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1 Introduction

In the present paper we prove upper bounds on the complexity and the depth
of symmetric boolean functions. A function is called symmetric if it preserves
its values under permutations of arguments. In the boolean case, it means
that values of the functions depend only on the arithmetic sum of variables.

Problems of efficient implementation of symmetric functions in various
computational models always attracted attention of complexity theorists.
Applications, both practical and theoretic, interest in methods of computa-
tion of certain symmetric functions, as well as of some subclasses (threshold,
periodic functions), and sometimes of symmetric functions in general. One of
the most popular applications are parallel circuits for integer multiplication
based on efficient computation of the arithmetic sum of bits. Some known
parallel circuits for integer division and other operations (see e.g. [2, 6]) also
involve fast subcircuits for symmetric functions.

In this paper we restrict our consideration to the computational model
of formulae over complete finite bases, being interested primarily in binary
bases. It is the optimization of the formula depth that is of interest in the
problem of fast multiplication of numbers.

Recall that formulae are essentially circuits of functional elements with
fan-out 1. More formally, the set of formulae over a basis B, the complexity
of a formula, the depth of a formula, and the function implemented by the
formula are defined inductively as follows: 0) the basis constants are formulae
of complexity and depth 0; 1) the symbols of variables are formulae of com-
plexity 1 and depth 0 that implement the corresponding identical functions;
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2) the expression G(F1, ..., Fk), where G is a symbol denoting a non-constant
k-ary function g ∈ B, and Fi is a formula of complexity Li and depth Di

implementing the function fi, is a formula of complexity L1 + . . . + Lk and
depth max{D1, ..., Dk}+ 1, and it implements the function g(f1, . . . , fk). In-
formally, the complexity of a formula is the number of symbols of variables
in it.

The complexity and the depth of a formula F over a basis B will be
denoted by ΦB(F ) and DB(F ), respectively. The complexity (depth) of a
function f is defined as the minimal complexity (depth) of formulae imple-
menting it, and is denoted by ΦB(f) (DB(f)). For a set (class) of functions
F , ΦB(F), DB(F) are understood as the maximal values of complexity and
depth of functions from F .

Let Sn denote the class of all symmetric boolean functions of n variables.
Let T kn denote the threshold symmetric function of n variables with thresh-
old k: by definition1, T kn (x1, . . . , xn) = (x1 + . . .+ xn ≥ k). The function

Majn = T
n/2
n is also called the majority function2.

The known upper bounds on the complexity and the depth of implementa-
tion of symmetric functions by both formulae and circuits over complete bases
are related to the efficient implementation of the boolean (n,m)-operator
Cn(x1, . . . , xn) = [Cn,m−1, ..., Cn,0] counting the number of ones in the vector
of boolean variables (x1, . . . , xn), where m = dlog2(n + 1)e. Indeed, any
symmetric Boolean function f ∈ Sn is naturally represented as a composition
of the operator Cn and some boolean function ϕ of m variables:

f(x1, . . . , xn) = ϕ(Cn(x1, . . . , xn)). (1)

Almost all known complexity- and depth-efficient formulae and circuits
for Cn are composed from compressors3. A binary (k, l)-compressor is a cir-
cuit (or formula) implementing a boolean operator (x1, . . . , xk)→ (y1, . . . , yl)
defined by the condition

∑
2aixi =

∑
2bjyj, where k > l and ai, bj ∈ Z. It

is easy to construct a circuit from compressors that reduces the summation
of n numbers to the addition of O(1) numbers. The simplest example is the
(3,2)-compressor4. It calculates the sum of three bits according to the rule
x1 + x2 + x3 = 2y2 + y1.

There is evidence that the idea of compressors for reducing the execution
time of arithmetic operations arose in the design of electronic devices even

1Here and in similar cases below, the value of the function is assumed to be 1 if the
expression on the right-hand side is true, and 0, otherwise.

2The majority function is often defined as T
(n+1)/2
n . For further consideration, such

violation of definition is not essential.
3Another term for compressor in the context of summation is CSA (carry save adder).
4Often denoted as FA3 (full adder).
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before 1960 among various groups of engineers (in particular, both in the
West and in the USSR). In the early 1960s, in several theoretical papers (for
example, [21, 36]) there was proved that, using compressor circuits, multiple
addition (and, in particular, the Cn operator) may be implemented with
logarithmic depth, i.e. DB(Cn) � log n in a full basis B.

In the same years, an alternative approach was proposed in [1] — to use
a notation of numbers with an extended set of digits5, allowing addition to
be performed without carries, i.e. with depth O(1), see also [37, §3.2]. But
ultimately this method also allows description in terms of compressors, only
not binary ones.

Thus, from (1) it immediately follows6 that

DB(Sn) ≤ DB(Cn) +O(log n) � log n

in an arbitrary complete boolean basis B. The corresponding synthesis
method (of boolean circuits) is discussed in [18]. Further, in view of the
obvious relation ΦB(f) ≤ 2O(DB(f)) (in binary bases, simply ΦB(f) ≤ 2DB(f))
we immediately obtain ΦB(Sn) = nO(1). However, about ten years passed
before V. M. Khrapchenko [14] published the first proof of the polynomial
complexity of formulae for symmetric functions in the early 1970s.

Over the next 50 years, our understanding of efficient ways to compute
symmetric functions has improved. The general idea, which has proven itself
in circuit-type computational models, is to select a basic set of functions
(usually also symmetric) that have relatively simple implementation, and
whose values uniquely determine the arithmetic sum of the variables. Then
any symmetric function can be computed following a rule similar to (1).

For boolean circuits, the components of the operator Cn are currently
considered to be the optimal basic set (at least in binary bases). Note that
the record upper bound for the complexity of circuits for symmetric functions
was obtained in [7] via special compressors. In the case of switching circuits,
the best known means of expressing symmetric functions is a set of periodic
functions with small mutually prime periods [19]. However, in the formula
model, the optimal choice of an encoding set seems to be less homogeneous.
It is advantageous to include in the basic set a part of the digits of several
operators C

(q)
n , calculating the sum of n boolean variables in q-ary number

systems, for small prime q (here C
(q)
n coincides with Cn for q = 2) [30, 31],

as well as components of operators calculating the sum of boolean variables
approximately, with controlled accuracy [32].

5Such a notation is ambiguous.
6Due to the trivial bound O(n) for the depth of an arbitrary function of n variables.
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The components C
(q)
n,i of the operator C

(q)
n are interpreted as digits from Zq

given in a suitable binary encoding. The operator is implemented by circuits
of compressors, this time q-ary. The definition of a compressor over Zq is anal-
ogous to the definition of a binary compressor: it is a circuit (or formula) that
performs the transformation Zkq → Zlq : (x1, . . . , xk)→ (y1, . . . , yl) subject to
the condition7

∑
qaixi =

∑
qbjyj, where k > l and ai, bj ∈ Z. The theory of

optimal synthesis of formulae from compressors was developed by M. Pater-
son, N. Pippenger and U. Zwick in [23, 25, 26]. In particular, the method [23]
allows one to obtain upper bounds for individual digits of summation opera-
tors. A number of techniques for constructing efficient compressors were also
proposed in these works.

An economical (but nonconstructive) procedure for constructing formulae
for the approximate computation of threshold functions was proposed by
L. Valiant[35]. With its help, it is possible to determine the value of the sum
of variables with a given accuracy [32] (the higher the accuracy, the more
complex the formula). Note that the idea of locating the values of the sum
in intervals also plays a key role in the method [34] of implementing threshold
symmetric functions by switching circuits.

The methods of formula synthesis discussed below can be applied to any
complete basis. However, since binary bases are of a greater importance in
theory, we select one sufficiently expressive binary basis from each complexity
class to state the results8: the basis B2 of all binary boolean functions and
the standard basis B0 = {∧,∨, }.

First, we note that there remain significant gaps between the known lower
and upper bounds for the complexity of symmetric functions. The bounds

ΦB0(Sn) � ΦB0(Majn) � n2, ΦB2(Sn) � ΦB2(Majn) � n log n

were proved by V. M. Khrapchenko in [13] and by M. Fischer, A. Meyer,
and M. Paterson [8] more than 40 years ago, respectively, and have not been
improved. Though the second bound was generalized by D. Yu. Cherukhin [4]
to ΦB(Majn) � n log n in any finite boolean basis B. The latter bound is
not too far from the truth, since with a special choice of basis, for example,
B = Sl, it is easy to obtain upper bounds for ΦB(Cn),ΦB(Majn) of the form
n1+ε(l), where ε(l) → 0 (see also [15]). Apparently, no lower bounds are

7The summation is performed in Z.
8Recall that complete binary boolean bases are divided into two equivalence classes in

terms of formula complexity (the order of complexity of any function in equivalent bases
is the same). The classification of binary bases by formula depth includes at least four
equivalence classes [20] (the depth of a function in equivalent bases is the same up to an
additive constant).

4



known for the depth of formulas over the bases under consideration other
than those that trivially follow from the complexity estimates above.

In what follows, for the sake of consistency, the constant C in the up-
per bounds for the complexity nC or the depth C log2 n of functions of n
variables will be called the index of complexity and depth, respectively. The
known upper bounds for the complexity and the depth of formulae for the
operator Cn, the class Sn, and the function Majn are given in Table 1 in
chronological order. The bounds obtained in this paper are marked with the
sign ?.

ΦB0 ΦB2 DB0 DB2

Cn

4.62 [14] (1972)

4.60 [23] (1990)

4.57 [26] (1993)

4.54 [29] (2012)

4.47 [31] (2014)

3.91 [32] (2016)

3.77 ?

3.32 [27] (1978)

3.16 [23] (1990)

3.13 [26] (1993)

3.06 [29] (2012)

3.03 [31] (2014)

2.84 [32] (2016)

2.82 ?

5.12 [16] (1978)

5.07 [23] (1990)

4.95 [24] (1991)

4.93 [10] (1993)

4.87 [30] (2013)

4.14 [32] (2016)

3.96 ?

4, folklore

3.71 [23] (1990)

3.57 [24] (1991)

3.48 [26] (1993)

3.44 [10] (1993)

3.34 [30] (2013)

3.02 [32] (2016)

2.98 ?

Sn

4.93 [14] (1972)

4.85 [23] (1990)

4.82 [29] (2012)

4.48 [31] (2014)

4.01 [32] (2016)

3.77 ?

3.55 [28] (1974)

3.42 [22] (1977)

3.37 [27] (1978)

3.30 [23] (1990)

3.23 [29] (2012)

3.04 [31] (2014)

2.95 [32] (2016)

2.85 ?

4.88 [30] (2013)

4.24 [32] (2016)

3.96 ?

3.81 [23] (1990)

3.34 [30] (2013)

3.10 [32] (2016)

2.98 ?

Majn 3.64 ? 2.77 ? 3.81 ? 2.91 ?

Table 1: Upper bounds for indices of complexity and depth of symmetric

functions

The first accurate estimates of the complexity and the depth of the op-
erator Cn, as well as the class of symmetric functions, were obtained by
V. M. Khrapchenko [14, 16] (over the basis B0). A series of papers [28, 22, 27]
by various authors in the 1970s dealt with refining the estimates over the basis
B2. A systematic approach to the synthesis of economical formulas from com-
pressors was proposed in the early 1990s [25]. The author added the idea of
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exploiting modular arithmetic (non-binary compressors) [30, 31] and approxi-
mate summation [32]. As shown by L. Valiant [35], threshold symmetric func-
tions admit sufficiently economical monotone formulas. In the generalized
form due to R. Boppana [3] the result has the form ΦBM (Tmn ) � m4.28n log n,
where BM = {∨, ∧}.

The general scheme for computing symmetric functions, which leads to
the bounds obtained in this paper, is illustrated in Fig. 1. Here, σ denotes
the arithmetic sum of boolean variables: σ = x1 + . . .+ xn.

σ ± t ≥ m ?
σ mod 2l

σ mod qlii

σ∗ : |σ∗ − σ| ≤ tbase qi → base qpi

i

mod. arithm. mod. arithm. cascade method
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Figure 1: General scheme for computing symmetric functions

Essentially, the computations are as follows. The segment [0, n] is covered
by intervals of length 2t. The value σ is determined by the interval number σ′

and the remainders σ2 = σ mod 2l, {σqi = σ mod qlii }, where qi are the
bases of additional number systems, given that 2l ·

∏
qlii ≥ 2t. Thus, the

least significant digits of the sum are calculated directly, the most significant
digits are principally determined by the interval number, and the remaining
middle digits may be recovered by means of simple modular arithmetic in
the spirit of the Chinese Remainder Theorem. This is how the operator Cn
is implemented.

An arbitrary symmetric function f ∈ Sn may be efficiently computed
from a coding set of length approximately log2 n by the cascade method.
The initial coding set is constituted by the digits of the numbers σ′, σ2, and
{σqi}. Since the code of the number σq, written in the q-ary number system,
is significantly longer than log2 σq for q 6= 2, the number should be first
rewritten in the base qp with the standard binary encoding of digits. This
ensures that the total length of the coding set is asymptotically log2 n.

Additionally, we note that the threshold symmetric functions Tmn can be
calculated somewhat simpler. If the location of the sum σ with respect to the
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point m up to an admissible error ±t is known, then using the remainders
σ2 and {σqi}, we can further refine the position of σ within the interval
(m− t, m+ t) and ultimately determine whether σ ≥ m holds.

Of the author’s works [30, 31, 32] on this topic publications [30, 32] are
brief notes. The full potential of the method is not revealed in them. This
work, in addition to a generally more detailed presentation, includes:

– a more efficient procedure for approximate computation of the arith-
metic sum of variables compared to [32];

– the above-mentioned refinement for the complexity and the depth of
threshold functions;

– improved designs of ternary (4,2)-compressors compared to [30, 31];
– the use of additional number systems with bases q > 3.
All this together leads to an improvement of the results [32], see Table 1.
That additional number systems allow to speed up calculations follows

from Table 2. It contains the best known upper bounds on the complexity
and the depth of formulae for periodic functions

∑
xi mod q, that is, for

the lower components of the operators C
(q)
n . Only those results that are not

superseded by the bounds in Table 1 are shown.

q ΦB0 ΦB2 DB0 DB2
3 2.59 [19] 2 [20] 2.80 [33] 2 [20]

5 3.22 [33] — 3.35 [33] —

7 3.63 [33] 2.59 [17] 3.87 [33] 2.93 [33]

Table 2: Upper bounds for indices of complexity and depth of functions∑
xi mod q

The complexity of computing the sum digits in the compressor method
smoothly increases from the lower to the higher ones. Therefore, the ability
to quickly calculate the sum modulo q is the reason for including part of
the components of the operator C

(q)
n in the basic set for encoding symmetric

functions.
The best parallel algorithms for implementing many arithmetic operations

are based on fast computation of symmetric functions. The most popular
example is integer multiplication. If Σn and Mn denote the operators of
multiplication and addition of n-bit binary numbers, then

DB(Mn) ≤ DB(Cn) + DB(Σ2n) +O(log log n).

Indeed, the multiplication of n-bit numbers in the standard way reduces to
n-fold addition of n-bit numbers. If we perform the summation in each digit
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via the Cn operator, the problem reduces to addition of log2 n numbers — by
the compressor method consuming depth O(log log n) it reduces to the usual
addition of at most 2n-bit numbers. From the Table 1 and the result of
V. M. Khrapchenko [12] on the asymptotic depth of addition, in particular,
we obtain

DB0(Mn) . 4.96 log2 n, DB2(Mn) . 3.98 log2 n.

The presentation is structured as follows. §2 contains information on
auxiliary operations and general ways for computing symmetric functions.
Formulae for approximate summation are constructed in §3. The method
of compressors is discussed in §4. In §5, designs of efficient compressors are
proposed. Numerical bounds on the complexity and the depth of symmetric
functions are derived in §6. In §7, a proof of a theorem on the depth of
partial threshold functions is given. Some open problems are stated in §8.

2 Auxillary information

This section discusses the auxiliary operations involved in computing symmet-
ric functions — they correspond to the bottom layer in Fig. 1.

First, let us recall the standard facts about the depth of arithmetic op-
erations in complete bases. Addition, subtraction, and comparison of two
n-digit binary numbers may be performed with depth O(log n). Moreover,
V. M. Khrapchenko [12] established the asymptotics of the adder depth
over some boolean bases; in particular, the depth of addition is asymp-
totically log2 n over B0. A trivial generalization9 allows one to obtain a
bound O(log n) on the depth of addition of q-ary n-digit numbers as well.
As a consequence, summation of m such numbers may be performed with
depth O(log(mn)). First, via a depth O(logm) tree of (3,2)-compressors
(which perform the transform (x1, x2, x3) → (y0, y1) according to the rule
x1 +x2 +x3 = qy1 +y0), m summands is replaced by two preserving the sum.
Then, the addition of the latter two (n+ logqm)-digit numbers is performed
with depth O(log(n+ logm)).

Multiplication of binary n-digit numbers reduces to addition of n numbers
and therefore has depth O(log n) [11]. Division with remainder of two n-digit
numbers reduces to inversion and multiplication and is also implemented
with depth O(log n) [2]. The transition between binary and q-ary notation
of an n-digit number in either direction can be performed by the “divide-and-
conquer” method of A. Schönhage with depth O(log2 n), see [9, Chapter 14].

9A parallel circuit implementing q-ary carries can be constructed by analogy with, for
example, [21].
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As a consequence, the number x ∈ [0, AB) can be reconstructed from
the known remainders xA = x mod A and xB = x mod B, where A,B are
relatively prime n-digit numbers, by the formula

x = xA + A(τ(xB − xA) mod B)

with depth O(log n), where τ = A−1 mod B (Chinese remainder theorem).
Finally, the number x ∈ [c, c + R) with a given remainder r = x mod R

can be determined by the formula

x =
⌊ c
R

⌋
R + ((c mod R) > r) ·R + r

also with depth O(log n), where n is the digit length of the numbers R, c.
In the statements below we will use the following notations:
– σ = x1 + . . .+ xn — arithmetic sum of boolean variables;
– R =

∏
i q
li
i ;

– σqi = σ mod qlii ;
– σ′ : σ ∈ [σ′t, σ′t + 2t) — pointer to the interval in which the sum σ

falls.
Given the remainders σqi and the number σ′, with a suitable choice of

parameters li, t, it is easy to compute σ.

Claim 1 ([32]). Let li, t ∈ N, qi be relatively prime numbers and R ≥ 2t.
Then for an arbitrary complete boolean basis B,

DB(Cn) ≤ DB({σqi}, σ′)+O(log2 log n), ΦB(Cn) ≤ 2O(log2 logn)·ΦB({σqi}, σ′).

Proof. It follows from the above material that the necessary manipulations
with O(log n)-digit numbers σ′, σqi (conversion to the binary number system,
modular arithmetic operations) to determine the sum σ can be performed
with depth O(log2 log n).

To calculate threshold functions, slightly less information is required. Let
σ−, σ+ denote partial10 boolean functions of variables x1, . . . , xn, defined for
0 ≤ t ≤ k ≤ n− t as

σ− = 1 ⇐⇒ σ ≥ k, σ− = 0 ⇐⇒ σ ≤ k − 2t,

σ+ = 1 ⇐⇒ σ ≥ k + 2t, σ+ = 0 ⇐⇒ σ ≤ k.

Claim 2. Let li, t ∈ N, qi be relatively prime numbers, t ≤ k ≤ n/2 and
R ≥ 4t. Then for any complete boolean basis B,

DB(T kn ) ≤ DB({σqi}, σ−, σ+) +O(log2 log n),

ΦB(T kn ) ≤ 2O(log2 logn) · ΦB({σqi}, σ−, σ+).
10Here and below, a partial (partially defined) boolean function is an arbitrary boolean

function that has prescribed values on its domain.
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Proof. As above, σ mod R can be computed with depth O(log2 log n). It is
then easily verified that

T kn (x1, . . . , xn) = Maj3 (σ−, σ+, (σ ∈ {k, k + 1, . . . , k + 2t} mod R) ) . (2)

Indeed, for σ ≤ k−2t and σ ≥ k+2t, the first two arguments of the majority
function (2) take the same correct values (σ ≥ k). For σ ∈ (k − 2t, k + 2t),
only one of these arguments is guaranteed to take the correct value, and in
this case the third argument has the deciding vote, which takes the value
(σ ≥ k) on the interval (k − 2t, k + 2t).

Starting from [14], the following statement is used to derive upper bounds
for the complexity (and, similarly, depth, see [23]) of symmetric functions.

Claim 3. Let K be a class of boolean functions of n variables, and let a
boolean (m,n)-operator ξ(x1, . . . , xn) = (ξ1, . . . , ξm) be such that any function
f ∈ K can be represented as f = ϕ(ξ1(x1, . . . , xn), . . . , ξm(x1, . . . , xn)). Then
for any complete finite basis B,

ΦB(K) �
m∑
i=1

2iΦB(ξi) + 22m,

and in the case B0 ⊂ B,

DB(K) . max
1≤i≤m

{DB(ξi) + i}.

Proof. Over the basis B0 the function ϕ as a function of the components of
the operator ξ is realized by the method of decomposition by variables (the
cascade method), i.e. recursively by formulas

ϕ(y1, . . . , ym) = y1 · ϕ1(y2, . . . , ym) ∨ y1 · ϕ0(y2, . . . , ym),

see e.g. [14], [38, §V.2.3]. To generalize to an arbitrary basis B, the trivial
relation ΦB(f) ≤ L + O(2D) is used, where L and D are the complexity
and the depth of some formula F that implements the function f over the
basis B0 (see e.g. [31]).

To prove the bound on depth, we can exploit a standard multivariate
decomposition formula. Let B = B0. We choose the parameter k ≈

√
m and

apply the representation

ϕ(y1, . . . , ym) =
∨

α=(α1,...,αk)∈{0, 1}k
yα1
1 · . . . · y

αk
k · ϕα(yk+1, . . . , ym).
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We can further apply the decomposition in k variables to the subfunctions ϕα,
etc. Since elementary conjunctions has depth dlog2 ke, the depth of the
resulting formula with respect to the input yks+j, 1 ≤ j ≤ k, does not exceed

(k + 1)s+ log2 k + 1 = ks+ j +O(
√
m).

When computing symmetric functions, the parameters are chosen as in
the statement 1, only the encoding of the numbers σqi for qi > 2 should be
first changed to locally binary in order to reduce the overall code length to
(1+o(1)) log2 n. For this, the q-ary number σq is divided into blocks of length
p ≈
√

log n, and the value of each block is rewritten in binary notation. As
noted above, the depth of the code components corresponding to one block
increases by O(log2 log n).

3 Approximate summation

Let Ψk,t
n denote a partial threshold function of n variables with threshold k

and uncertainty interval of radius t ≤ k:

Ψk,t
n (x1, . . . , xn) = 1 ⇐⇒

∑
xi ≥ k + t,

Ψk,t
n (x1, . . . , xn) = 0 ⇐⇒

∑
xi ≤ k − t.

Recall that BM = {∨, ∧} denotes the standard monotone boolean basis.
The method [35, 3] proves

Theorem 1. The following inequality holds:

DBM (Ψk,t
n ) ≤ log√5−1(k/t) + log2(n/k) + 2 log2 log

(
Ck−t
n + Ck+t

n

)
+O(1).

For completeness, the proof is given in §7.
Let n = 2r · t − 1. We split the segment [0, n] into 2r intervals Ij =

[jt, (j + 1)t). Let Xj = Ψ
jt+(t−1)/2, (t+1)/2
n (x1, . . . , xn) be a partial threshold

function with uncertainty interval Ij.
The number J = (Jr−1, . . . , J0) of the interval, in which the arithmetic

sum σ = x1 + . . . + xn falls, can be calculated from Xj with an accuracy
of ±1 as follows. Note that the sequence {Xj} is monotone (meaning that
Xj+1 ≥ Xj for any j). The operator J ′ = (J ′r−1, . . . , J

′
0) with components

J ′i =
2r−i−1∨
p=1

X2i+1p−2i−1 ·X2i+1p−1 (3)
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finds the position of the first one. In other words, J ′ = min{j | Xj = 1}.
Since for the true interval number J it is known that XJ−1 = 0 and XJ+1 = 1,
we conclude J ′ ∈ {J, J + 1}.

It is obvious from (3) that the depth of the evaluation of the component J ′i
with respect to the inputs Xj is r−i over the basis B0. Then from Theorem 1
it follows

Corollary 1. The depth of the operator J ′(x1, . . . , xn) satisfies the inequality

DB0(J
′) ≤ (log√5−1 2 + 1) log2(n/t) + 2 log2 n+O(1).

This result can be applied to the implementation of the operator Cn.
However, to derive more precise bounds on the depth and the complexity
of the class of symmetric functions Sn, we have to estimate the depth of
individual code bits more accurately. Note that the senior bits of J ′ are not
computed too economically by the described scheme. In this case, it would
be desirable to increase the width of the intervals.

It is not clear how to obtain the desired bounds directly for the digits
of J ′, but this can be done in a slightly extended encoding. Let r = ls. A
number in the interval [0, 2r−1] can be written in the form (B,H), where B =
[bl−1, . . . , b0] is a number composed of s-digit blocks bi, andH = (hl−1, . . . , h0)
is an l-bit correction vector. Translation into ordinary binary notation may
be performed as follows: in a cycle over i from l − 1 to 0:

[bl−1, . . . , bi] := [bl−1, . . . , bi]− hi. (4)

Let us formally assume hl = 0.

Lemma 1. For the components of the code of a number that approximates J
with an accuracy of ±1 and is written in the form (B,H),

DB0(bi, hi+1) ≤ (log√5−1 2 + 1) log2(2
−isn/t) + 2 log2 n+O(1).

Proof. We will compute the bits of the approximation of J in blocks of
s pieces, starting from the most significant ones11. To compute the next
block bi, we use the scheme described above with a partition into 2(l−i)s in-
tervals of width 2is · t. We calculate s+ 2 least significant bits of the interval
number, thus “overlapping” the previous block by two bits. According to
Theorem 1, this computation is performed with depth

(log√5−1 2 + 1) log2(2
−isn/t) + 2 log2 n+O(1).

11In fact, the blocks are computed independently and in parallel. But the blocks with
larger indices become known earlier, at least from the point of view of the depth estimates
that we use.
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It should be taken into account that the result of each computation can
be a group of digits of either the true number J or the adjacent number (by
the considered digits). In the process of calculations, we will ensure that the
following condition is met: the code ([bl−1, . . . , bi], hl−1, . . . , hi), under rule
(4), determines the senior (l−i)s digits of either the number J or the number
J + 2is.

Initially, we set hl−1 = . . . = h0 = 0. After the first step, when the
block bl−1 is computed by formulas (3), the required condition is obviously
satisfied by the property of the operator J ′. Let us consider the step at which
bi is computed.

Let the previously calculated block bi+1 have the form [ρ, a], and the new
group of bits — [b, bi], where a, b — respectively the least significant and
most significant pair of bits, holding the same positions in the code. Let’s
consider possible cases.

The case a− b ≡ 2 mod 4 is impossible, since the blocks with index i+ 1
of the numbers J , J + 2is, J + 2(i+1)s can take only two adjacent values.

If a = b, then [bi+1, bi] is a correct pair of blocks of the number J or
J + 2is. Therefore, we set hi+1 = 0 and proceed to the next step.

If a ≡ b + 1 mod 4, then bi+1 is a block of J + 2(i+1)s. Hence,
[bi+1 − 1 mod 2s, bi] is a correct pair of blocks of J or J + 2is. Thus, we
set hi+1 = 1 and proceed to the next step.

If b ≡ a + 1 mod 4, then bi = [0 . . . 0] is a block of J + 2is. Then
[bi+1, bi − 1 mod 2s] is a correct pair of blocks of J . We set hi+1 = 0 and
bi = [1 . . . 1], and proceed to the next step.

These additional steps increase the depth of blocks bi by O(1).
As a consequence, the number J ′ is encoded by r + o(r) bits, the i-th of

which is calculated with depth (log√5−1 2 + 1)i+ (2 + o(1)) log2 n.

4 Formulae composed of compressors

An efficient method that allows computing different digits of a sum with
different formula complexity is proposed in [23].

Consider formulae composed of compressors. We can apply the well-
known potential method to evaluate the quality of the formulae. The digit
in the l-th place, computed at the depth d, is (implicitly) assigned with a
potential λdνl, where λ, ν are suitable constants.

Let a family of q-ary compressors C1, . . . , Cs over a basis B be given,
using t types of input and output encoding. Let the inputs xj,τ,k,i of the
compressor Cj with encoding type τ ∈ {1, . . . , t}, related to place k, have
depths dxj,τ,k,i, and the outputs yj,τ,k,i of the same encoding in the same place

13



have depths d yj,τ,k,i. Let kmax be the maximum place to which the outputs of
compressors belong. For a vector v = (v1, . . . , vs) ∈ Rs

≥0 we set

aτ,k(λ, v) =
s∑
j=1

vj

(∑
i

λd
x
j,τ,k,i −

∑
i

λd
y
j,τ,k,i

)
, (5)

where the sum over an empty set is assumed to be zero. The vector function

a(λ, v;x) = (a1, . . . , at), aτ (λ, v;x) =
kmax∑
k=0

aτ,k(λ, v)xr−k,

is called the characteristic operator of the family of compressors. The com-
ponents of the vector v have the meaning of the distribution of compressors
in formulae, so we can assume ||v|| =

∑
vi = 1. In fact, we just consider a

composite compressor
⋃
viCi. In the case of a single compressor in the family

(s = 1), the argument v is omitted.
Let 0m (or simply 0) denote the zero vector of length m. From [23, 26]

we deduce

Lemma 2. Let for some12 λ > 1, v ≥ 0s, ||v|| = 1 and ν ≥ 1, we have
a(λ, v; ν) ≥ 0t. Then for any µ ∈ [0, 1],

DB

(
C

(q)
n, µ logq n

)
. (µ logq ν + 1) logλ n.

Proof. I. Assuming min{dxj,τ,k,i} = 0, denote d0 = max{dyj,τ,k,i}.
Let a compressor of type Cj of place l and depth d receive inputs of

place l+ k at depths dxj,τ,k,i + d and produce outputs of place l+ k at depths
dyj,τ,k,i + d for all admissible τ, k, i. Consider a circuit in which for any l,

−r ≤ l ≤ logq n + 1, at depth d, 0 ≤ d ≤ logλ(cν
ln), there are

⌊
cvjν

lnλ−d
⌋

compressors of type Cj of place l, where c is a constant to be chosen later.
We assume the non-zero inputs of the circuit to be received in the zero place
at depth d0.

Let us count the number of inputs and outputs of the circuit at a fixed
place l, depending on depth d. By construction, all outputs of the circuit at
depth less than d0 are zero. All inputs in negative places are also zero. The
total number of inputs at depth less than d0 (all of them are zero) is O(n).

The difference between the number of inputs and the number of outputs
of type τ at arbitrary place l ≥ 0 and depth d, d0 ≤ d ≤ logλ(cν

ln), of

12The inequality of vectors v ≥ u (or v > u) means that the inequalities vi ≥ ui
(respectively vi > ui) are satisfied for each pair of components.
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compressors within the circuit takes the form∑
j,k,i

⌊
cvjν

l−knλd
x
j,τ,k,i−d

⌋
−
∑
j,k,i

⌊
cvjν

l−knλd
y
j,τ,k,i−d

⌋
=

= cνl−rnλ−daτ (λ, v; ν)±O(1) ≥ −O(1).

Thus, the circuit at depth d produces at most O(1) outputs of all types in
place l (that is, such outputs that are not connected to the inputs of other
compressors). At depths logλ(cν

ln) + O(1) the circuit produces O(1) more
outputs of place l. Therefore, the circuit produces O(log n) nontrivial outputs
at each place. A suitable choice of the constant c ensures that there are at
least n inputs at place zero13.

Thus, all non-zero outputs of the circuit can be grouped into O(log n)
summands. By construction, all outputs in places not exceeding l = µ logq n
have depth no greater than

logλ(cν
ln) +O(1) = (µ logq ν + 1) logλ n+O(1). (6)

II. Further, with depth O(1) one can reduce the encoding of all digits to
a single type. The final summation of O(log n) l-digit q-ary numbers may be
performed with depth O(log(l log n)), see §2.

The result for the complexity of formulae is obtained similarly. With a
digit in the l-th place, expressed by the formula of complexity L, we assign
the potential Lpνl, where p, ν are suitable constants.

Let, as above, a family of q-ary compressors C1, . . . , Cs over a basis B be
given, using t types of encoding of inputs xj,τ,k,i and outputs yj,τ,k,i, where j
is the compressor number, τ is the encoding type, and k is the place number.
By L(x) we denote the size of the formula14, implementing a digit x, allowing
L(x) to take an arbitrary positive real value.

For a vector v = (v1, . . . , vs) ≥ 0, we set

Aτ,k(p, v) =
s∑
j=1

vj

(∑
i

L(xj,τ,k,i)
p −

∑
i

L(yj,τ,k,i)
p

)
. (7)

Due to the given context, we assume a continuous, monotone, and also pro-
portional15 dependence of the complexity L(yj,τ,k,i) of the outputs on the
complexity L(xj,τ,k,i) of the inputs.

13This refers to the total number of inputs, including those of intermediate compressors.
14Here and below, in a number of specific applications, we interpret the concept of

complexity broadly as a certain measure that behaves according to the rules of formula
complexity in order to cover cases of using multi-bit encoding of digits or joint encoding
of groups of digits.

15An increase in the size of all inputs by a times leads to an increase in the size of all
outputs by a times.
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The characteristic operator of the compressor family is defined as

A(p, v;x) = (A1, . . . , At), Aτ (p, v;x) =
kmax∑
k=0

Aτ,k(p, v)xr−s,

where kmax is the maximum number of the place to which the outputs belong.
In principle, in the case of formula complexity, it is possible to do without

introducing the weight vector v, indirectly setting the relationship between
the number of compressors of different types by the size of the input formulae.

Also from the works [23, 25, 26] is extracted

Lemma 3. Let for some p > 0, L(xj,τ,k,i) > 0, v ≥ 0s, ||v|| = 1, and ν ≥ 1
we have

A(p, v; ν) > 0t. (8)

Then for any µ ∈ [0, 1],

ΦB

(
C

(q)
n, µ logq n

)
� n(µ logq ν+1)/p+o(1).

Proof. The lemma is essentially reduced to the previous one.
Due to the continuous dependence of the complexity of the outputs

on the complexity of the inputs, there exists δ > 0 such that inequal-
ity (8) remains valid when substituting into (7) the parameters Lxj,τ,k,i ∈
[L(xj,τ,k,i)− δ, L(xj,τ,k,i)] and Lyj,τ,k,i ∈ [L(yj,τ,k,i), L(yj,τ,k,i) + δ] instead of
L(xj,τ,k,i) and L(yj,τ,k,i), respectively.

Then we can find a (sufficiently small) λ > 1 such that there ex-
ist dxj,τ,k,i, d

y
j,τ,k,i ∈ Z ensuring λd

x
j,τ,k,i/p ∈ [L(xj,τ,k,i) − δ, L(xj,τ,k,i)] and

λd
y
j,τ,k,i/p ∈ [L(yj,τ,k,i), L(yj,τ,k,i) + δ] for all j, τ, k, i. Let us call the number

dxj,τ,k,i (respectively dyj,τ,k,i) pseudodepth of the input xj,τ,k,i (output yj,τ,k,i).

Therefore, under the substitution of λd
x
j,τ,k,i/p → L(xj,τ,k,i) and λd

y
j,τ,k,i/p →

L(yj,τ,k,i) expression (7) turns into (5), and the conditions of Lemma 2 are
satisfied. Part I of the proof of Lemma 2 allows the interpretation of depth
as pseudodepth, so its conclusion is valid. This means that there exists a
circuit for summation of n bits, composed of given q-ary compressors, and
circuit outputs are grouped into O(log n) summands. Moreover, all outputs
in places no higher than l = µ logq n have a pseudodepth at most (6), which
means: they are expressed by formulae of size

O
(
(νln)1/p

)
� n(µ logq ν+1)/p.

The final addition increases the depth of the formula by o(log n) (part II
of the proof of Lemma 2), and therefore the complexity increases by no(1)

times.
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5 Constructions of compressors

5.1 Binary compressors

The main direction of obtaining more efficient formulae for symmetric func-
tions for a long time remained the improvement (i.e. complication) of binary
compressor designs and the efficiency of their utilization, culminating in a
series of papers [23]–[26]. In this work, we will simply use the best designs
known to date. Below, we will list them with an indication of characteristics,
omitting the details of the constructions.

Formula depth over the basis B0. To construct a circuit over the
basis B0, we use a (7,3)-compressor, which calculates the arithmetic sum of
seven bits. It was probably proposed in [10], for a description see also [30].
The characteristic polynomial of the compressor is a(λ;x) = (6+λ2−λ6)x2−
λ7x− λ6.

Bounds on the depth of the components of the operator Cn are obtained by

Lemma 2 applied with parameters λ ∈ [λ0,
√

2) and ν = λ7+λ3
√
λ8−4λ6+4λ2+24

2(6+λ2−λ6) ,

where λ0 ≈ 1.151 is a root of the polynomial λ7 + 2λ6 − λ2 − 6.

Formula depth over the basis B2. In [26] a family of three (3, 2)-
compressors with three types of input and output encoding was proposed,
with the help of which a record bound for the depth of the operator Cn over
the basis B2 was obtained. The characteristic operator of the family has the
form a(λ, v;x) = (a1, a2, a3), where

a1(λ, v;x) = v1(2 + λ− λ2)x+ v2(2− λ3)x+ v3(λ
2 − λ3)x,

a2(λ, v;x) = −v1λ2 + v2λ
2x+ v3(x− λ3),

a3(λ, v;x) = −v2λ3 + v3λx.

It is easy to verify [26] that the maximum value λ = λ0, for which for some v ≥
0 the inequation a(λ, v; 1) ≥ 0 holds, is a root of the polynomial 3λ3 +2λ2−2λ−6
and is approximately 1.221. It can also be verified that for λ0 ≤ λ < 2 the
optimization problem ν = minx for a(λ, v;x) ≥ 0, v ≥ 0 and x ≥ 1 has a solution

ν = b+
√
b2 + c, b =

λ3 + λ2 − λ− 4

2(2 + λ− λ2)
, c =

2λ3

2 + λ− λ2
.

Then, the depth of the Cn components may be bounded with the use of Lemma 2.

In [10] (according to [26]) an even more efficient family of (5,3)-
compressors was constructed, apparently, but its description is not available
to the author.

Formula complexity over the basis B0. To estimate the complexity of
formulae, we use compressors from [31]. For the basis B0, a (17, 6)-compressor
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was constructed, operating according to the rule

x1 + . . .+ x17 = y1 + y2 + y3 + 2y4 + 4y5 + 8y6.

The complexity of the outputs yi is expressed in terms of the complexity
of the inputs as

Φ(y1)
Φ(y2)
Φ(y3)
Φ(y4)
Φ(y5)
Φ(y6)

 ≤


12 16 0 0 0
12 16 0 0 0
0 0 32 4 16
96 96 96 12 32
144 144 96 14 40
72 72 48 7 20




Φ1

Φ2

Φ3

Φ4

Φ5

 ,

where

Φ1 = Φ(x1) = . . . = Φ(x6), Φ2 = Φ(x7) = . . . = Φ(x10),

Φ3 = Φ(x11) = . . . = Φ(x14), Φ4 = Φ(x15), Φ5 = Φ(x16) = Φ(x17).

Formula complexity over the basis B2. For the basis B2 we choose
the (15, 6)-compressor [31], which generalizes the construction from [26] and
operates according to the rule

16x1 +
3∑
i=1

24−i(x3i−1 + x3i + x3i+1) + x11 + . . .+ x15 =
6∑
i=1

2i−1yi.

The complexity of the outputs yi satisfies the relation
Φ(y1)
Φ(y2)
Φ(y3)
Φ(y4)
Φ(y5)
Φ(y6)

 ≤


0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 1 1 1 2
1 2 2 3 3
1 4 4 9 3

0 0 0 0 0 1 1 1 1 1
0 0 1 1 1 2 2 3 1 2
1 1 2 2 3 3 3 6 1 2
2 3 3 3 6 3 3 6 1 2
3 6 3 3 6 3 3 6 1 2
3 6 3 3 6 3 3 6 1 2

 · ~Φ,

where ~Φ = (Φ(x1), . . . ,Φ(x15))
T .

Bounds on the complexity of the components of Cn are obtained by Lemma 3.

For any µ, the minimizing ν values of the input sizes are selected. The minimal

values of the exponent p for which µ ≥ 1 are p ≈ 0.2194 for the compressor over B0
and p ≈ 0.3237 for the compressor over B2.
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5.2 Ternary compressors

Simple constructions of ternary (4,2)-compressors, i.e. minimally possible
complete compressors, are proposed by the author in [30, 31]. Here we con-
struct optimized versions of the circuits (except for the case of complexity
of formulae over B2). Over the standard basis, the direction of improve-
ment consists in approaching to known fast methods for summation mod-
ulo 3 [19, 5], see also [33].

The ternary (4,2)-compressor computes the arithmetic sum [U1, U0] of
four numbers X1, X2, X3, X4 ∈ Z3, that is, 3U1 + U0 = X1 +X2 +X3 +X4.

To write ternary digits we use two types of encoding. In the standard
representation ternary digit X is encoded by three bits x0, x1, x2, where
xk = (X = k). In the monotone encoding a pair of code bits x∧ = x2 and
x∨ = x0 is used (i.e. digits 0, 1, 2 have codes 00, 01, 11 respectively).

First, we note that in the monotone encoding, the bits u∧j and u∨j of the
sum are expressed in terms of the inputs by dual formulae: a formula for u∧j
turns into a formula for u∨j via substitution x∧k ↔ x∨k , ∨ ↔ ∧.

This can be verified if 1) we consider x◦k, u
◦
j , ◦ ∈ {∨,∧} as three-valued logic

functions of variables Xi; 2) in the table of values of functions x◦k, u
◦
j replace 1

with 2, and replace functions of the basis B0 with similar functions defined on

vectors of zeros and twos and taking values from {0, 2}; 3) apply the ternary

version of the duality principle [38, §I.1.3], considering constants k and 2 − k as

dual, k ∈ {0, 1, 2}.
Recall that the sum Z = X + Y mod 3 in the standard encoding may be

implemented by simple (essentially dual) formulae [19]16

zk = x0yk ∨ x1yk−1 ∨ x2yk−2 = (x0 ∨ yk)(x1 ∨ yk−1)(x2 ∨ yk−2), (9)

where index operations are performed modulo 3.
Formula complexity over the basis B0. Consider a pair of compres-

sors that compute the digit U0 in the standard encoding, and U1 — in the
monotone. The first compressor uses the standard encoding for inputs, and
the second — the monotone.

If the inputs are given in the standard encoding, then, computing U0 =
(X1+X2)+(X3+X4) mod 3 directly by formulas (9), we obtain the relation17

Φ(U0) ≤ 9(Φ(X1) + Φ(X2) + Φ(X3) + Φ(X4)).

For inputs in the monotone encoding, the same formulas are used, only the
“missing” bits x1 are first calculated as x∨ · x∧. The complexity is estimated

16Which are trivially generalized to the case of sums modulo q.
17By complexity of a ternary digit we mean the complexity of each code bit.
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as
Φ(U0) ≤ 12(Φ(X1) + Φ(X2) + Φ(X3) + Φ(X4)).

The most significant digit U1 of the sum is computed as in [31]. Due
to duality, it is sufficient to specify a formula for u∨1 . We will construct it
in the standard way of expression via threshold functions. Denote χt1 =
(X1 +X2 ≥ t) and χt2 = (X3 + X4 ≥ t) — these are threshold functions of
ternary variables expressed by binary codes. Then

u∨1 = χ3
1 ∨ χ2

1χ
1
2 ∨ χ1

1χ
2
2 ∨ χ3

2. (10)

The functions χ1
i and χ2

i are implemented by the formulae

χ1
i = x∨2i−1 ∨ x∨2i, χ2

i = x∨2i−1x
∨
2i ∨ x∧2i−1 ∨ x∧2i,

and the functions χ4
i and χ3

i can be expressed dually in the sense mentioned
above. So we obtain (for each of the compressors)

Φ(U1) ≤ 5(Φ(X1) + Φ(X2) + Φ(X3) + Φ(X4)).

The characteristic operator of the pair of compressors with the complexity of
all inputs set to 1 has the form

A(p, v;x) = ( (4x− 36p)v1x− 48pv2x, 4v2x− 20p ) .

The condition A(p, v;x) > 0 is equivalent to

v2 <
4− 36p

48p − 36p + 4
, x >

20p

4v2
>

20p(48p − 36p + 4)

4(4− 36p)

and is applied when p ∈ (p0, log6 2), where p0 ≈ 0.2056 is the root of the equation

960p − 720p + 4(20p + 36p) = 16

(the condition providing A(p, v;x) = 0 and x = 1). As a consequence of Lemma 3,
for admissible p and any ε > 0, we obtain

ΦB0

(
C

(3)
n, µ log3 n

)
� n(µ log3(ν+ε)+1)/p+o(1), ν =

20p(48p − 36p + 4)

4(4− 36p)
.

Note that in this case, all bounds are achieved on a single naturally constructed

formula, which can be analyzed without resorting to Lemma 3. The same note

applies to all (4,2)-compressors, which will be discussed below.

Formula depth over the basis B0. We say that an intermediate ternary
digit U , computed by a compressor circuit, has ∗-depth d, if for each bit
u of the code of the digit U there are formulas Φ∨0 ,Φ

∨
1 ,Φ

∧
0 ,Φ

∧
1 , such that
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u = Φ∨0 ∨ Φ∨1 = Φ∧0 · Φ∧1 , while in the standard encoding D(Φ?
0) ≤ d and

D(Φ?
1) ≤ d−1, and in the monotone encoding D(Φ?

0) ≤ d and D(Φ?
1) ≤ d−2,

where ? ∈ {∨, ∧}.
In the circuit (actually in the family of circuits) that we are construct-

ing, the inputs X1 and X3 have ∗-depth 0, and the inputs X2 and X4 have
∗-depth 2; any input can be specified in any encoding. Let us check that in
this case the sum bit U0 is computed with ∗-depth 7 in the standard encoding,
and the bit U1 — with ∗-depth 6 in the monotone encoding.

1. Applying either of two formulas (9), it is easy to check that the sums
E1 = X1 +X2 mod 3 and E2 = X3 +X4 mod 3 may be computed with depth
5 in any input encoding. The output encoding is standard. If the input
X is given in the monotone encoding, then the missing bit x1 should be
pre-computed as x∨ · x∧. Therefore, U0 = E1 + E2 mod 3 is computed with
*-depth 7 by formulas (9).

2. To calculate U1 we use only the monotone part of the input codes.
Due to duality (see above) it is sufficient to construct formulas of the type
Φ∨0 ∨ Φ∨1 only.

The equality U1 = 2 is satisfied when the total sum is not less than 6.
This means that among the terms Xi there are either three twos, or there
are two twos and no zeros. The first condition is expressed as

A1 ∨ A2, A1 = x∧1x
∧
2 (x∧3 ∨ x∧4 ), A2 = x∧3x

∧
4 (x∧1 ∨ x∧2 ).

The second condition is written as

A3 · A4, A3 = (x∧1 ∨ x∧2 )(x∧3 ∨ x∧4 ) ∨ x∧1x∧2 ∨ x∧3x∧4 , A4 = x∨1x
∨
2x
∨
3x
∨
4 .

Note that the expressions xi1?x
i
2 and xi3?x

i
4, where ? ∈ {∨, ∧}, are evaluated

with depth 3 regardless of the input encoding type. Therefore, D(A1) =
D(A2) = D(A4) = 4 and D(A3) = 5. Finally, the most significant bit U1 of
the code may be computed as

u∧1 = A1 ∨A2 ∨A3 ·A4 = Φ∨0 ∨Φ∨1 , Φ∨0 = A3(A1 ∨A4), Φ∨1 = A2, (11)

where D(Φ∨0 ) = 6 and D(Φ∨1 ) = 4.
Symmetrically, U1 = 0 iff there are three zeros among the inputs, or there

are two zeros and no twos. Expressing these conditions leads to formulas
for u∨1 of form (11) up to substitutions x∧i ↔ x∨i .

The characteristic polynomial of the constructed circuit is (2+2λ2−λ7)x−λ6.
Lemma 2 is applied with parameters λ ∈ [λ0, λ1) and ν = λ6

2+2λ2−λ7 , where λ0 ≈
1.1356 and λ1 ≈ 1.2657.

Note that in the proposed design, the computation of U0 just slightly
reproduces the fast algorithm of addition modulo 3 from [5] (only in the case
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when all inputs are given in the standard encoding) and does not in any way
imply the even faster algorithm [33]. This leaves some room for optimization
of the formula, which can be potentially used when switching to compressors
with a larger number of inputs.

Formula depth over the basis B2. For computations over the basis B2
we use the standard encoding. The sum Z = X + Y mod 3 is computed by
simple formulas [20]:

zk =
(
xk ∼ y0

) (
xk+1 ∼ y2

)
=
(
xk ∨ y2

)
∼
(
xk+1 ∨ y0

)
, (12)

where the symbol “∼” denotes the boolean equivalence operation, operations
with indices are performed modulo 3.

Now the sum [U1, U0] = X1 + X2 + X3 + X4 can be expressed through
the intermediate values Z1 = X1 +X2 mod 3 and Z2 = X3 +X4 mod 3 as

uk0 =
(
zk1 ∼ z02

) (
zk+1
1 ∼ z22

)
, (13)

u11 = u10 ⊕ x11 ⊕ x12 ⊕ x13 ⊕ x14, u01 = A3 ? A2A1 = (A3 ? A1)A2, (14)

A1 = (x11 ⊕ x12 ⊕ x13 ⊕ x14) · (x21 ∨ x22 ∨ x23 ∨ x24),
A2 = T 2

4 (x01, x
0
2, x

0
3, x

0
4) = (x01 ∨ x02)(x03 ∨ x04) ∨ x01x02 ∨ x03x04,

A3 = E3
4(x01, x

0
2, x

0
3, x

0
4) = x01x

0
2(x

0
3 ⊕ x04)⊕ (x01 ⊕ x02)x03x04,

where any of the signs ∨,⊕ can be substituted for ?; Em
n denotes the ele-

mentary symmetric function: Em
n (x1, . . . , xn) = (

∑
xi = m). The formulas

for u21 may be obtained from the formulas for u01 by replacements xki ↔ x2−ki .
The formula for u11 is verified as follows: U1 = 1 iff either U0 = 1 and there

is an even number of ones among the inputs Xi (then the sum is even and equal

to 4), or U0 6= 1 and there is an odd number of ones among the inputs Xi (the sum

is odd and equal to 3 or 5). The formula for u01 is explained as follows: U1 = 0

if either exactly three inputs are zeros, or there are at least two zeros, an even

number of ones, and no twos among them.

If the depth of all inputs is 0, then the outputs U0 and U1 are computed by
formulas (13) and (14) with depths of 4 and 5, respectively. These estimates
were used in [30]. A slightly better result can be obtained by exploiting the
fact that formulas (14) are not balanced in depth.

Let us say that the intermediate ternary digit U , computed by a compres-
sor circuit, has ∗-depth d, if for the code bit u1 there are formulae Φ⊕0 ,Φ

⊕
1 ,

such that u = Φ⊕0 ⊕ Φ⊕1 , and for each bit u ∈ {u0, u2} there are formulae
Φ∨0 ,Φ

∨
1 ,Φ

∧
0 ,Φ

∧
1 , such that

u = Φ∨0 ∨ Φ∨1 = Φ∨0 ⊕ Φ∨1 = Φ∧0 · Φ∧1 ,

while D(Φ?
0) ≤ d and D(Φ?

1) ≤ d− 1, where ? ∈ {∨, ∧, ⊕}.
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Consider a pair of compressors with two encoding types: in the second,
the bits are encoded by paired formulas, as defined above. The first compres-
sor receives inputs Xi at depth 0 and outputs U0 at depth 4, and U1 — at
∗-depth 4. The second compressor receives inputs X1 and X3 at depth 0, and
inputs X2 and X4 (in a different encoding) — at ∗-depth 1. It outputs U0 at
depth 5, and U1 — at ∗-depth 5. Formulas (12), (13), (14) demonstrate the
validity of these estimates.

The characteristic operator of the pair of compressors has the form a(λ, v;x) =
(a1, a2), where

a1(λ, v;x) = v1(4− λ4)x+ v2(2− λ5)x,
a2(λ, v;x) = −v1λ4 + v2(2λx− λ5).

It can be verified that the maximum value λ = λ0 such that a(λ, v; 1) ≥ 0

holds for some v ≥ 0 is a root of the polynomial 3λ4−λ3−4 and is approximately

equal to 1.1687. It can also be verified that, under the condition λ0 ≤ λ <
√

2, the

optimization problem ν = minx for a(λ, v;x) ≥ 0, v ≥ 0 and x ≥ 1 has a solution

ν = 2λ4−λ3
4−λ4 . Then, depth estimates may be obtained via Lemma 2.

Formula complexity over the basis B2. To derive the complexity
bounds, we apply the compressor from [31] without modifications. The least
significant bit U0 is computed by formulas (12), (13), and the most significant
bit U1 is computed by formulas (10) for bits u01, u

2
1 and by formula (14) for

bit u11. Thus, we obtain

Φ(U0) ≤ 4(Φ(X1) + Φ(X2) + Φ(X3) + Φ(X4)),

Φ(U1) ≤ 5(Φ(X1) + Φ(X2) + Φ(X3) + Φ(X4)).

The characteristic function of the compressor is A(p;x) = (4 − 16p)x − 20p.

Lemma 2 is applied with parameters p ∈ (p0, 1/2) and ν = 20p

4−16p , where p0 ≈
0.2402 is the solution of the equation 16p + 20p = 4.

5.3 Compressors in number systems with other bases

In this section, we present simple designs of suitable q-ary compressors in
order to demonstrate their effect on the depth and the complexity of con-
structed formulae. Since formula synthesis methods use only the least sig-
nificant digits of the sums computed by q-ary formulae, the only thing that
matters for the efficiency of the compressor is the economical implementation
of the sum modulo q in the least significant place.

Formula complexity over the basis B0. In the basis B0 we use quinary
compressors. A quinary digit U is standardly encoded by five bits u0, . . . , u4,
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where uk = (U = k). Acceptable results are obtained already using simple
formulas (9) (generalized to the case of arbitrary q).

An improved summation method is proposed in [33]. It involves an ex-
tended encoding {uS|S ⊂ Zq}, where uS = (U ∈ S). For Z = X + Y mod q,
a simple generalization of (9) holds:

zS =

q−1∨
i=0

xiyS−i =

q−1∧
i=0

(
xi ∨ yS−i

)
, (15)

where S − i = {s − i mod q | s ∈ S}. However, for some sets S, shorter
formulae can be produced. In particular, in the case q = 5 and |S| = 4 we
have [33]

zS =
3∨
i=0

xAiyBi , |Ai|, |Bi| ∈ {2, 3}. (16)

Fig. 2 illustrates formula (16) for the case S = {0, 1, 2, 3}. A circulant matrix
whose rows and columns are numbered by the values of the variables X and Y ,
with ones placed exactly at the positions (X,Y ) for which X + Y ∈ S, is covered
by four rectangles (all-ones submatrices) Ai ×Bi.

@@X
Y 0 1 2 3 4

0

1

2

3

4 0

0

0

0

0

1 1 1 1

1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

r r rrr
rrrr r

r r r
r

r rr r
r r
r r

r
r

Figure 2: Explanation of formula (16)

In the extended encoding, the quinary sum of two numbers [w,Z] =
X + Y , where w is the carry to the next digit, is calculated according to
the following rules. Bits zS are implemented by formulas (15) in the case
2 ≤ |S| ≤ 3 and by formulas (16) — in the case |S| ∈ {1, 4} (for |S| = 1,
negated formulas are applied). The carry can be computed following the
formula

w = x0 ∨ y0 ∨ x1y4 ∨ x4y1 ∨ x2y2. (17)

Let us construct an (incomplete) quinary (4,2)-compressor. The sum
[U, V ] = X1 +X2 +X3 +X4 is computed by a tree of three additions in the
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least significant place, and using the carries w1, w2, w3 (17) that appear in
the process, we determine the code of the digit U according to the rules

u2 = w3 · w1 · w2 ∨ w3(w1 ⊕ w2), u3 = w1 · w2 · w3, u4 = 0,

u2,3 = w3(w1 ∨ w2) ∨ w1w2, u1,3 = w1 ⊕ w2 ⊕ w3, u0,3 = u0 ∨ u3. (18)

The missing bits of the code are expressed in a dual way with respect to the
written ones18. Instead of linear operations, one should substitute formulas
implementing them over the basis B0.

By l1(X) and l2(X) we denote the maximal complexity of bits xS of the
code of the number X for |S| ∈ {1, 4} and, respectively, for |S| ∈ {2, 3}.
Setting li(Xj) = ai for all j, by (15)–(18) we establish

l1(X1 +X2), l1(X3 +X4) ≤ 8a2, l2(X1 +X2), l2(X3 +X4) ≤ 5(a1 + a2),

Φ(w1),Φ(w2) ≤ 8a1,

l1(V ) ≤ 40(a1 + a2), l2(V ) ≤ 25a1 + 65a2, Φ(w3) ≤ 64a2,

l1(U) ≤ 2Φ(w3) + 3Φ(w1) + 3Φ(w2) ≤ 48a1 + 128a2,

l2(U) ≤ 2Φ(w3) + 4Φ(w1) + 4Φ(w2) ≤ 64a1 + 128a2.

Let us define the mixed complexity L(X) = max{l1(X), l2(X)/β}, where

β = 5+
√
185

16
(the optimal value of the parameter for the modulo addition

operation [33]). Finally, setting L(X1) = . . . = L(X4) = 1 we obtain

L(V ) ≤ 40(1 + β) < 87, L(U) ≤ (48 + 128β) < 197. (19)

The characteristic function of the compressor is (4 − 87p)x − 197p. Lemma 2

is applied with parameters p ∈ (p0, log87 4) and ν = 197p

4−87p , where p0 ≈ 0.1419 is

the solution of the equation 197p + 87p = 4.

Formula depth over the basis B0. We are going to describe a (5,2)-
compressor, which is obtained from the depth-efficient compressor [33] for
computing the sum modulo 5 by adding a formula computing the most sig-
nificant digit. A quinary digit X, as above, is encoded by a set of bits xS.
Let X have ∗-depth d if each code bit is expressed as both a conjunction and
a disjunction of formulae of depth d and d − 2. The ∗-depth functional is
denoted by D∗.

The compressor calculates the sum [U, V ] = X1 + . . . + X5, where the
inputs X1, . . . , X5 have ∗-depth 0, 1, 0, 1, 6 respectively. The order of com-
putations is:

[w1, Z1] = X1 +X2, [w2, Z2] = X3 +X4, [w3, Z3] = Z1 + Z2,

[w4, V ] = Z3 +X5, U0 = w1 + w2 + w3, U = U0 + w4.

18I.e. uZ5\S = uS and for S ⊂ {0, 1, 2, 3}: if uS = f(w1, w2, w3), then u3−S =
f(w1, w2, w3).
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It is easy to check the bounds for depth:

D(zr1),D(zr2)
(16)

≤ 4, r ∈ Z5, D∗(zr3)
(15)

≤ 7, r ∈ Z5, D∗(V )
(15)

≤ 10,

D(w1),D(w2)
(17)

≤ 4, D(w3)
(17)

≤ 7, D(w4)
(17)

≤ 10, D(U0)
(18)

≤ 9.

Finally, in view of uS = w4u
S
0 ∨w4u

(S\{0})−1
0 , we obtain D∗(U) ≤ D(U) ≤ 12.

The compressor has characteristic polynomial (2 + 2λ + λ6 − λ10)x − λ12.

Lemma 2 is applied with parameters λ ∈ [λ0, λ1) and ν = λ12

2+2λ+λ6−λ10 , where

λ0 ≈ 1.105 and λ1 ≈ 1.2299.

Formula complexity over the basis B2. For the basis B2 we construct
septenary compressors. For the code bits of the digit U we keep the notation
uS = (U ∈ S), where S ⊂ Z7.

Economical formulae for summation modulo 7 are proposed in [17]. Let
T = {0, 1, 2, 5} ⊂ Z7. It can be verified that for Z = X + Y ,

zT+r =
⊕

k∈{0, 1, 3}

xT+k−3r · yT+k−3r, (20)

where index operations are performed modulo 7. The set {xT+r | r ∈ Z7}
constitutes the code of the digit X.

Let’s denote T ′ = Z7 \ T = {3, 4, 6}. The carry w to the next digit can
be calculated by the formula

w = x3,4,6y3,4,6 ⊕ x3y3 ⊕ x1y6 ⊕ x6y1 ⊕
(
x5,6y2,3,4,5,6 ∨ x2,3,4,5,6y5,6

)
=

xT
′
yT
′ (
xT+4 ∨ yT+4

)
⊕ xT ′+2yT

′+2
(
xT
′+4yT

′ ⊕ xT ′yT ′+4
)
⊕

⊕
(
xT
′+2xT+4(yT

′ ∨ yT+4) ∨ (xT
′ ∨ xT+4)yT

′+2yT+4
)
. (21)

Now we describe an (incomplete) septenary (4,2)-compressor. As above,
the sum [U, V ] = X1+X2+X3+X4 is implemented by a tree of three additions
in the least significant digit, and with the help of the carries w1, w2, w3 (21)
that appear in the process, the code of the digit U is determined by the
rules19

uT
′
= u3 = w1 · w2 · w3, uT+1 = u1,2,3 = w1 ∨ w2 ∨ w3,

uT
′+2 = u1 = w3(w1 ∨ w2)⊕ w1 · w2, uT+3 = u1,3 = w1 ⊕ w2 ⊕ w3,

uT+4 = u2 = w3(w1 ∨ w2)⊕ w1w2, uT+5 = u0,3 = w3(w1 ∼ w2)⊕ w1w2,

uT
′+6 = u2,3 = w3(w1 ∨ w2)⊕ w1w2. (22)

19The complexity of formulas for uT+r and uT
′+r is the same: uT

′+r = uT+r.
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Denoting by L(X) the maximal complexity of the code bits of a number X,
for L(X1) = . . . = L(X4) = 1 by (20)–(22) we obtain

L(X1 +X2), L(X3 +X4) ≤ 6, Φ(w1),Φ(w2) ≤ 18, Φ(w3) ≤ 108,

L(V ) ≤ 36, L(U) ≤ Φ(w3) + 2Φ(w1) + 2Φ(w2) ≤ 180.

The characteristic function of the compressor is (4−36p)x−180p. Lemma 2 is

applied with parameters p ∈ (p0, log6 2) and ν = 180p

4−36p , where p0 ≈ 0.1562 is the

solution of the equation 180p + 36p = 4.

6 Results

To derive specific numerical bounds on the indices of complexity and depth
of formulae for symmetric functions, we apply the claims from §2. Approx-
imate summation is performed by method §3, where Corollary 1 is used to
implement the operator Cn, Theorem 1 — to compute threshold functions,
Lemma 1 — to compute general symmetric functions. Remainders σqi are
computed by the method of compressors §4 (Lemmas 2, 3) exploiting con-
structions from §5. In all cases, binary and ternary compressors are employed,
and additionally — quinary compressors over the basis B0 and septenary —
to estimate the complexity of formulae20 in the basis B2.

The results for the complexity and the depth of the operator Cn and the
class Sn are given above in Table 1. The new bounds are

ΦB0(Cn) � n3.77, DB0(Cn) . 3.96 log2 n,

ΦB2(Cn) � n2.82, DB2(Cn) . 2.98 log2 n,

ΦB0(Sn) � n3.77, DB0(Sn) . 3.96 log2 n,

ΦB2(Sn) � n2.85, DB2(Sn) . 2.98 log2 n.

Their derivation is illustrated by the graphs in Fig. 3–6. Let us comment,
for example, the complexity bounds for formulae over the basis B0, see
Fig. 3. The graphs on the left side show indices of complexity of digits
Cn,µ log2 n (graph Cn), C

(3)
n,µ log3 n

(graph C
(3)
n ), C

(5)
n,µ log5 n

(graph C
(5)
n ) obtained

via Lemma 3, as well as the complexity of the operator J ′ for t = n1−µ

provided by Corollary 1 or, which is the same, the complexity of bits of the
approximation σ′, starting from the highest ones, established in Lemma 1
(graph σ′). On the right side of the figure, the graph ξ shows the complex-
ity indices of the symmetric function code bits, sorted in ascending order:
in this case, the code includes about 0.331 log2 n low-order components of

20The effect of septenary compressors in other cases is assumed to be negligible.
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Figure 3: Graphs of complexity indices of formulae over B0

Figure 4: Graphs of complexity indices of formulae over B2

Cn, (0.195 + o(1)) log3 n and (0.063 + o(1)) log5 n low-order components of

C
(3)
n and C

(5)
n in locally binary encoding (as explained in §2), respectively,

and (0.413 + o(1)) log2 n high-order bits of the approximate value σ′. The
graph Sn is obtained by adding the graph of y = 1− µ to the graph ξ. The
maximum of this graph provides a bound on the complexity of the class of
symmetric functions according to Claim 3.

Additionally, the figures show graphs Tmn of complexity and depth indices
of threshold functions Tmn , m = nµ, obtained via Claim 2. Upper bounds
for some threshold symmetric functions, including the majority function, are
given separately in Table 3.

All calculations were performed with the computer support. However, the
estimates (in the rounded form in which they are given) can also be derived
analytically — examples of such a derivation can be found in [30, 31].
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Figure 5: Graphs of depth indices of formulae over B0

Figure 6: Graphs of depth indices of formulae over B2

7 Proof of Theorem 1

Proof of Theorem 1. Recall that we are proving the inequality

DBM (Ψk,t
n ) ≤ log√5−1(k/t) + log2(n/k) + 2 log2 log

(
Ck−t
n + Ck+t

n

)
+O(1).

W.l.o.g. assume 2k ≤ n. Let m = bn/kc. Denote α = 3−
√
5

2
≈ 0.38.

We will define a series of probability distributions ∆0,∆1, . . . on special
sets of monotone formulae. The distribution ∆d involves formulae of depth
dlog2me+2d. The distribution ∆0 includes formulas of the form xi1∨. . .∨xim ,
where each index ij is chosen equiprobably from the set {1, . . . , n}, as well
as constant 0, and

τ = P(F ≡ 0|F ∈ ∆0) = 1− α

1−
(
1− k

n

)m .
When d ≥ 1, the distribution ∆d includes all possible formulae of the form
(G1 ∨ G2)(G3 ∨ G4), where the subformulas Gi are chosen from ∆d−1 inde-
pendently.
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m ΦB0 ΦB2 DB0 DB2
n0.1 1.43 1.28 1.43 1.28

n0.2 1.86 1.51 1.86 1.53

n0.3 2.23 1.73 2.23 1.76

n0.4 2.53 1.94 2.54 1.98

n0.5 2.78 2.11 2.83 2.17

n0.6 2.99 2.27 3.08 2.33

n0.7 3.18 2.41 3.30 2.49

n0.8 3.35 2.55 3.49 2.64

n0.9 3.50 2.67 3.65 2.78

n/2 3.64 2.77 3.81 2.91

Table 3: Upper bounds for indices of complexity and depth of functions Tmn

Consider arbitrary vectors of variables X0, X1 with weights k − t and
k + t, respectively. Let us introduce notations for the probability of formula
error:

pd = P(G(X0) = 1 | G ∈ ∆d), qd = P(G(X1) = 0 | G ∈ ∆d).

By construction,

pd+1 = (1− (1− pd)2)2, qd+1 = 1− (1− q2d)2. (23)

It is easy to verify that the sequences {pd} and {qd} monotonically decrease
on the intervals (0, α) and (0, 1−α), respectively. The ends of the intervals
are the roots of equations x = (1− (1− x)2)2 and x = 1− (1− x2)2.

Lemma 4. For some constant γ > 0 and some s ≤ log4α(k/t) +O(1),

ps < α− γ, qs < 1− α− γ.

Note that a similar statement in [35] is proved more simply, but in a
weakened formulation: with the base β < 4α of the logarithm in the bound
for s. A more precise estimate requires a more careful argument.

Proof. 1. For d = 0 the error probabilities are estimated as

p0 = (1− τ)

(
1−

(
1− k − t

n

)m)
= α ·

1−
(
1− k−t

n

)m
1−

(
1− k

n

)m ,

q0 = τ + (1− τ)

(
1− k + t

n

)m
= 1− α ·

1−
(
1− k+t

n

)m
1−

(
1− k

n

)m
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due to the inequality (1−1/x)x ≤ 1
e
≤ (1−1/x)x−1, which is valid for x ≥ 1.

Denoting a = 1− k
n

and b = t
n
, we derive

(a+ b)ma−m = (1 + b/a)m ≥ 1 +
mb

a
= 1 + Θ(t/k)

(a− b)ma−m = (1− b/a)m ≤ 1− mb

3a
= 1 + Θ(t/k)

due to the simple relations (1 + x)y ≥ 1 + xy, (1− x)y ≤ 1− xy/3, valid for
x, y ≥ 0 and xy ≤ 2. Consequently,

p0 = α− ε0, q0 = 1− α− δ0,

where ε0, δ0 ∈ Θ(t/k).
2. Let us show that for any s ≤ log4α

α
8max(ε0,δ0)

,

ps < α− (4α)sε0/2, qs < 1− α− (4α)sδ0. (24)

This will finish the proof of the lemma.
2.1. Assuming pd = α − εd, and taking into account (1 − α)2 = α we

deduce from (23) that

pd+1 = (1− (1− α + εd)
2)2 = α− 4αεd +

(
(2(1− α) + εd)

2 − 2(1− α)
)
ε2d.

Hence, since εd ≤ α we have

4αεd ≥ εd+1 ≥ 4αεd −
(
(2− α)2 − 2(1− α)

)
ε2d > 4α(1− εd)εd.

Therefore, εd ≤ (4α)dε0. Further, we obtain

εs ≥ 4α(1− εs−1)εs−1 ≥ (4α)sε0

s−1∏
d=0

(1− εd) ≥ (4α)sε0

s−1∏
d=0

(1− (4α)dε0). (25)

With the use of inequality ln(1−x) ≥ −2x, valid for 0 ≤ x ≤ 1/2, and taking
into account (4α)s ≤ α/(8ε0), the product in (25) can be estimated as

s−1∏
d=0

(1−(4α)dε0) ≥ e−2ε0(1+(4α)+...+(4α)s−1) ≥ e−2ε0(4α)
s/(4α−1) ≥ e−α/(16α−4) >

1

2
.

Thus we obtain the first inequality in (24).
2.2. Similarly, denoting qd = 1− α− δd, we have

qd+1 = 1−(1−(1−α−δd)2)2 = 1−α−4αδd−
(
(2(1− α)− δd)2 − 2(1− α)

)
δ2d,
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following by

δd+1 ≤ 4αδd +
(
(2(1− α))2 − 2(1− α)

)
δ2d < 4α(1 + δd/4)δd, (26)

and under the additional assumption δd ≤ α/4 also

δd+1 ≥ 4αδd +
(
(2(1− α)− α/4)2 − 2(1− α)

)
δ2d ≥ 4αδd.

Thus, the second inequality in (24) holds, δs ≥ (4α)sδ0, if only δs−1 ≤ α/4.
2.3. Let us prove by induction that δd < 2(4α)dδ0 for d ≤ s. For d = 0

there is nothing to prove. Let us verify the inductive step from d − 1 to d.
According to (26), the induction hypothesis, the inequalities 1 + x ≤ ex and
(4α)s ≤ α/(8δ0), we have

δd ≤ 4α(1 + δd−1/4)δd−1 ≤ (4α)dδ0

d−1∏
i=0

(1 + δi/4) ≤

≤ (4α)dδ0

d−1∏
i=0

(1 + (4α)iδ0/2) ≤ (4α)dδ0e
(1+4α+...+(4α)d−1)δ0/2 ≤

≤ (4α)dδ0e
δ0(4α)d/(8α−2) ≤ (4α)dδ0e

α/(64α−16) < 2(4α)dδ0.

As a consequence, we obtain δs ≤ α/4, which is what was required.

Lemma 5. Let ps < α − γ and qs < 1 − α − γ for a constant γ > 0. Then
for any r and some u = log2 r +O(1), we have ps+u, qs+u < 1/2r+1.

Proof. 1. First, we show that ps+u′ , qs+u′ ≤ 1/8 for a suitable u′ = O(1). We
can assume that γ is sufficiently small, say, γ ≤ 0.3. From (23) it follows

pd+1 = p2d(2− pd)2, qd+1 = q2d(2− q2d). (27)

It is easy to verify that the functions p(x) = x − x2(2 − x)2 and q(x) =
x − x2(2 − x2) on the intervals Ip = [1/8, α − γ] and, respectively, Iq =
[1/8, 1 − α − γ] are convex upwards, therefore they take minimum values
at the ends (these values are positive). Hence, there exists λ > 0 such that
λ ≤ minx∈Ip p(x),minx∈Iq q(x). Then pd+1 ≤ pd − λ as soon as pd ∈ Ip
and qd+1 ≤ qd − λ as soon as qd ∈ Iq. This means that we can choose
u′ = (1− α− γ − 1/8)/λ.

2. From (27) it is clear that pd+1 ≤ 4p2d and qd+1 ≤ 2q2d. Therefore,
starting from ps+u′ , qs+u′ ≤ 1/8, we derive

ps+u′+i ≤ 2−(2
i+2), qs+u′+i ≤ 2−(2

i+1+1).
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Thus, setting i = dlog2 re we obtain the required estimates.
Applying Lemma 5 with r = log

(
Ck−t
n + Ck+t

n

)
, we find that with proba-

bility < 1/2r+1 a formula from ∆s+u incorrectly computes the function Ψk,t
n

on input X0, and the same goes with X1. As a consequence, with probability
> 1/2 a formula from ∆s+u (its depth dlog2me+2(s+u)) correctly computes
the function Ψk,t

n on the boundary of the uncertainty domain, and hence, due
to monotonicity, on the entire definitional domain. �

8 Some open problems

1. We have seen that threshold symmetric functions can be computed slightly
more simply than general symmetric functions and even than the counting
operator Cn. Is it possible to propose a special economical way to compute
elementary periodic functions (MOD-functions) (

∑
xi ≡ r mod q) for all val-

ues of the period q? For the model of switching circuits, such a method is
proposed in [34], but it relies on the property inherent in switching circuits
to efficiently compute periodic functions with small periods.
2. The approximate summation method §3 is based on the monotone
Valiant’s procedure. Is it possible to propose a more economical approxi-
mate summation procedure that fully utilizes the completeness of the basis?
3. Is it possible to specify a finite basis in which the formula complexity of
symmetric functions, in particular Cn or Majn, is n1+o(1)?
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