


i.1 Computation of real polynomials in the complete 
arithmetic basis A = {+,×,R}

To compute a polynomial of degree n, there are sufficient:

n additive operations

n/2+O(1) multiplications

Ω(n1/2) nonscalar operations

These bounds are tight (Motzkin, Pan, Belaga 1950s;

Paterson, Stockmeyer 1973)



i.2 Method to compute a polynomial by n/2+O(log n)
multiplications (due to Winograd)

Idea: let f(x) be a monic polynomial of degree 2k+1– 1

Then, f(x) = (x2k
+ a) f0(x) + f1(x), (1)

where f0(x), f1(x) are monic polynomials of degree 2k – 1

Apply (1) to f0(x), f1(x) etc.

Verify: (a) necessary powers x2k
, x2k-1

, … , x2 may be computed by
k multiplications (via an addition chain); 

(b) after they are computed, any intermediate polynomial 
of degree 2m – 1 can be computed by 2m-1 – 1 multiplications 
(obvious from (1))



i.3 Method to compute a polynomial by 2n1/2 nonscalar
multiplications

Idea: represent a polynomial f(x) of degree rs – 1 as 

f(x) = (…(( f0(x) xr + f1(x)) xr + … ) xr + fs-1(x), (2)

(Horner’s scheme) where fk(x) are polynomials of degree r – 1

(a) powers x2 , x3 , … , xr are computable by r – 1 nonscalar
multiplications; polynomials fk(x) are obtained as linear 
combinations of these powers; 

(b) to finalize computations according to (2), it suffices to 
implement s – 1 more multiplications by xr



i.4 Efficient lower bounds

In 70-90s, Straßen and his students (von zur Gathen, Heintz, 
Schnorr, Stoß, Baur, Halupczok, and also Sieveking, van de Wiele) 
constructed “explicit” polynomials of almost maximal possible 
complexity. Usually, the coefficients of such polynomials are 
algebraically independent real numbers or rapidly growing 
rational numbers. Examples of hard-to-compute polynomials:

Σ pi
1/2 xi Σ 22i

xi Σ ir xi

Here:   pi ∊ P,   r ∊ Q / Z



i.5 Kronecker substitution

xi = x2i

implements a one-to-one correspondence between single
variable polynomials of degree 2n–1 and multilinear (i.e. linear in
every variable) polynomials of n variables.

Thus, if f(x) corresponds to g(x0 , … , xn-1) , then

L(f) ≤ L(g) + n – 1 



ii.1 Consider monotone polynomials, i.е. those with nonnegative
real coefficients, and the complexity of computation over the
monotone arithmetic basis A+ = {+,×,R+}. Important problem is to
construct hard-to-compute polynomials with coefficients 0, 1.

ii.2 Subexponential lower bounds

The first supepolynomial lower bound was obtained for the
characteristic polynomial of a k-clique in a graph:

CLn,k =              Σ Π xis, it
1 ≤ i1 < … < ik ≤ n 1 ≤ s < t ≤ k

L+(CLn,k) ≥ Cn
k – 1 ,   in particular, L+(CLn,n/2) ≥ 2n/2-o(n)

Schnorr 1976



Besides Schnorr, size 2Ω(n) lower bounds for various multilinear
polynomials of nO(1) variables were obtained by Valiant, Jerrum,
Snir in 80s

ii.3 Exponential lower bounds

2n/2 – 1 Kasim-Zade 1983

Ω(22n/3)                          Gashkov 1987

2n-o(n) Gashkov, Sergeev 2010

(further in more details)



iii.1 DEF. A subset M of a commutative semigroup (G, +) is (k, l)-
thin, where k≤l, if for any subsets A, B ⊂ G satisfying |A|=k and
|B|=l, it holds that

A × B = { a+b | a ϵ A, b ϵ B }   ⊄   M

In the case k=l, the shortening k-thin is used.

Example: Subset {0, 1, 3} ⊂ (Z7, +) is 2-thin

DEF. Let f be a polynomial in n variables. Then

mon f ⊂ (N⋃ {0})n is a set of vectorial degrees of its monomials.



iii.2MAIN THEOREM

Let k≥1, and mon f be a (k, l)-thin subset in (N⋃ {0})n,

L+(f) – additive monotone complexity of f,

L×(f) – multiplicative monotone complexity of f,

α(k) – maximal number of boolean vectors of length k – 1, neither
of them is a disjunction of some others.

Set h = min { (k – 1)3, (l – 1)2 }.

Then: (i) L+(f) ≥ h-1 | mon f | – 1

(ii)                  L×(f) ≥ Ck, l | mon f  | α(k)/(2α(k)-1) – n – 2

In particular, L×(f) = Ω(| mon f |2/3) for k=l=2

and L×(f) = Ω(| mon f |3/5) for k=l=3.

These bounds are tight Gashkov 1987



iii.3 Examples of dense 2- and 3-thin sets

1. 2-thin subsets in Zn of size ~n1/2:

V.Е. Alexeev set 1979:

Let n=p(p–1), p∊P, ζ be a generator of the multiplicative group of
the field Zp. Then

M = { si | i= 0, … , p-2 },  where si ≡ i mod (p-1), si ≡ ζi mod p

Singer set 1938:

Let n=q2+q+1, q be a prime power, θ be a primitive element in the
field GF(q3). Denote GF(q) = { ζ1, … , ζq }. Then

M = {0} ⋃ { si |  θsi / (θ + ζi) ∊ GF(q),  i=1, …, q }



DEF. Em = { 0, …, m-1 }.

2. 2-thin subsets Em
n of size ~mn/2:

Let q = pk, p∊P\{2}. Then

M = { (x, x2) | x ∊ GF(q) } ⊂ GF(q2) → Ep
2k

Lindström set 1969: Let q = 2k. Then

M = { (x, x3) | x ∊ GF(q) } ⊂ GF(q2) → E2
2k

3. 3-thin subsets Em
n of size ~m2n/3:

Brown set 1966:

Let q = pk, p∊P\{2}, γ be a quadratic nonresidue in GF(q). Then

M = { (x, y, z) | x2 + y2 + z2 = –γ,  x, y, z ∊ GF(q) } ⊂ GF(q3) → Ep
3k



iii.4 Corollaries for the complexity of polynomials

There is an explicit polynomial f in n variables 

of degree at most m – 1 in each variable, such that

(under some restrictions on m and n) 

L+(f) ≥ (1 – o(1))mn/2 L×(f) ≥ (2 – o(1))mn/3

(if mon f is an appropriate 2-thin set), or

L+(f) ≥ (1/8 – o(1))m2n/3 L×(f) ≥ (2-4/5 – o(1))m2n/5

(if mon f is an appropriate 3-thin set)

(in examples by Schnorr and Kasim-Zade: 2-thin sets)



Fact (Erdös, Spencer 1974): any (k, l)-thin

subset M ⊂ Em
n has cardinality Ok, l(mn(1-1/k))

iii.5 Thin sets of extreme density

Kollár-Rónyai-Szabó set 1996:

In the group (GF(qt), +), the set of elements of the norm 1

M = { x | x(qt-1)/(q-1)  = 1,  x ∊ GF(qt) } 

is a (t, t!+1)-thin subset of cardinality (qt – 1)/(q – 1).



iii.6 LEMMA 1

Let ψs, t, m: Em
st → E s

(2m-1)t be one-to-one mapping:

ψs, t, m ( … , ait , …, ait+t-1 , … ) = ( … , [ ait , …, ait+t-1 ] 2m-1 , … ) *

If M ⊂ Em
st is a (k, l)-thin subset, then

ψs, t, m(M) ⊂ E s
(2m-1)t is аlso (k, l)-thin subset.

* [ ak , …, a0 ]m = (…(ak m + ak-1)m + … )m + a0 (representation of a
number in the numeric system with base m)



iii.7 MAIN COROLLARY (from the main theorem and technical
theorem 1)

Let m ≥ 2 and n ≥ 1. There exists an explicit polynomial f in n
variables of degree at most m – 1 in each variable, such that as
mn → ∞ ,

L+(f) ≥ m n (1 - o(1)) L×(f) ≥ m n (1/2 - o(1))

Both bounds are tight in the form they are written.



iv.1 Examples of separations: complexity L(f) over the complete
basis A = {+,×,R} vs the complexity LM(f) over the monotone basis
A+ = {+,×,R+}

f – multilinear polynomials in n variables:

L(f) = nO(1)             LM(f) ≥ c n1/2 Valiant 1979

L(f) = nO(1)             LM(f) ≥ c n Kasim-Zade 1983

LM(f) / L(f) = nΩ(1) deg f = 3 Schnorr 1976

LM(f) / L(f) ≥ 2n(1/2-o(1)) Gashkov, Sergeev 2010

LM(f) / L(f) = n1-o(1) deg f = 2 Gashkov, Sergeev 2010



iv.2 One more way to build a thin set

DEF. A boolean matrix is (k, l)-thin, if it does not contain all-1
submatrices of size k × l

LEMMA 2

Let M1 = { a1 , …, ar } and M2 = { b1 , …, br } be k-thin subsets of Em
n
,

and (μi, j) be an l-thin matrix of size r × r. Then,

(i) M = { ( ai , bj ) | μi, j = 1 } ⊂ Em
2n 

(ii) M = { ai + (2m – 1) bj | μi, j = 1 } ⊂ E nm2

– ((k – 1)(l – 1)+1)-thin subsets

Property: L(fM) ≤ L( fa1
, …, far

, fb1
, …, fbr

) + L(μi, j) + O(log m),
where M = mon fM , and L(μi, j) is the complexity of a linear map



COROLLARY (from lemma 1 and the construction by Kόllar,
Rόnyai, Szabό)

There is an explicit no(1)-thin circulant matrix of size n × n and
weight n2-o(1)

COROLLARY (from lemma 2)

Let f be a polynomial with coefficients 0 and 1 such that

M = mon f . Let (μi, j) be a r o(1) –thin circulant matrix, and k = r o(1),
and either n log m = r o(1), or deg f = r o(1). Then,

LM(f)=Ω(r 2-o(1)) L(f) ≤ r 1+o(1)



iv.3 COROLLARY (on the monotone/nonmonotone complexity
separation)

Let m ≥ 2 and n ≥ 1. There exists an explicit polynomial f in n
variables of degree at most m – 1 in each variable, such that as mn

→ ∞ ,

LM(f) / L(f) ≥ m n (1/2 - o(1))

iv.4 Example of a polynomial of degree 2

Пусть (μi, j) be a no(1)-thin circulant matrix of size n × n and weight
n2-o(1). Define

f =      Σ μi, j x i y j

1 ≤ i < j ≤ n

Then, LM(f) / L(f) = n1-o(1)


