2 + . . .+3ns) = 2(n−2 ·3n1) additive operations and n−2 ·3n1 multiplications
by powers of three.

It is easy to verify that ci,l is computed at depth 2(n1 − ni) − 1 and, consequently,
hi,r,l — at depth 2(n1 − ni) + 2.

From the computed hi,r,l, the coefficients of a(x) are easily reconstructed. The coef-
ficients a2(3n1+...+3ni−1 )+r3ni+l coincide with hi,r,l for l ≥ Li+1. In particular, in the case
i = s, all coefficients are known. This allows us to determine sequentially in descend-
ing order of i the remaining coefficients a2(3n1+...+3ni−1 )+r3ni+l, l = 0, . . . , Li+1 − 1, from
formulas (4) with complexity

Ls + Ls−1 + . . .+ L2 = 2(3n2 + 2 · 3n3 + 3 · 3n4 + . . .) < 1.5(n− 2 · 3n1)

additive operations. The depth of these computations obviously does not exceed s− 1.
Summing all the estimates, we obtain the assertion of item a.

16



To prove item b, we construct a circuit that sequentially in descending order of i trans-
forms each coefficient bni,r,l according to Lemma 4 into the corresponding difference hi,r,l.

It is easy to see that the transformation of each coefficient bni,r,l is performed in
τi additive operations and i−1 divisions by 3, where τi is the number of coefficients bnj ,q,t

on the right-hand side of the second formula of Lemma 4. It can be directly verified that

τi = 4
(
3n1−ni−(i−1) + 3n2−ni−(i−2) + . . .+ 3ni−1−ni−1

)
.

The additive complexity of computing the differences hi,r,l can now be estimated as

s∑
i=2

2 · 3niτi =
s∑
i=2

8
(
3n1−(i−1) + 3n2−(i−2) + . . .+ 3ni−1−1

)
<

8
(
(3n1−1 + 3n1−2 + . . .) + (3n2−1 + 3n2−2 + . . .) + . . .+ (3ns−1 + 3ns−2 + . . .)

)
< 2n.

The number of divisions by 3 is estimated as

s∑
i=2

2(i− 1)3ni = 2 (3n2 + 2 · 3n3 + 3 · 3n4 + . . .) < 1.5(n− 2 · 3n1).

The final part of the circuit is the same as in item a.

References
[1] Bernstein D. J. Fast multiplication and its applications // in: Algorithmic Number Theory,

MSRI Publ. 2008. V. 44. P. 325–384.

[2] Cantor D., Kaltofen E. On fast multiplication of polynomials over arbitrary algebras //
Acta Inf. 1991. V. 28. no. 7. P. 693–701.

[3] Cooley J., Tukew J. An algorithm for the machine calculation of complex Fourier series //
Math. Comp. 1965. V. 19. P. 297–301.

[4] Crandall R., Fagin B. Discrete weighted transforms and large-integer arithmetic // Math.
of Comput. 1994. V. 62. P. 305–324.

[5] Gashkov S. B., Sergeev I. S. The complexity and depth of Boolean circuits for multiplication
and inversion in some fields GF (2n) // Moscow Univ. Math. Bulletin. 2009. V. 64, no. 4.
P. 139–143.

[6] Gashkov S. B., Sergeev I. S. Fast Fourier transform algorithms // in: “Discrete mathematics
and its applications”. Part V. Moscow: Izd. IPM RAN, 2009. P. 3–23. (in Russian)

[7] von zur Gathen J., Gerhard J. Modern computer algebra. Cambridge: Cambridge Univer-
sity Press, 1999. 768 p.

[8] Harvey D., Roche D. S. An in-place truncated Fourier transform and application to poly-
nomial multiplication // Proc. ISSAC 2010 (Munich, Germany). NY: ACM Press, 2010.
P. 325–329.

[9] van der Hoeven J. The truncated Fourier transform and applications // Proc. ISSAC 2004
(Santander, Spain). NY: ACM Press, 2004. P. 290–296.

[10] van der Hoeven J. Notes on the truncated Fourier transform // Tech. report. Univ. Paris-
Sud, Orsay, France, 2005.

[11] Lupanov O. B. Asymptotic estimates of the complexity of control systems. Moscow: Izd.
MGU, 1984. 138 p. (in Russian)

17



[12] Mateer T. Fast Fourier algorithms with applications // Ph. D. Thesis. Clemson University,
2008.

[13] Schönhage A. Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2 //
Acta Inf. 1977. V. 7. P. 395–398.

[14] Schönhage A. Asymptotically fast algorithms for the numerical multiplication and division
of polynomials with complex coefficients // Proc. EuroCAM–82 (Marseille, France). LNCS.
V. 144. Berlin, Heidelberg, NY: Springer, 1982. P. 3–15.

[15] Sergeev I. S. Regularization of some estimates of the complexity of polynomial multipli-
cation // Proc. Youth Scientific School on Discrete Math. and its Appl. (Moscow, 2009).
Part II. Moscow: Izd. IPM RAN, 2009. P. 26–32. (in Russian)

[16] Yablonskii S. V. Introduction to discrete mathematics. Moscow: Nauka, 1986. 384 p. (in
Russian)

18


